UOISISA DI} 18Julidno0pP DIAS

RARE T £3CHE 5Tk

Chapter

Pearson International Edition

J. Glenn Brookshear

An Overview

~OQperating ::

£ Y7 T2 DY 1 33N NCHOCFTY AL H

1 C3CC) 1 O) q v
nnn:ruﬁl gtgm 1::.- i
10001 1)11 /4 QY

: %MM‘@%M%W%%% “q{ ‘

E1 10011010
£O101010AC
P 1 TR TEMYYT iy

Slide 3-1

http://www.neevia.com

Agenda

* Review of the Computer Architecture
— The central processing unit.
— Instructions & The stored-program concept.
— Program execution.

 The Computer Software
— Application Software

— System Software
* The Operating Systems : Kernel + Shell(s)
 Utility Software

» The booting process (FAEHEFR)

» Competition among Processes
— Critical Sections and Dead Lock

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RARET 2EACHe 71 Slide 3-2

0

S A SESRE (Acronym)

ENIAC --1946/02/14

Electronic Numerical Integrator And Computer (Calculator ?)
IBM http://en.wikipedia.org/wiki/ENIAC

I Believe Money

International Big Mouth (OOP i B T)
International Business Machine

UOISIOA |Dl} Jojulidnoop DIAeSN AQ P

IDF
I Don’t Fly OOP
I Don't Fight _ Object Oriented Programming
I1DoFly, IDo Fight Office Of President

CS

Computer Science http://www.oop.gov.tw
Counter Strike © ICQ (I Seek You)

BT B SH TLA : Three Letter Acronym Slide 3.3

Measuring Memory Capacity

 Kilobyte: 2!° bytes = 1024 bytes Kkm = %Z%_ NH
— Example: 3 KB = 3 times1024 bytes
— Sometimes “kib1” rather than “kilo” iy s 1.5TB ?

* Megabyte: 22 bytes = 1,048,576 bytes | JHZHAEE 20Gbps ?
— Example: 3 MB =3 x 1,048,576 bytes
— Sometimes “megi” rather than “mega”

» Gigabyte: 230 bytes = 1,073,741,824 bytes = 10° bytes
— Example: 3 GB =3 x 1,073,741,824 bytes
— Sometimes “gig1” rather than “giga”

* Tera= 1024 Giga = 10"
e Peta= 1024 Tera = 10" e Zeta= 1024 Exa = 10%!
« Exa = 1024 Peta = 10'8 e Yotta = 1024 Zeta = 10**

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://en.wikipedia.org/wiki/Exa-
RAE T FE0hE FHE Slide 3-4

Q
8 us = micro second
gr 760 mm Hg (Atmospheric pressure)
Z
¢+ d = deci = 10! e = femto = 1015
Q o _ «)
8 ¢ = centi = 10 e g = atto = 10-18
([— 1 1 — -3
% m m.llh 10) ¢ z = zepto = 10-?!
‘:—'{” u = micro = 10 . 3 = yocto = 1024
g ° n = nano = 10
< o — o — -12
%. p = pico = 10 cm = 2.\57=FHK
>
nano second Z=F9 =107 # mm — %%
pico second #7FH = 1071* # nm = ==>

http://en.wikipedia.org/wiki/Exa-

RARE T £3CHE 5Tk

Slide 3-5

he Frequencies of Various Wireless Media

Ultraviolet : 0.75P ~30PHz ; 10nm ~ 400nm

D0pP DINSSN AQ p’eqoejo

RARE T £3CHE 5Tk

Frequency (H,) | Infrared light: 1T~430THz; 0.7~300micrometers
1016 X rays, gamma rays
1015 Ultraviolet Iight‘
Visible light
48 SHF Super High 1 10 Infrared light
Frequency, J}‘Eﬁ’f iy [E] 1013
10 -
iﬁlﬁlﬁ UHF %}ltra El\ 10 Millimeter waves %I%ﬁ
@requency, ﬁB 10 Microwaves
aOOMHZN3OOOMHZ : 89 UHF television
VHF V Hi gh VHF televi_sion
r':ﬁ%ncy, ks er@g.l 108 ::/IUIF TV (high band)
3UMHz~300MHz. 10’ VHF TV (low band) BV
EHF High Frequency, 106 Short-wave radio
% LEpE[E| 3SAMHZz~30MHz. 105" AM radio
10*
103 Very Low Frequency ﬁ_lg[
10 4
10")

Slide 3-6

§Electr0magnetic Spectrum

waveLength * frequency = Light Speed = 299,792,458 m/second (3*10°K/F)

Q
O
<
Z
9]

g_(= v =Gamma rays
®1X = Hard X-Rays
S'X = Soft X-Rays
® UV = Extreme UltraViolet
XUV = Near UltraViolet
ER = Near Infrared

IR = Mid Infrared
&1IR = Far Infrared
L HF= Extremely High Freq.
SHF= Super High Freq.
®'HF= Ultra High Freq.
VHF= Very High Freq
High / Medium / Low Freq.
VLF= Very Low Frequency
VF/ULF= Voice Frequency

SLF= Super Low Frequency
ELF= Extremely low freq.

RARE T £3CHE 5Tk

CLASS FREQUENCY
300 EHz
30 EHz
3 EHz
300 PHz
30 PHz
3 PHz
300 THz
30 THz
3 THz
300 GHz
30 GHz

SALLE 5)
300 MHz

NALLEE) |\~

HF

i 3 MHz

e 300 kHz
30 kHz

VLF

VE/ULE
300 Hz

SLF

o 30 Hz
3 H=z

WAVELENGTH ENERGY

1 pm
10 pm
100 pm
1T nm
10 Nnm
100 Nnm
1T pm
10 pm
100 pm
1T mm
1 cm

1 dm

1T m

10 m
100 m
1 km
10 km
100 km
1 Mm
10 Mm

100 Mm

Source: http://en.wikipedia.org

1.24 MeV/,
124 ke
12.4 keV
1.24 keV
124 e\
12.4 eV
1.24 eV
124 meV
12.4 me\,
1.24 meV/
124 peV
12.4 peV
1.24 peV
124 neV
12.4 neV
1.24 neV
124 peV
12.4 peV
1.24 peV
124 feV
12.4 fel

Slide 3-7

0

8 Industrial, Scientific and Medical (ISM) Bands
o o http://www.fcc.gov/Bureaus/Engineering_Technology/Orders/1997/fcc9700S.pdf

§SM — T+ Bl + BEPE 5.15 to 5.35GHz (1997/01)

200 MH:z Not ISK
902 to 928MHz 2.400 to 2.4835GHz \“ Lz, 1oL O

2blVHZ
(For U-NIl device

I D
1 2 3 4 5

FREQUENCY (GHz)

 UNLICENSED OPERATION GOVERNED BY FCC DOCUMENT 15.247, PART 15
« SPREAD SPECTRUM ALLOWED TO MINIMIZE INTERFERENCE

« 2.4GHz ISM BAND
- More Bandwidth to Support Higher Data Rates and Number of Channels
- Available Worldwide
- Good Balance of Equipment Performance and Cost Compared with
5.725GHz Band
- |IEEE 802.11 Global WLAN Standard

UOISISA [P} 18Julidno0p DIASS

UNII : Unlicensed National Information Infrastructure
RAET e Slide 3-8

]|

= HSSHEAE BT EHE 243=?
NN
E RS A rr i

EfRE A (M fird R (O
Memory Tt ! Chatpat Und

o S

HrdE s (ALT)

a7 (1)
Input Umt

&

Anthmetic ad Logie Tt

T

% m (CU)

UOISISA |DU} J8julidn20p DIA8SN AQ pajpal)

iContol Tntd

ALU Q*_’FE\‘ it El"."Z"."Z"."Z"."Z"."Z"."Z"."Z"."Z"."Z"."Z"."Z"."Z"."Z"."Z"."Z".'E_ u

— (FHBERM) FEE AR)G
Data Path ﬁﬁﬂg#ﬁﬁ ¥ E*EHEJ'&#’F] :EH{EE#]‘-}E‘.E;:]&]

RARET 2EACHe 71 Slide 3-9

The ALU = Arithmetic & Logic Unit

Operands

R1
R2

Rn
3

0

ALU + CU=CPU

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Functional Unit
| Result

—

Status Registers

MDR MAR

CMD

CMD = Command OP code

I To/from main memory Data Path

ALU 5 Ff

MDR = Memory Data Register

MAR = Memory Address Register

RARE T £3CHE 5Tk

Slide 3-10

0O

® . .

8 The architecture of a sample machine
a

g :

S CPU Main Memory
3 register Program 00

‘S:. = Counter

Q 0 01

8 Bus

S | ALU ! - i Y

=} Instruction

(_'E,_ Register Memory Bus ?

a

< F

g I/O Bus ? FF

g I/O Devices €—=> CPU

16 general-
purpose registers

256 memory cells with a

2 special-purpose
P purp capacity of 8 bits each

registers

Program Counter (Instruction Pointer) address of next instruction to be executed
Instruction Register hold instruction being executed

Stack Pointer GE{EIEEEZH; TRCCPUEHE) point to top of the STACK in memory
LRFT EE5CHE FHI Shde 3-11

Machine Instrugctions:

Data transfer Movement of data from one location to another

-l
LOAD fill a register with contents of a memory cell H
LOADI fill a register with constant in the instruction Immediately
STORE transfer contents of a register to a memory cell
Move transfer cpntents of a register to another register
Arithmetic/Logic

FLAGS: ...condition code..
Negative Zero V Carry
Sign Zero Overflow C

Arithmetic operations ADD, FADD
Logic operations OR, AND, XOR
ROTATE

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Control direct execution of program

| A S S DR | i e T

JUMP direct control unit to execute an instruction other than the next one

Unconditional Skip to step 5
Conditional If resulting value is 0, then skip to step 5

AT BATHE 2 Slide 3-12

Machine Instructions.:

Example for a conditional JUMP Division

1- LOAD a register R1 with a value from memory
2- LOAD register R2 with another value from memory
3- If contents of R2 1s zero, JUMP to step 6

4- Divide contents of R1 by contents of R2, result stored in R3
5- STORE the content of R3 into memory
6- STOP

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Example: Avoid from dividing by zero using conditional JUMP

AT BARE SHE Slide 3-13

pajpal)

Machine Instructionss:

he Instructions of a sample machine

<

Z

D

D

<.

Q 1

o

o 2

c

o 3

=S

o 4

= s

Q

< 6

@

(%3 7

S
8
9
A
B
C

RXY
RXY
RXY
ORS
RST
RST
RST
RST
RST
ROX
RXY

000

Op-Code Operand Assembly Language

LOAD R, XY ; Load the Register R with data in memory XY
LOADI R, XY ; Load the constant XY into Register R
STORE R, XY ; Store the data in Register R into memory XY
MOVE R,S ; copyRtoS

ADD R,S, T ; R=S+T

FADD R,S, T ; floating Add

OR R,S, T ; R=Sor T

AND R,S, T ; R=S and T

XOR R, S, T ; R=Sxor T

ROTR R, X ; Rotate the Register R to the Right X times
JUMP R, XY ; goto XY if [Register R] == [RO]
HALT

\\

RARE T £3CHE 5Tk

V

How to do a Subtraction?

Slide 3-14

s Computer-Peripheral Communication

2protocols
g’ Es‘@%ﬁ%j

UOISIOA DL} JOJULJNOOP DIASSN

Serial communication 1S 1P 2

Parallel communications.

Centronics
Internal bus: rates measured in Mbps

Bit per second

RS232 - 300 bps ~ 115 Kbps
RS422/485 , IEEE488
USB (Universal Serial Bus)

 USB1.1 - 2Mbsp ~ 12Mbps 7S 1P 4USB ?

. USB2.0 - 480Mbps

IEEE 1394 (FireWire™) (400mbps)
Telephone line: Kbps; Mbps (xDSL)
Coaxial cable (ZElYU& AHRYEIEH —) — 10Base2, 10Base5

Twisted Pair (use RJ45#85Plugs) — 100BaseT, 1000BaseT, 10000BaseT
e Cat 3 (10Mbps), Cat 5 (100Mpbs), Cat 6 (1Gbps), Cat 7 (10Gbps)
Optic fiber: near Gbps

tsaiwn(@tsaiwn.net

AT BARE SHE Slide 3-15

Figure 2.14: A conceptual representation of
memory-mapped I/0

Bus Main
CPU memory
—

— Controller — Peripheral device

Port” Memory-mapped 1/0
Some CPU has no I/O Ports

|] | Memory
I/O port (= : I Address Space
0~65535 0~ (23-1)

Intel x86 CPU

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

T
- =

By tsaiwn@tsaiwn.net

RT3 FHlE Shde 3-16

HigERAs = | E 82 Hardware

THEBEZERE (Architecture)

— CISC Complex Instruction Set Computer
o B4 ¢ Intel x86, DEC VAX

— RISC Reduced Instruction Set Computer
o 40 : IBM RISC6000, SUN SPARK, SGI MIPS

— Parallel Processing

i

|

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

 Pipeline -- $g5 throughput
« Multiprocessor machineZ4 sE 3 BT
— SISD, MIMD, SIMD (page 107, text book)

Computer Architecture : What?

Computer Organization : How ?
RRET 2ESCHE 3 Shide 3-17

Stored-Program Concept

In early computing, the program 1s built into the control unit as a part of the
machine. The user rewires the control unit to adapt different programs.

*Program (instructions) stored in memory instead of being built into the
control unit as part of the machine

*A computer’s program can be changed merely by changing the contents of
the computer’s memory instead of rewiring the control unit

*A machine recognizes a bit pattern as representing a specific instruction

Instruction consists of two parts

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Op-code (operation code)‘ operand(s) field(s)
*STORE operands would be

v'Register containing data to be stored

v’ Address of memory cell to receive data
AR T 2E5CHE FHE Shde 3-18

rogram Execution(The machine cycle)

0
Q
O
<
< :
$ JUMP Instruction B258,,
<.
(@]
g 2. Decode
O Decode bit pattern in
1 o [J
= instruction
. 1.Fet . register
5 Machine cycle
< Retrieve next instructi
g_ from memory (as per
O program counter) and
then 3. Execute
increment Program Perform action
counter requested by instruction
in the InStruction
register

ARET EE30HE FHE Shde 3-19

The composition of an instruction

Instruction Format

Instruction consists of 4 hex digits (2 bytes)

Op-code Operand Fields

UOISIOA |DU} JajuLdNO0P DIASSN AQ palbald

347,, LOAD register 3 with contents of the memory cell at address 47,
Textual representation might be “LOAD R3,47”

JUMP to instruction at address 58, if contents of register 2 is the same as
register (

TAE T AHE SHi Slide 3-20

s s 2 RO OTRSal

Q
()]
Q
()]
Q
2— —ra N)—l‘—
Z| *Auto BEGHLEIRE static 1Y Local B#5
<.| Fetch, Decode, Execute 0 .
g Instruction 2
S CPU Pointer
| | . A+ #PfEdata
= | msem
0 HEAPH£FS
2
>

Pointer 9é iy

9876 B

Aute BELEHSTACKE memory Slide 301

Software(¥HS) --EEISHY T

* Operating Systems (0OS)
— Kernel (£, [E#22E R —LEF2 =0)

* OS components
— Shell (% fF Command Interpreter <3

.+ Programming languages

194t

i)

|DU} J9juULdNO0P DIASSN AQ palbald
0

— Algorithms + Data Structures = Programs

UOISIOA

— Compiler vs. Interpreter
» Software engineering Tools (f41%]] Rational Rose)
» Data Base Management System (DBMS)

AT 2E30hE 5HEE Shde 3-22

g 5 &
ol P - W

L [Pk RS PR B

| e
v |EEmae - £ HERaEerw

g MYsPage

AT BARE SHE Slide 3-23

RAET. LIRS 5HE Slide 3-24

o

Education reference
Software

UOISISA '|pi] 19}julidnoop bIASSN Ag pe,uo%

User Interface(Shell

Database management
Communications
Suites

Browsers

TAE T AHE SHi Slide 3-25

Entertainment
Software

Q . .
s Figure 3.3: Software classification
Q
< ANREEE s
z ik B
g. Software ﬂA VS. %A
Q
g / \ B A vs. ZA
% Application System AR
c:_i FE FHER RS / \
®
§' Utility sprst:;?T’ﬁing Ve 2t
R
Notepad / \
ultraEditor
Shell Kernel
At Bl

RAET 2ESChE FHEE Slide 3-26

Types of software

 Applications software (J& P ES)

e Performs tasks specific to the machine’s utilization.
e Generally transportable (BF 2% 4 12 2] 5] 89 & #)

[System Software (RALE S)

e Performs tasks common to computer systems in general

[Caadl

e Startup Software (Bootstrap Loader)
v POST- Power On Self Test
v BIOS- Basic Input/Output System (Subroutines)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

e Opecrating Systems vary based on the hardware they’re
used on

e Utility Software — /\FHFE =, / T Hilkis

RAET 2ESChE FHEE Slide 3-27

Types of System Software

v Operating System (OS)
» Shell (also known as Command Interpreter)
» Kernel

- v Utility software
— Kind of System Software

— providing fundamental activities, yet not included with OS
— “extend” the OS

“* What is the difference between them?
— Distinction between applications and utilities 1s often

vague (NHHHEN, NFERY)

— Distinction between OS and utilities 1s also vague

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RT3 FHlE Shde 3-28

Figure 3.4: The shell as an interface between
users and the operating system

Operating
system

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Shell

TAE T AHE SHi Slide 3-29

More About Shell

* Also known as Command Interpreter

* Types of shell
— Command driven

— Menu driven (restricted shell)
— GUI (Graphical User Interface)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

AR FEChE FHlE Shde 3-30

0

2Command Shell examples

-ﬂ magpie_cse notn edu tw (25h x 80w)

Fil: Edit Options Help

IE MRS BRS BRSPS Eifa: 0.47 0.36 0.53

[F4F _EFE: 1000.00]

H L_ﬁl\l\
| =

o] CAWINDO WSS yetem 32%cmd exe

2002/09/15 B 03:28

38,592 waterout.mid

[2 EREE R A

‘guest',

2002/09/29
2000/04/06
2002/09/29

Yooo2/00/15

2002/09/29
2002/09/29

ILJ2002/09/29

_J2002/09/29
EREFT ROTER

(HETHE

i

S A (CE (User TD): _

2002/09/29
2002/09/29
2002/09/29
2002/09/29
2002/09/29
2002/09/29

T 06
EF 12
02
B4 03
B 02
02
50
50
50
4 01
50
50
49
: 40

FZ- 01
B4 01
B2 01

B4 01
B4 01
4= 01
B4 01

45
00
04
28
39
39

50

<DIR>

<DITR>

<DIR>

<DIR>

<DTR>

363,666
781,841
32,962
16,537
454
16,732
13,430
8,649

13,971

XG_ Drive.EXE

y2k.exe

yvanming.mid
yvanming2.mid
BOLEESER 2 files
BFOLEESEFZ 27 him
wEaoEIER -3.files
= oo EIEE -3 htm
e albb-2. i les
Haaog|Eb-2. htm
= EIkb-4. files
= alth-4. htm
mEHaodEIER files
= EIbL . htm

113 {EAEEE
12 EH %

245,943 055 {ICHE
323,038,208 {roAE A A

C:\coursedintrocs> ‘
o0 0000000000000 >

Slide 3-31

RARE T £3CHE 5Tk

Graphical Shell
"goo-ee")

* The Graphical User Interface — features of
the GUI...

« Users work with on-screen pictures called
icons and with menus rather than keyed-

Aﬁpemejo
-
—
|
N
©O
-5
O
D
O
C
-
@
D
O

UOISIaA [P} 18Julidno0p DIASSN

RT3 FHlE Shde 3-32

What does Shell can do?

e Read Command from the user and take
some action(s)

» Internal commands (and the Aliases)

» External commands
e Current directory ? (.)
— Unix vs. DOS/Windows ?

e Path

— Command path
— Data path

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RT3 FHlE Shde 3-33

OS can have many different Shells

 Detines interface between OS and users
— Windows GUI
— UNIX command line (Command driven)

— UNIX users can choose among a variety of shells
e sh is the “Borne shell”
e csh is the “C shell” ([KlEE7E5: C; by Berkeley Univ.)
e tcsh 1s an enhanced “C shell”

ksh is the “Korn shell”

e bash is “Borne Again Shell”

— Shell programming (Batch file/Script file)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

AT BARE SHE Slide 3-34

The Operating System Kernel

The internal part of the OS 1s often called the Kernel .

* Resident in memory, running in privileged mode
» System calls offer general purpose services
* Controls and mediates access to hardware

* Schedules / allocates system resources:
— CPU, memory, disk, devices, etc.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Event driven:
— Responds to user requests for service (system calls)
— Attends interrupts and exceptions

— Context switch at quantum time expiration

AT BARE SHE Slide 3-35

OS Kernel Components (1/2)

 Kernel Components
1) File Manager -- manages mass storage
2) Memory Manager -- manages main memory
3) Device Drivers -- communicate with peripherals

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

4) Scheduler-- manage processes HEFL

5) Dispatcher-- manage processes FH#
 The trap instruction 1s used to switch from
user to supervisor mode, entering the OS

RT3 FHlE Shde 3-36

OS Kernel Components (2/2)

Scheduler, Dispatcher

Process, Thread &
Resource Manager

Memory
Manager

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

j File

Manager

Device
Manager

Processor(s) I Main Memory I

Devices I

RARE T £3CHE 5Tk

Slide 3-37

File Manager : OS Component 1/5

Maintains information about the files that are
available on the system

Where files are located in mass storage, their
size and type and their protections, what part of
mass storage 1s available

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
o

Files usually allowed to be grouped in
directories or folders. Allows hierarchical
organization.

RT3 FHlE Shde 3-38

Memory Manager : OS Component 2/5

This unit 1s responsible for coordinating the use
of the machine’s main memory.

It decides what area of memory 1s to be
allocated for a program and it’s data

It allocates and deallocates memory for
different programs and always knows what
areas are iree.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

AR FEChE FHlE Shde 3-39

Device Drivers : OS Component 3/5

* Software to communicate with peripheral
devices or controllers

* Each driver 1s unique

* Translates general requests into specific steps
for that device

UOISISA DL} JISJULIdNO0oP bIASSN AQ pajoal)

 Drive 1= Driver (—7 1 1= :JT%)

RER

AT BARE SHE Slide 3-40

Scheduler : OS Component 4/5

* Maintains a record of processes that are present,
adds new processes, removes completed
Processes

— memory area(s) assigned
— priority

— state of readiness to execute (ready/wait)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Scheduler == HEPFE

RARET 2EACHe 71 Slide 3-41

Dispatcher : OS Component 5/5

» Ensures that processes that are ready to run are
actually executed

* Time 1s divided into small segments (€.g., S0 ms)
called a time slice. (FRF[&] FrET)

"/

* When the time slice 1s over, the dispatcher
allows scheduler to update process state for
each process, then selects the next process
(from ready queue) to run.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Dispatcher == {5#H; fAEE

RARET 2EACHe 71 Slide 3-42

Process Management

* A process is a program in execution. A process
needs certain resources, including CPU time,
memory, files, and I/O devices, to accomplish 1ts
task. (IEAFRUAIREZCEEAL process 77/)

* The operating system 1s responsible, through
Scheduler and Dispatcher, for the following

activities 1n connection with process management.
— Process creation and deletion.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— process suspension and resumption.

— Provision of mechanisms for:
* process synchronization
* process communication

AT BARE SHE Slide 3-43

More about the OS

e OS History
* OS kernel
* Types of OS

— Batch vs. Interactive

— Multi-Programming

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— Time Sharing
— Real Time Operating System (RTOS)

e Other Topics regarding OS

* OS Loading
— The Booting process (Bootstrapping)

RAE T BACHE oM Slide 3-44

Brief History of Operating Systems

* 1940's -- First Computers (NO OS 1n 1t)
* 1950's -- Batch Processing
* 1960's -- Multiprogramming / Timesharing

* 1970's -- Minicomputers & Microprocessors

» Late 1970's, 1980's -- Networking, Distributed
Systems, Parallel Systems

» 1990's and Beyond -- PC's, WWW, Mobile Systems,
Real-time System

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://en.wikipedia.org/wiki/History of operating systems

AT BARE SHE Slide 3-45

Early Computing History

In the 1940s and 1950s, all computers were personal
computers in the sense that a user would sign up to
use the machine and then take over the whole machine
for that period.

— ENIAC 1946/02/14 JAZZ A28

The early 1960s were dominated by batch systems in
which a user would submit a job on punched cards
and wait, usually hours, before any printed output
appeared on a printer.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
o

http://en.wikipedia.org/wiki/ENIAC

RWARE T BHE 51 Slide 3-46

MULTICS project in MIT

To get around this unproductive environment, the

concept of timesharing was invented by Dartmouth
College and M.I.T. (1969)

The ML.LI.T system CTSS (Compatible Time Sharing
System) was an enormous SUuccess.

M.I.T., Bell Labs, and General Electric created a
second generation timesharing system named
MULTICS (MULTiplexed Information and

Computing Service). (1964-1969)% T X&AH - ERE

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
o

MULT1i-user Interactive Computing System ?

http://en.wikipedia.org/wiki/MULTICS

http://en.wikipedia.org/wiki/Unix |
RRE L £3HE 5T Shde 3-47

Early UNIX History (1/4)

At Bell Labs, Ken Thompson decided to write a

stripped down version of MULTICS for the very
small PDP-7 minicomputer which he called UNICS.

Dennis Ritchie, also at Bell Labs, joined Thompson

in further developments of what was now called
UNIX.

Together they ported the system to the larger and very
popular PDP-11/20 and PDP-11/45 minicomputers.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
o

PDP-7 = PDP-11 7-11 ?

http://en.wikipedia.org/wiki/Unix
RAET FCHE 51 Slide 3-48

Early UNIX History (2/4)

* Thompson also tried to rewrite the operating system

in high level language of his own design which he
called B., which 1s a modified version from BCPL.

* The B language lacked many features and Ritchie
decided to design a successor to B which he called C.

* They then rewrote UNIX in the C programming
language to aid in portability. (C + Assembly)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

BCPL: Basic Computer Programming L.anguage
BCPL=> B =2 C = C++ =>» Java = C#

RAET. LIRS 5HE Slide 3-49

Early UNIX History (3/4)

* In 1974, Ritchie and Thompson published a paper
about UNIX and received the prestigious ACM
Turing Award.

* This publication stimulated many universities to
request a copies of UNIX.

* Since Bell Labs, part of AT&T, was not allowed to
be in the computer business, it licensed UNIX to
universities.

e Also, at that time, the PDP-11 series was the
workhorse of most computer science departments.

* Result: UNIX was a hit on campus.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://en.wikipedia.org/wiki/Unix |
LRA T FEX0HE TR Slide 3-50

Early UNIX History (4/4)

In Version 6, the source code of UNIX was 8200 lines
of C and 900 lines of assembler.

The first portable version arrived with Version 7
which had 18,800 lines of C and 2100 lines of
assembly instruction.

By the 1980s the use of UNIX was widespread with
many vendors selling their own versions based on
Version 7.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
o

The C Programming Language,
by Brian Kernighan and Dennis Ritchie
(the first edition of which is sometimes referred to as K&R)

http://en.wikipedia.org/wiki/The C Programming Language (book)
AT 2E30hE 5HEE Shde 3-51

The BSD UNIX

One of the many universities that had received license for
UNIX was the University of California at Berkeley.

Aided by many government grants, Berkeley released
an improved version named 1BSD (First Berkeley
Software Distribution)

In subsequent, versions Berkley added many new
features including a new visual editor (vi) and a new

shell (csh). (JRZKRHJE Borne shell)

UOISIGA DL} 18JULIdpOOP PIA§ON AQ pajpald

csh : S C-Shell, I EFEL G C 7=

Shell script : Hf& BATCH file (3L X&)
TAR T ZE0hE 2H Slide 3-52

System-V vs. BSD-4

Because of these and other enhancements, many
companies based their UNIX on Berkeley’s version
(BSD) as opposed to AT&T’s so-called System V.

By the late 1980s, two different and somewhat
incompatible versions of UNIX were 1n widespread

use:
— BSD 44

— System V release 4. (SVR4)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
o

http://en.wikipedia.org/wiki/Berkeley Software Distribution

http://en.wikipedia.org/wiki/UNIX System V

AT BARE SHE Slide 3-53

Services provided by OS

* Program creation

* Program execution

* Process management

* Provide System calls
Access to I/0 devices
Controlled access to files

Error detection and response

- hardware errors (e.g., memory error, device failures)

- software errors (e.g., overflow, out of memory boundary)
* Accounting
- collect usage statistics, monitor performance

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RAET. LIRS 5HE Slide 3-54

The OS Architecture

Interactive User m <
e
Application I Q@ @

Programs
OS System Call Interface

Trap Table

Libraries |Commands

Device Driver

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Monolithic Kernel Module

*Process Management
*Memory Management

*File Management

*Device Mgmt Infrastructure

Device Driver

Device Driver

Driver Interface

RT3 FHlE Shde 3-5

System Calls (1/2)

* System calls provide the interface between a running program and
the operating system.

— Generally available as assembly-language instructions.

— Languages defined to replace assembly language for systems
programming allow system calls to be made directly by high level
languages(e.g., C, C++)

Three general methods are used to pass parameters between a
running program and the operating system.

— Pass parameters in registers.

— Store the parameters in a table in memory, and the table address is
passed as a parameter in a register.

— Push (store) the parameters onto the stack by the program, and pop off
the stack by operating system.

* Types of System Calls
— File management
— Device management
— Information maintenance
— Process control
— Communications

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://en.wikipedia.org/wiki/System call |
KA T FE5hE Slide 3-56

System Calls (2/2)

* On Unix, Unix-like and other POSIX-compatible
Operating Systems, popular system calls are open,

read, write, close, exit, wait, signal, fork, exec, and
kall.

 How many system calls in OS ?
— The first Unix has 47 system calls

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— Current Linux kernel has 319 system calls
— Current FreeBSD kernel has almost 500 system calls

http://en.wikipedia.org/wiki/System call

AT BARE SHE Slide 3-57

UNIX Standards : IEEE1003 (1/3)

* In addition to the AT&T Unix and Berkeley BSD, every
vendor added its own nonstandard enhancements.

In an attempt to unify the troops, the IEEE Standards Board
undertook the POSIX Project (POS stands for Portable

Operating System) and IX to make 1t UNIX like. And the result
is the IEEE 1003.

IEEE 1003.1 emerged as a common ground standard.

IEEE 1003.1 is the intersection of System V and BSD. (A
feature had to be on both to be included in the standard)

* IEEE 1003.2 1s about the Shell and the Utility programs

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

AR FEChE FHlE Shide 3-58

UNIX Standards : IEEE 1003(2/3)

The POSIX standard defined a set of library
procedures and systems calls that all compliant UNIX
systems.

It appeared that the split between System V and BSD
had been somewhat dealt with.

As of 2009 POSIX:2008 or IEEE Std 1003.1-2008 represents
the current version. A free online copy 1s available here:

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://www.opengroup.org/onlinepubs/9699919799/

AR FEChE FHlE Shde 3-59

UNIX Standards : IEEE1003 (3/3)

Unfortunately, a funny thing happened on the way back form the
standards meeting.

A group of vendors led by IBM, DEC, Hewlett-Packard, and

op pIAeaN AQ pajpald

0

% others formed the OSF (Open Software Foundation) to

= standardize an enhanced version of UNIX 1n an attempt to derail
= AT&T's efforts to regain control of UNIX. (Ff: DEC LAS/HH)
%‘ AT&T, Sun, UNISYS, Data General, and other companies

S countered and formed UI (UNIX International) based on System V.
Se SUN OS (52 P} A, SUN: Stanford University Network)

— BSD based for version 4.x and before
— SVR4 based for version 5.x (Solaris system)

2010/01/27 SUN E.IEZ 4 Oracle f{£i@ US$7.4billion

Oracle — EERFH 3/ E] — DBMS leader
RRET ZESHE EH Slide 3-60

The Open Group (was OSF)

* The Open Group is an industry consortium to set
vendor- and technology-neutral open standards for
computing infrastructure.

The Open Group was formed when X/Open merged with the
Open Software Foundation (OSF) in 1996.

The Open Group is most famous as the certifying body for the
UNIX trademark, in the past the group was best known for its
publication of the Single UNIX Specification paper, which
extends the POSIX standards and is the official definition of
UNIX.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://www.opensoftwarefoundry.org/

http://en.wikipedia.org/wiki/The Open Group
KRBT FESHE 5T Shide -0l

The Unix International (UI)

 Unix International or Ul was an association created in
1988 to promote open standards.

UI was formed by AT&T, Sun, UNISYS, Data General, and

some other companies. The Unix standard promoted by Ul 1s
based on AT&T System V.

In May 1993, the major members of both UI and OSF
announced the Common Open Software Environment (COSE)
initiative. This was followed by the merging of UI and OSF
into a "mew OSK" in March 1994, which in turn merged with
X/Open 1n 1996, forming The Open Group.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://en.wikipedia.org/wiki/Unix International

AT BARE SHE Slide 3-62

Major Unix Flavors

* First Edition: Bell Labs, 1969

« BSD1.0: UC, Berkeley, 1977 -- BSD4.6
* System V: 1983 -- SVRI, SVR2, SVR3, SVR4
« POSIX standard

 Solaris (Sun OS 5.x) (H PC iR)
« AIX (IBM)

* Linux (open source); GNU/Linux

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

* FreeBSD (open source) gpeceBsSD o

o Forell f sl g Sk o 8wl e

- -BSD

RT3 FHlE Shde 3-63

UNIX Like Systems

In a new trend, UNIX like operating systems began to
appear.

MINIX, by Andrew Tanenbaum, used a microkernel
design with only 1600 lines of C and 800 lines of
assembler 1n 1ts first version.

GNU project started by Richard M. Stallman(RMS) at
1984/01/05. (announced at 1983/09/27)

In 1991, a Finnish student named Linus Torvalds

released a_rggther UNIX clone named Linux version
0.01. (R TEA)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
o

http://en.wikipedia.org/wiki/Richard Stallman

AT BARE SHE Slide 3-64

GNU 1s Not Unix

* GNU 1s a project started by Richard M. Stallman

(RMS) to write a completely free implementation of
Unix available. (coding begun at 1984/01/05)

* GNU stands for “"GNU is Not Unix", which is
recursively defining itself.

* Most of Unix has been rewritten by him and his
friends.

* Many other software packages have been released for free.

* My favorite linux distribution has over 13,000 packages.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://www.gnu.org/gnu/thegnuproject.html

AT BARE SHE Slide 3-65

Richard M. Stallman (MIT Professor)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

of
GNU

RT3 FHlE Shide 3-66

Free software according to RMS

* Free software comes with four freedoms
— The freedom to run the software, for any purpose

— The freedom to study how the program works, and
adapt 1t to your needs

— The freedom to redistribute copies so you can
help your neighbor

— The freedom to improve the program, and release
your improvements to the public, so that the whole
community benefits

N00pP PIA8SN AqQ pajpal)d

(=

ucqge/\ﬂmm Jgt_uu

RMS -- Richard M.Stallman.

http://en.wikipedia.org/wiki/Richard Stallman
KA T FE5hE Slide 3-67

Linux operating system

* Linux 1s a monolithic design. (9,300 lines of C and
950 instructions of assembly code in ver. 0.01)

Linux quickly grew 1n size and functionality.

Linux Version 1.0, shipped 1n 1994, contained about
165,000 lines of code.

 Version 2 1n 1996 contained about 470,000 lines of C
and 8000 lines of assembly code.

* Linux 1s released under the GNU Public License (GPL), which,
very basically means that anyone can copy and change it.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Linux 2.7 http://kerneltrap.org/forum/linux/kernel/

AR FEChE FHlE Slide 3-68

[Linux Distributions

* Linux itself s free. It is aggregated with installation and management tools,
and many other software packages, and made available for a small fee by
various vendors on CD.

* These aggregates are known as distributions.
* Some common distributions are

— Red Hat -- SuSE -- Mandrake
— Debian -- Slackware -- fedora (by RedHat)
— Ubuntu -- XUbuntu

— Knoppix (first Linux Live CD)

e Differences

— Locations of files (configuration, binaries, etc.)
— GUI
— Security, efficiency, etc.

 DRBL (Diskless Remote Boot in Linux)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://en.wikipedia.org/wiki/Linux_distribution

AR FEChE FHlE Shide 3-69

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Other Unix-like systems

) FreeBSD - Microsoft Internet Explorer r;”EJEl
BED HHE WSRO HOSEW TAD HEO e

Q- O (¥ [@ @ Pns draves @ure & 3-2 # - OH 3

#Ei ;liﬁ-i'-f b3

#REHE T |@ hitp ke rneltrap orgfonmmAfresbsd i

i mywebsearch ~ | A 8earch + P Cozsor Mands) Swmdley Central (8] Screensavers

L Wanted: Embedded Linux Developers JTIXIA
K ern el T Irad n s,0rg %‘% Architect, design and port Linux to cutting edge Ixio hardware

Adverize on KermelTrap —

Farums Mewes Lists | Journals Features Site | |p.:-were.:| b

Hardware Linux FreeBSD OpenBSD DragonFlyBSD NetBSD GNU/Hurd Gougle
KernelTrap

User login Advertisement

LUzername: Herﬂel_T['a
advertising

sale: 15% off
all text ads,
25% off all
banner ads.

Combined with

e Active forum discussions.
» Post new forum topic.

Forum Topics Posts Lastpost ather
FreeBsD kernel discounts,

Discussion about the FreeBSD kernel. banners can be
— purchased for
Navigation FreeBS0D 48 as much as

create content kermel 55% off the

[ESENt ot Discussion about normal price.
the 4 .8 stable w

|

o Slide 3-70

® Create new account

® Reguest new password

>t
)]]]I%
H
R
sy
i
n_l‘ll

Types of OS

e Batch vs. Interactive System

— In early days (beyond PC era), computers were extremely
expensive. To speed up processing, operators batched
together jobs with similar needs and ran them through the
computer as a group. The OS 1s simple that needs to only
automatically transfer control from one job to the next.

* Multi-Programming System (next slide)
 Time Sharing System

* Real Time Operating System (RTOS)

e Multiprocessor System

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

 Distributed System, Clustered System

RT3 FHlE Shde 3-71

Multiprogramming | FCIEEEAFEEH
ZAEFE

* Goal: keep CPU busy

Fact: I/0 times are large

When one program is waiting for 1/O to
complete, run another program

e => Multiple programs resident in memory
* Scheduling:

— non-preemptive

— Preemptive = TimeSharing

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
[[

http://en.wikipedia.org/wiki/THE multiprogramming_system

AT BARE SHE Slide 3-72

Time sharing

* Goal: allow access to multiple users at the same time

* Fact: People’s response time is large

— in most cases users entered bursts of information
followed by long pause (thinking?)

e Schedule the programs fast + process switch

— the "state" of each user and their programs should be kept in
the machine, and then switched between quickly.

* Scheduling: preemptive

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Time sharing = Multiprogramming + preemptive

http://en.wikipedia.org/wiki/Time-sharing

AT BARE SHE Slide 3-73

Other Topics regarding OS

e Microkernel architecture
* Process state transition

e Processor modes give OS privilege

— User mode vs. Supervisor mode
* Trap instruction makes true OS possible
« Context switch, process switch

* OS Loading

— How does the System start ? (Bootstrapping)
— Cold start vs. Warm start

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://en.wikipedia.org/wiki/Context switch

AR FEChE FHlE Shde 3-74

Monolithic Kernel vs. Microkernel

Ik
= ~ >7J1 BN / ~
B %G A
Monolithic Kernel Microkernel
based Operating System based Operating System

Application N .
fs}fstem call Minimum essential
user funCtionality
mode

Application UNIX Device
IFC Senver Driver

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

kernel
mode

http://en.wikipedia.org/wiki/Microkernel

Windows XP, Linux are Monolithic Kernel
SRHT. ZEHE BH Shde 3-75

Microkernel | cMuU Mach, Apple OS X, GNU Hurd

* Minimum essential functionality

* Client-Server system on same system
— Microkernel servers are essentially daemon programs like any others,
except that the kernel grants some of them privileges to interact with parts
of physical memory
— Clients request services from microkernel which passes message onto

appropriate server
operating system services

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

client Process file display network §

. : control manager v

application i <erver erver server server 5
‘ SR U NS I O AU S U ORS STyt
.............. r
AP| / kernel mode

7 > microkernel
A
messages l’

hardware

Nano kernel, Pico kernel |
WRET. 2E30hE SHEE Shde 3-76

Processor Modes

* Mode bit: Supervisor or User mode

* Supervisor mode
— Can execute all machine instructions

— Can reference all memory locations

 User mode

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— Can only execute a subset of instructions

— Can only reference a subset of memory
locations

Supervisor Mode 1s designed for OS
KA T FESChE SHIE Shide 377

vector)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Trap instruction | jp0 - int 255

Intel x&86:

* Trap 1s like a function call
— aka hardware interrupt
— mode 1s set to supervisor
— address of function 1s looked up from a table (interrupt

— the function body 1s executed
— The function body 1s aka Interrupt Service Routine (ISR) or
Interrupt Handler

* Direct invocation of the function 1s not permitted.

HIE

7 cpU 3Rt Trap nstruction

IEHY OS HAE

L I

(especially hardware trap)

H2R!

RARE T £3CHE 5Tk

Slide 3-78

OS Loading

How does OS loads into the first place?

* There’s something called a bootstrap loader, which 1s stored 1n
ROM and brings the necessary pieces of OS (bootstrap) from
the disks’ boot sector, which know how to load the OS further,
and transfers control to it.

Then all the other parts of OS and device drivers are loaded.

This self-sustaining process that will finally load the full OS
into the computer and transfer control to the OS 1s called
“bootstrapping”. (to pull oneself up by one’s bootstraps)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Where is the bootstrap loader before the ROM invented?

http://en.wikipedia.org/wiki/Bootstrapping (computing)

RT3 FHlE Shde 3-79

Figure 3.5: The booting process

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Main memory Main memory
B Disk storage B
Bootstrap Bootstrap .
ROM— program ROM— program Disk storage
Operating =
, , system - -
Volatile_| Volatile_| ==
memory memory ==
Operating Operating
_ system L system

Step 1: Machine starts by executing the bootstrap
program already in memaory. Operating
system is stored in mass storage.

Step 2: Bootstrap program directs the transfer of
the operating system into main memory
and then transfers control to it.

http://en.wikipedia.org/wiki/Bootstrapping

TAE T AHE SHi Slide 3-80

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Start up the computer (1/2)

When the computer 1s started, the control unit branches to a

fixed memory location; e.g. initial PC value hardwired. (e.g.,
CS:IP = 0xffff:0000 in Intel based computer.) ({fc/Z Intel

CPU #1152 fFff:0 Z55A Oxfrr0 Hmh 2 1M 81 6byte)
The fixed location 1s a ROM address that contains a POST
(Power On Self Test) program + a small bootstrap loader +

some Input/Output Routines . (in BIOS ROM)

The POST process is a series of tests conducted on the
computer’s main memory, input/output devices, disk drives,

and so on, ... (HIFLFENSIEEEA 1R HE).
Bootstrapping process starts after successful POST process.

BIOS = Basic Input Output System

Intel CPU: CS:IP O0xffff:0x0000 =>» O0xffff0

http://en.wikipedia.org/wiki/Bootstrapping (computing)

AT TR HE Slide 3-81

Start up the computer (2/2)

* The bootstrap loader may be comprehensive
enough to load the nucleus of the OS (kernel);
Otherwise, 1t loads a loader program that does so.
The loader program is usually called bootstrap. (-
=bootstrap, V2B OS kernel £E[5]—F&{Fi=
Wbootstrap FELIR ¥ bootstrap)

Once bootstrap phase 1s done, any program can be run by
loading 1t in memory and loading its initial address in the PC
(fetch-decode-exec algorithm)

bl

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

BIOS = Basic Input Output System

Intel CPU: CS:IP O0xffff:0x0000 =>» O0xffff0

http://en.wikipedia.org/wiki/Bootstrapping (computing)
ERFAT FE30HE FHEE Slide 3-82

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

POST — Power On Self Test

Power-On Self-Test (POST) 1s the common term for a
computer, router or printer‘s pre-boot sequence. Including a
series of tests conducted on the computer’s main memory,
input/output devices, disk drives, and so on, ... GHIEE SIS
HiZHEEH)

Bootstrapping process starts after successful POST process.

Original IBM PC POST beep code
— 1 short beep - Normal POST -- system is OK
— 2 short beeps - POST error -- error code shown on screen
— 1 long, 2 short beeps -- Display adapter problem (MDA, CGA)
— 1 long, 3 short beeps -- Enhanced Graphics Adapter (EGA)

POST beep codes on CompTIA A+ Hardware Core exam

— One long, two short beeps -- Video card failure
— Long continuous beep tone -- Memory failure

http://en.wikipedia.org/wiki/Power-on self-test

AT FAhE HE Slide 3-83

0xF FFFF

Oz~ 0000

UOISISA |Dl} J8julidno0op DIA8SN AQ pajpald

RARE T £3CHE 5Tk

Accessible RAM
PMe mory (640KB is
enough for anyone -
old DOS area)

1B

960 KB

896 KB

768 KB

640 KB

Memory layout on Intel-based PC

Slide 3-84

Bootstrapping

/ 1. When computer is started,
bootstrap execution begins with bootstrap
loader loader, permanently stored in ROM

Cold boot vs.

warm boot Y
t 2. Bootstrap loader
d locates operating system
(OCS NO \ program, usually at a fixed

I'CteSt the disk location.
system)

UOISISA [Dl} Jo}tIdNO0P DINSON Aq paipald

RAM
> 3. Loads it into RAM.
4. Transfers control to
starting location of
operating system
program with a JMP Note: Loader program in OS can
instruction. then be used to load and
execute user programs.

e.g., JUMP 0:7¢c00

AT BARE SHE Slide 3-85

%oejo

ootstrapping Microsoft OS (DOS/Windows)

* Two step process when booting from Floppy:

— a simple bootstrap loader in ROM fetches a more
complex boot program from the boot sector in diskette,
which 1n turn loads the kernel

* Three step process when booting from Hard Disk:

— a simple bootstrap loader in ROM (BIOS ROM) fetches
a pre-boot program 1n the MBR (Master Boot Record), and
the Pre-boot program then find the bootable partition and
load a the boot program from the boot sector in that

UOISIaA [P} Iajulidno0op bIAeaN AQ

partition (43-#l&), which in turn loads the kernel.

AR FEChE FHlE Slide 3-86

1O

0 Bootstrapping flow Diagram

L%[BR = Master Boot Record

Contains read-only NTFS
code; Load NTLDR and passes
the structure and format of the
logical drive to NTLDR

é

*}
BYOS / POST

<
vy
=

FAT: “Couldn't find

NTLDR”

No
NTEFS: “A Kernel file is Found NTLDR ?
missing”

“Windows NT could not
start because the
following file was
missing or corrupt :
filename”

Reads boot.ini

Loads & executes ntdetect.com

Reads the Registry

Switches to Protected mode and enables paginé

Loads device drivers

— UOISISA DL} J9Julidno0p DIAD

ound ntoskrnl.exe & hal.dll ?

: Windows\system32\
Windows system @OSKR@ ntoskrnl.exe, hal.dll

BIOS = Basic Input Output System | POST = Power On Self Test
ZARET FE5hE FH Slide 387

NTLDR, boot.im1, NTDETECT.COM, ...

e CAWINDOWShsystem 32%cmd _exe

C:\>dir/a nt* boot* *,5yg
TEEEE C haUnERE IS BAEE -
TGHER FRaR . 2CT75-EF62

C:\ BYE&F

2008/04/13 B4 10:13 47,564 NTDETECT.COM
2008/04/14 A 12:01 257,728 ntldr

C:\ BYHE

2010/04/07 B4+ 02:57 211 boot.ini
2002/09/13 F4- 08:00 213,830 bootfont.bin

C:\ BYH%

2008/05/23 T4 11:02 0 CONFIG.SYS
2010/04/07 B4 02:56 804,245,504 hiberfil.sys
2008/05/23 R4 11:02 0 I0.SYS
2008/05/23 R4 11:02 0 MSDOS.SYS
2010/04/07 B4 02:56 1,207,959,552 pagefile.sys
O {EfEZE 2.012,724,389 iFAE
O EE%E 1.,455,140,864 F7CAE A FH

O
9
Q
—f
9,
Q
O
<
Z
D
y)
<.
Q
Q
O
0
C
v
5.
—f
D
:|‘.
§
<
1)
2,
(@)
-

http://en.wikipedia.org/wiki/NTLDR
ERE T EESCEE 7T Slide 3-88

NTOSKRNL.EXE, hal.dll
http://en.wikipedia.org/wiki/NTLDR

o CAWINDO WShsystem 32w md _exe

CoAWINDOWSAsystem32>dir ntos*
TR C ORUREHE S EERE -
TEiESE P87 . 2C75-EF62

C:\WINDOWS\system3?2 ABYHE %%

2009/02/09 T 07:21 2,188,928 ntoskrnl.exe
1 EfE=E= 2,188,928 fiFsTAHE
O EHE®&: 1,455,173,632 {woiEATH

CoAWINDOWSAsystem32>dir hal®*
TEEER C RUTEERIE T A= -
THHEE R 2C75-EF62

O
9
Q
—f
9,
Q
O
<
Z
D
y)
<.
Q
Q
O
0
C
v
5.
—f
D
:|‘.
§
<
1)
2,
(@)
-

C:AWINDOWSAsystem3?2 AYHE %
2008/04/14 B4 12:01 81,152 hal.dll
1 Efgs 81,152 {r7cHE
O EE#F 1.455,173,632 Ar5eAiE AT AH

C: \WINDOWS\sys tem32>

LRFT EE5CHE FHI Slide 3-89

Diagram of process/thread State Transition

admitted interrupt

scheduler dispatch

/O or event completion /O or event wait

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

thread vs. process

thread == Light weight process

Kernel thread vs. User thread
RT3 FHlE shde 350

Terminologies regarding OS

* Critical section: a section of code which reads or
writes shared data

Race condition: potential for interleaved execution of
a critical section by multiple threads/processes

- Results are non-deterministic
* Mutual exclusion: synchronization mechanism to

avold race conditions by ensuring exclusive execution
. . ° ° \\:b A)
of critical sections (Java i synchronized Z£f%)

- Deadlock: permanent blocking of threads/processes

» Starvation: execution but no progress (Livelock)
(Dining Philosopher problem)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://en.wikipedia.org/wiki/Critical section

AT BARE SHE Slide 3-91

Competition among Processes

* Shared data (shared resource) problem

— Concurrency with shared data problem

— Deadlock, Livelock, .
. m%éﬁ’“a‘%ﬂﬁriiﬁ”ﬁHﬁjﬁﬁffﬁﬂﬁﬁaﬁfﬁ FHREE?

e Mutual exclusion

— Semaphores (next slide)
» Test-and-set instruction (a primitive)
— if (mem[k] ==0) mem|k]=1; //?
 Critical region (Critical section)
* Race condition
e Mutual exclusion

— Monitor (next slide)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://en.wikipedia.org/wiki/Mutual exclusion
RREET $ESCHE 3H Slide 3-92

The Critical Section Problem

e n processes all competing to use some shared data

» Each process has a code segment, called critical section
(CS), in which the shared data 1s accessed.

* Problem — ensure that when one process 1s executing 1n its
critical section, no other process 1s allowed to execute 1n its
critical section

— Even with multiple CPUs
« Each process must request the permission to enter its CS

» The critical section problem 1s to design a protocol that the
processes can use so that their action will not depend on
the order 1n which their execution 1s interleaved (possibly

On many processors)
— Semaphore, Monitor : provided by OS
— Test-and-Set instruction : Hardware

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://en.wikipedia.org/wiki/Critical section
KA T FE5hE 5 Slide 393

Semaphore

*Synchronization tool (provided by the OS) that does
not require busy waiting

*Formally, a semaphore 1s comprised of:
-An 1nteger variable: value
-Two atomic operations: P() and V()

‘P() --- also known as wait()

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

While value = 0, sleep
Decrement value and return J ava.

V() -- also known as signal() < | Dotiy()
Increments value notity All()

If there are any threads sleeping waiting for value to
become non-zero, wakeup at least 1 thread

http://en.wikipedia.org/wiki/Semaphore (programming)

http://en.wikipedia.org/wiki/Producers-consumers problem
RAE T FE08E FHEE Slide 3-94

Monitors : Q(suspfnded)
l / associated with
*A Monitor is essentially a class with sl) iion
private methods, plus a queue.
resume

e A monitor 1s a set of programmer-defined operations that are
provided mutual exclusion within the monitor (the monitor
construct prohibits concurrent access to all procedures defined
within the monitor)

* Type of condition: x.wait and x.signal

o Signal-and-Wait: P=>wait Q to leave the monitor or another
condition

o Signal-and-Continue: Q=>wait P to leave the monitor or other
condition

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

en.wikibooks.org/wiki/Operating_System_Design/Critical _Section_Problem/Monitor

Java uses Monitors for Mutual Exclusion:
wait(), notify(), notifyAll()

AT AR HE Slide 3-95

Deadlock

* Permanent blocking of a set of processes

* Normally due to the fact that they

— wait for limited system resources for which they compete
or

— wait for messages

— since messages can be seen as resources, in general 1t can
be said that 1t 1s due to contention on resources.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

* There 1s no satisfactory solution in the general case

— to determine whether a program contains a potential
deadlock is a computationally unsolvable problem

http://en.wikipedia.org/wiki/Deadlock

AT BARE SHE Slide 3-96

Necessary Conditions for Deadlock

* 1) Mutual exclusion:

- One process hold a resource in a non-sharable mode. Other processes
requesting resource must wait for resource to be released.

* 2) Hold-and-wait:

- A process must hold at least one allocated resource while awaiting other
resources (one or more) held by other processes.

* 3) No preemption:

- No resource can be forcibly removed from a process holding it. That is,
resources are voluntarily released by the process holding it.

- 4) Circular wait (R &4

- A closed chain of processes exists, such that each process holds at
least one resource needed by the next process in the chain.

P —P,—P;".. P,

'_/ Slide 3-97

UOISIBA [DUI} 19JULINO0P DIASSN AqQ patPeld

RARE T £3CHE 5Tk

Dining Philosopher Problem

In 1965, Edsger Dijkstra set an examination
question on a synchronization problem where five
computers competed for access to five shared tape
drive peripherals.

Soon afterwards the problem was retold by Tony Hoare as the
dining philosophers problem.
— Five philosophers sitting at a round table doing one of two things:
eating or thinking.
— A fork 1s placed in between each pair of adjacent philosophers, and as
such, each philosopher has one fork to his left and one fork to his right.

UOISISA D1} 19}81idno0p DIASSN AQ pajbald

— It 1s assumed that a philosopher must eat with two forks. Assuming
each philosopher takes a different fork as a first priority and then looks
for another fork whenever he/she wants to eat.

http://en.wikipedia.org/wiki/Dining_philosophers problem

Starvation : LivelLock
TAE T ZESChE Sl Slide 3-98

Processes vs. threads

« Daifferent meanings when operating system terminology

* Regular processes
— Heavyweight process
— Own virtual address space (stack, data, code)
— System resources (e.g., open files)

» Threads
— Lightweight process
— Subprocess within process
— Only program counter, stack, and registers

— Shares address space, system resources with other threads
» Allows quicker communication between threads

— Small compared to heavyweight processes
« Can be created quickly
* Low cost switching between threads

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

The system call fork() is used to fork a process

AT BARE SHE Slide 3-99

Critical Section 1n Java program

synchronized(a Lock) {

-~/

synchronized(aLock) {

UOISIOA |DL JajULIdNO0p DIASSN AQ pajpald

-~/

/// critical code accessing shared data

public String al.ock = "just a Lock ha ha ha"'’;
///... critical section B]RE HAE—EH K BTER

/// critical section 3, 0] 5B HHAF- 3% (A Fr BTFE =\ S E AR AH B

/// Other critical code accessing shared data

% & 1E 27 (thread)_FIltfE =

AR AR T

FlE R AENSIE A

N T

R

RARE T £3CHE 5Tk

Slide 3-100

Programming Model

e Client/ Server http://en.wikipedia.org/wiki/Client-server

— BBS
— News
— FTP
* Traditional (non-component) N-Tier Systems
— 3-Tier Programming (N == 3)
* Browser + HTTP Server + DBMS

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

http://en.wikipedia.org/wiki/Multitier architecture

* N-Tier Programming, JavaEE

http://en.wikipedia.org/wiki/Java Platform, Enterprise Edition
AR T 2E5CHE FHE Slide 3-101

Traditional (non-component) N-Tier Systems

/Middle-tier Server \
Covoticnion 3 Vo
Application

e
/ \ JDBC data source
Driver e
Web Client _ _ ——
(Browser) Application N——__~
JDBC o

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

\ / Driver data source
\l_./ h.-‘-‘-_———-—-‘
transaction

e Client Tier — Presentation Logic

* Application Tier — Business Logic

Data Tier — Database Management Services

Source: Sun Microsystems, Inc., JDBC 3.0 Specification _
KRBT FE50RE FHIE Slide 3-102

Component N-Tier Systems
J2EE Architecture (Java EE)

Client Tier

UOISISA |Dl} J8julidno0op DIA8SN AQ pajpald
llemadi4

Client J2EE Server

. Machine Database Server
Machine Machine

http://en.wikipedia.org/wiki/Java Platform, Enterprise Edition

http://en.wikipedia.org/wiki/.NET Framework
RARE T £3He 51 Slide 3-103

X86 processor’s modes Transitions

Q
9
Q
—
9,
Q
O
<
Z
D
(2 SMI#
5 : Rez;jq-[iidé:iress
-
o Rese
8
c Reset or PE= RSM
-y PE=0 i}
-
T SMI#
=1 Reset Profected Mode | <— o — B, System
Q
< Management
® _ \LME=1, CRO.PG=1" gpq» Mode
a3, A 2 BEERE
9 N | O -
Mode
VM=0 VM=1
Y
Virtual-5086 =Nk
Mode -
A R5SM

RARE T £3CHE 5Tk

Slide 3-104

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Logical Acdress
(or Far Pointer)

Segment l

Selector Oiffset

Linear Address

| | | ! Space
' near Address
Global Descriptor Li .
Table (GDT) —— Dir | Table | Offset | E%E}Esl
Space
Segment
Segment Page Table e
_FDEEEH'DI:CH' - I
. i Page Directory Phy. Addr
Lin. Addr. —
_______ l--— Entry L e s
. - * —- Entry -
Begmen:__j '
Base Address
\H1
~——Page
| | Paging

| Segmentation |

Fioure 3-1. Seamentation and Paaina

Segmentation and paging in x86 1A-32

de 3-1

=
o
U

S
N

)
: handling in x86 d mod
s [nterrupt handling 1n x36 protected mode
Q
O
<
&
9 Interrupt Desenptor
‘5:_ Eﬁt {m]-]pt Code Segment
8' 8 byte Interrupt
2 Gaate Descriptor IR
m K & RS 1
?D" INT 2¢ 7" 1 ISR Offset § byte Code
= it Entry 2¢ x;l:n 1 Segment Descriptor
-, Eﬂﬂbﬂl Dﬁmptﬂ[;l--'"- SR T T]
Q L Table (GDT) /3 :
< !"'-. ———mmmem———— 3 ,"’ Cade -i
g " Segment ko Segment |
o ! Selector . Base :r_
> L \ i Address !
il : e sssasssan= '1|
——————————— =1 Enh_jrx [—————
Privilege]
Yz Level !
el OB R R PR I
hh‘L ----------- :

Figure 3. How the CPU finds the Interrupt Servi ce Routine for software interrupt 2e.

RARET Z3He 511 Slide 3-106

2 Memory mapping example --
cin Debug, type e€b800:041 0742 7043 /¢

v cmd (2) - debug

D:ECDURSE\introcs\csZ\ppnt}debug
-eb800:0 41 07 42 70 43 7c

O
<
2
®
()
<.
Q
Q
(o)
0
C
-
=3
—
@
—g
§
<
D
4,
o)
- |

Thank You!

CHAPTER 3

y A

-\
o~ > L) ‘::/

Operating Systems

aqng{J\eJ,uudnoop DIAE
\
\ 1)
d,.

{

o i 2
tsaiwn(@csie.nctu.edu.tw
I+
P
LRFT EE5CHE FHI Slide 3-108

P Bdm BIm IE OE
nJr?FJr?FE}‘E/ﬂ H1=2: 2010/04/27 Tuesday

* Briefly compare Monolithic Kernel with
Microkernel. And also name some examples for each
of them.

Ans: FEZERHI{FEMicrokernel (8% [0)FEE 26 5 AAF kernel

mode FYARFS 5% user mode, IR HRHH client-server {294
1 OS servicesHeALAE1E user mode El’]Apphcatlon SR

Monolithic Kernel (2% »)RIE24HOS kernel &=#AE
kernel mode(EiEftsupervisor mode), Application [E £7HL FI 3=
ZiY System calls 223K OS E U ER; Unix, Linux, FreeBSD
DR K% 81 OS F-Monolithic Kernel; Apple %] OS X i
iPhone B4 OS HI &% H Monolithic Kernel Z2£E.

it W [E R B E A ©
AT EAEE S Slide 3-109

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Bom Bdm e Im I8
* Regarding Timesharing OS
— Briefly describe the timesharing concept.
— Which two schools invented the “timesharing”

concept?
Ans: Dartmouth college + MIT

(hint: one of them invented BASIC language)
* Regarding GNU
— What does GNU stands for? =2 GNU is Not Unix

— Who started the GNU project? (hint: a professor of MIT)

— GPL (GNU Public License) from FSF (Free Software
Foundation) states that Free software comes with four
freedoms. Briefly describe these four freedoms.

* Regarding Acronym (PHFEE) ...

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

AT BEATHE =i Shide 3-110

Bm Bdm Bdm Im I

« BIOS, POST, Bootstrapping

* 4 Necessary Conditions for Deadlock
- 1) Mutual exclusion:
- 2) Hold-and-wait:
- 3) No preemption:
- 4) Circular wait ({§3 %£4)

Example: :ﬂﬂ process ZEPEF FH-FHEHEISRHETTRE ;
iz e — KHBEEAE— AN (heEdLENE) = Mutual exclusion

process A JLEL T EERHE, process B JnEE [E[1SEHE, process C JLEE [Rl
Hold-and-wait: 3& 7 —w5d, A S EFIZREE, BACEETHE, CUEEEE R

2 A, B, C R HEE(EEWHAI, H A EREIIEHTHENATF ERIE R
*RROS REEEETECIN N EEIEE S process T-HHEJE = No preemption
kRkk A BEROZE B T [B EHILE C F 1, C EHIAFA F = Circular wait

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

AT BEATHE =i Shide 3-111

Bm Bdm Bdm Im I

IN9SN AQ papal)

~» Hamming distance ?
— of two bit-strings
— of a code set

* Logical Gates

.+ 0111 +0110 = NZVC Cin
 ECC — Error Correcting Code ?
e 1101 ?

|DLI} J18ULdNO0pP D

UOISIOA

e SISC program

RARE T £3CHE 5Tk

A 1100
B 1011

Slide 3-112

Memory layout on Intel-based PC

1B
960 KB

896 KB

UOISISA |Dl} J8julidno0op DIA8SN AQ pajpald

768 KB

640 KB

Accessible RAM
Memory (640KB 15
enough for anyone -
old DOS area)

0
RARET. 2HE H Stide 3-113 [

