
蔡文能@交通大學資工系 Chapter 2-1Copyright © 2009 Pearson Education, Inc.

C H A P T E R 2

Data Manipulation

電腦如何處理資料與計算電腦如何處理資料與計算電腦如何處理資料與計算電腦如何處理資料與計算?

(請參看計概課本第二章請參看計概課本第二章請參看計概課本第二章請參看計概課本第二章)

蔡文能
tsaiwn@csie.nctu.edu.tw
交通大學資訊工程學系

http://www.neevia.com

蔡文能@交通大學資工系 Chapter 2-2Copyright © 2009 Pearson Education, Inc.

J. Glenn Brookshear

C H A P T E R 2

蔡文能@交通大學資工系 Chapter 2-3Copyright © 2009 Pearson Education, Inc.

電腦硬體五大單元 計算計算計算計算 2+3=?

人會如何做?

電腦電腦電腦電腦如何做?

把 2 搬到 CPU內暫存器 R5

把 3 搬到 CPU內暫存器 R6

把 R5 與 R6 加起來放到 R5

蔡文能@交通大學資工系 Chapter 2-4Copyright © 2009 Pearson Education, Inc.

Figure 2.1: CPU and main memory connected

via a bus (匯流排匯流排匯流排匯流排)

蔡文能@交通大學資工系 Chapter 2-5Copyright © 2009 Pearson Education, Inc.

Example of adding 2 values

1. Get first value from memory and place in a register R1

2. Get second value from memory and place in another register R2

3. Activate addition circuitry with R1 and R2 as inputs and R3 to hold results

4. Store contents of R3 (result) in memory

5. Stop

CPU
Main

Memory
bus

Read data by supplying memory cell address

Write data by supplying memory cell address

Figure 2.2: Adding values stored in memory

蔡文能@交通大學資工系 Chapter 2-6Copyright © 2009 Pearson Education, Inc.

Figure 2.3: Dividing values stored in memory

蔡文能@交通大學資工系 Chapter 2-7Copyright © 2009 Pearson Education, Inc.

Figure 2.4: The architecture of the machine

described in Appendix C

蔡文能@交通大學資工系 Chapter 2-8Copyright © 2009 Pearson Education, Inc.

Machine Instructions1/2

Data transfer Movement of data from one location to another

LOAD fill a register with contents of a memory cell

STORE transfer contents of a register to a memory cell

Arithmetic/Logic

Arithmetic operations

Logic operations AND, OR, XOR

SHIFT, ROTATE

Control direct execution of program

JUMP direct control unit to execute an instruction other than the next one

Unconditional Skip to step 5

Conditional If resulting value is 0, then skip to step 5

其實電腦的CPU很笨

能做的事很有限:

加減, 搬來搬去, …

蔡文能@交通大學資工系 Chapter 2-9Copyright © 2009 Pearson Education, Inc.

Machine Instructions2/2

Example for a conditional JUMP: (因不想除以因不想除以因不想除以因不想除以0)

1- LOAD a register R1 with a value from memory

2- LOAD register R2 with another value from memory

3- If contents of R2 is zero, JUMP to step 6

4- Divide contents of R1 by contents of R2, result stored in R3

5- STORE the content of R3 into memory

6- STOP

其實電腦的CPU很笨

能做的事很有限:加減, 搬來搬去, …

Example for a Division:

蔡文能@交通大學資工系 Chapter 2-10Copyright © 2009 Pearson Education, Inc.

Stored-Program Concept

•Program (instructions) stored in memory instead of being built

into the control unit as part of the machine

•A machine recognizes a bit pattern as representing a specific

instruction

•Instruction consists of two parts

•STORE operands would be

�Register containing data to be stored

�Address of memory cell to receive data

內儲程式概念 : 把程式碼放在 Memory讓CPU抓

OP-code (OPeration code) o p e r a n d f i e l d(s)

蔡文能@交通大學資工系 Chapter 2-11Copyright © 2009 Pearson Education, Inc.

A Sample Machine Architecture (1/2)

Program Counter address of next instruction to be executed

Instruction Register hold instruction being executed

CPU

ALU

register
Program

Counter

Instruction

Register

0

1

F

Main Memory

00

01

02

FF

256 memory cells

with a capacity of 8

bits each

16 general-

purpose

registers

2 special-

purpose

registers

Bus

現代 CPU 還有個 SP = Stack Pointer

蔡文能@交通大學資工系 Chapter 2-12Copyright © 2009 Pearson Education, Inc.

A Sample Machine Architecture (2/2)

134716 LOAD register 3 with contents of the memory cell at

address 4716

Textual representation might be “LOAD R3,47”

B25816

JUMP to instruction at address 5816 if contents of register 2 is

the same as register 0

Instruction Format

Op-code

Instruction consists of 4 hex digits (2 bytes)

O p e r a n d F i e l d s

蔡文能@交通大學資工系 Chapter 2-13Copyright © 2009 Pearson Education, Inc.

Figure 2.5: The composition of an instruction

for the machine in Appendix C

STORE 5, A7

See Appendix C for more instruction code

蔡文能@交通大學資工系 Chapter 2-14Copyright © 2009 Pearson Education, Inc.

Figure 2.6: Decoding the instruction 35A7

1 RXY = LOAD R, XY

2 RXY = LOADI R, XY

3 RXY = STORE R, XY

4 0RS = MOVE R, S

5 RST = ADD R,S,T

6 RST = ADDF R,S,T

7 RST = OR R,S,T

8 RST = AND R,S,T

9 RST = XOR R,S,T

A R0X = ROR R, X

B RXY = JUMP R, XY

C 000 = HALTSee Appendix C

蔡文能@交通大學資工系 Chapter 2-15Copyright © 2009 Pearson Education, Inc.

Figure 2.7: An encoded version of the

Instructions in Figure 2.2

蔡文能@交通大學資工系 Chapter 2-16Copyright © 2009 Pearson Education, Inc.

Figure 2.8: The machine cycle

(Program Execution)

1.Fetch

2. Decode

3. Execute

Machine cycle

Retrieve next

instruction from

memory (as per

program counter)

and then increment

program counter

Decode bit

pattern in

instruction

register

Perform action

requested by instruction

in instruction register

JUMP Instruction B25816

蔡文能@交通大學資工系 Chapter 2-17Copyright © 2009 Pearson Education, Inc.

Figure 2.9: Decoding the instruction B258

OP

code
Ope r a n d

蔡文能@交通大學資工系 Chapter 2-18Copyright © 2009 Pearson Education, Inc.

Figure 2.10: The program from Figure 2.7 stored

in main memory ready for execution

蔡文能@交通大學資工系 Chapter 2-19Copyright © 2009 Pearson Education, Inc.

Figure 2.11a: Performing the fetch step of the

machine cycle (continued)

蔡文能@交通大學資工系 Chapter 2-20Copyright © 2009 Pearson Education, Inc.

Figure 2.11b: Performing the fetch step of the

machine cycle

抓完指令後抓完指令後抓完指令後抓完指令後 PC 已已已已
經指到下一指令經指到下一指令經指到下一指令經指到下一指令

蔡文能@交通大學資工系 Chapter 2-21Copyright © 2009 Pearson Education, Inc.

Figure 2.12: Rotating the bit pattern A3 one bit

to the right

蔡文能@交通大學資工系 Chapter 2-22Copyright © 2009 Pearson Education, Inc.

•Auto 變數就是沒寫變數就是沒寫變數就是沒寫變數就是沒寫 static 的的的的 Local 變數變數變數變數

CPU

Heap 由上往下長由上往下長由上往下長由上往下長

Stack 由下往上長由下往上長由下往上長由下往上長

address 0

IP

SP

Instruction

Pointer

Stack

Pointer

System 系統區

Program+static data

程式+靜態data

HEAP堆積

malloc(), new()

STACK

(參數與Auto變數)

System 系統區

Auto variables use STACK area memory

電腦電腦電腦電腦如何運作如何運作如何運作如何運作?

蔡文能@交通大學資工系 Chapter 2-23Copyright © 2009 Pearson Education, Inc.

Example of program execution (1/7)

Example of adding 2 values

1. Get first value from memory and place in a register R1

2. Get second value from memory and place in another register
R2

3. Activate addition circuitry with R1 and R2 as inputs and R3 to
hold results

4. Store contents of R3 (result) in memory

5. Stop

1. 156C LOAD 5, 6C

2. 166D LOAD 6, 6D

3. 5056 ADD 0, 5, 6

4. 306E STORE 0, 6E

5. C000 HALT

•Each instruction has 2 bytes

•Values to be added stored in 2’s

complement notation at memory address

6C and 6D

•Sum placed in memory at address 6E

PC 每次要加 2 因為每個 instruction 是 2 bytes long

蔡文能@交通大學資工系 Chapter 2-24Copyright © 2009 Pearson Education, Inc.

Example of program execution (2/7)

00A9

C0A8

6EA7

30A6

56A5

50A4

6DA3

16A2

6CA1

15A0

ContentsAddress

PC 每次要加 2 因為每個 instruction 是 2 bytes long

1. 156C

2. 166D

3. 5056

4. 306E

5. C000

Program

Program stored in

Memory

1 memory cell is 8 bits

Program stored in

consecutive addresses at

address A0

Program Counter PC

Instruction Register IR

Program Counter 就是就是就是就是

前面說過的前面說過的前面說過的前面說過的 Instruction

Pointer

蔡文能@交通大學資工系 Chapter 2-25Copyright © 2009 Pearson Education, Inc.

Example of program execution (3/7)

Program Counter PC

Instruction Register IR

Place address A0 in program

counter and start machine

Machine Cycle 1

Load contents of

memory cell at

address 6C in R5

Analyze instruction in

IR and deduce need to

load R5 with contents

of memory cell at

address 6C

•Read from memory

instruction at address A0

•Place instruction 156C in

instruction register

•Update program counter to

be A2 (Why?)

•At end of fetch cycle

PC: A2

IR: 156C

ExecuteDecodeFetch

Control unit starts a new cycle

蔡文能@交通大學資工系 Chapter 2-26Copyright © 2009 Pearson Education, Inc.

Example of program execution (4/7)

Program Counter PC

Instruction Register IR

Machine Cycle 2

PC is A2

Load contents of

memory cell at

address 6D in R6

Analyze instruction in

IR and deduce need to

load R6 with contents

of memory cell at

address 6D

•Read from memory

instruction at address A2

•Place instruction 166D in

instruction register

•Update program counter to

be A4

•At end of fetch cycle

PC: A4

IR: 166D

ExecuteDecodeFetch

Control unit starts a new cycle

蔡文能@交通大學資工系 Chapter 2-27Copyright © 2009 Pearson Education, Inc.

Example of program execution (5/7)

Program Counter PC

Instruction Register IR

Machine Cycle 3

PC is A4

Activate 2’s

complement

addition circuitry

with inputs R5 and

R6

ALU performs

addition leaving

result in R0

Analyze instruction in

IR and deduce need to

add contents of

registers R5 and R6

and place result in R0

•Read from memory

instruction at address A4

•Place instruction 5056 in

instruction register

•Update program counter to

be A6

•At end of fetch cycle

PC: A6

IR: 5056

ExecuteDecodeFetch

Control unit starts a new cycle

蔡文能@交通大學資工系 Chapter 2-28Copyright © 2009 Pearson Education, Inc.

Example of program execution (6/7)

Program Counter PC

Instruction Register IR

Machine Cycle 4

PC is A6

Store contents of

R0 in memory

location 6E

Analyze instruction in

IR and deduce need to

store contents of R0 in

memory location 6E

•Read from memory

instruction at address A6

•Place instruction 306E in

instruction register

•Update program counter to

be A8

•At end of fetch cycle

PC: A8

IR: 306E

ExecuteDecodeFetch

Control unit starts a new cycle

蔡文能@交通大學資工系 Chapter 2-29Copyright © 2009 Pearson Education, Inc.

Example of program execution (7/7)

Program Counter PC

Instruction Register IR

Machine Cycle 5

PC is A8

Machine stops and

program is

completed

Analyze instruction in

IR and deduce this is a

HALT instruction

•Read from memory

instruction at address A8

•Place instruction C000 in

instruction register

•Update program counter to

be AA (Why?)

•At end of fetch cycle

PC: AA

IR: C000

ExecuteDecodeFetch

Control unit stops at A8, while the PC is AA; why?

蔡文能@交通大學資工系 Chapter 2-30Copyright © 2009 Pearson Education, Inc.

An Emulator for this simple instruction computer

• http://www.csie.nctu.edu.tw/~tsaiwn/sisc/

– Download the sisc.zip in that directory

– Unzip the sisc.zip and you will find a subdirectory

named SISC

– Execute the SISC.EXE in that directory

– Press ALT_ENTER to get into FULL screen mode

– You can press H for Help

• sisc.pas, sisc120.c (text mode)

蔡文能@交通大學資工系 Chapter 2-31Copyright © 2009 Pearson Education, Inc.

SISC Emulator is running

蔡文能@交通大學資工系 Chapter 2-32Copyright © 2009 Pearson Education, Inc.

SISC extension Instructions

• In addition to instructions on our text book ("?" means don't care)

• D0??/D1?? Get/Put Char to/from R0

• D2??/D3?? Get/Put int to/from R0

• D5XY/D6XY In/Put string to/from XY

• EZXY (zzzz xxxx yyyy in binary):

• Ezz00 xxxx yyyy: LOAD F,zzxxxxyyyy

• Ezz01 xxxx yyyy:STORE F,zzxxxxyyyy

• Ezz10 xxxx yyyy: CALL zzxxxxyyyy

• E??11 ???? ????: RETurn

• FZXY compare/conditional Jump

• zzzz in binary:

• ??00 xxxx yyyy: CMP RX to RY

• zz01 xxxx yyyy: JLT zzxxxxyyyy

• zz10 xxxx yyyy: JEQ zzxxxxyyyy

• zz11 xxxx yyyy: JGT zzxxxxyyyy

• Only CMP affects LT/EQ/GT status

蔡文能@交通大學資工系 Chapter 2-33Copyright © 2009 Pearson Education, Inc.

A SISC example (Assembly program)

to print its content in decimal samp.asm (1/2)
ORG 0

LDI 1, 1 ; 2 1,01 ; R1=1 (00)

LDI 2, 0 ; 2200 ; R2=0 (02)

LDI 3, 58 ; 233A ; R3 = length of this program

AGAIN: STORE 2, THERE+1 ; 3209 ; store r2 into 9 ; STORE 2, 9

THERE: LOAD 6,0 ; 16 00 ; LOAD r6 from ?? (:08 :09)

LDI 0,'M' ; 20 4d ; r0="M" 或寫成或寫成或寫成或寫成 LDI 0, 77 LDI 0,$4d

PUTC ; d1 00 ; print "M"

LDI 0, '(' ; 20 28 ; "(" === LDI 0,40 或或或或 LDI 0,$28 或或或或 LDI 0,28h

PUTC ; d100 ; print "(" (:10h)

MOV 2,0 ; 40 20 ; move r2 to r0 (:12h)

PUTI ; d300 ; print r0 as integer

LDI 0, ') '; 20 29 ; ") " === LDI 0, 41 或或或或 LDI 0,29h

PUTC ; d1 00

LDI 0, '=' ; 203d;"=" === LDI 0, 61 或或或或 LDI 0,2dh

PUTC ; d1 00

蔡文能@交通大學資工系 Chapter 2-34Copyright © 2009 Pearson Education, Inc.

A SISC example (Assembly program)

to print its content in decimal samp.asm (2/2)
MOV 6,0 ; 40 60 ; move r6 to r0

PUTI ; d300 ; print r0 as integer

LDI 0,13 ; 200d; CR

PUTC ; d1 00

LDI 0,10 ; 20 0A ;LF

PUTC ; d1 00

MOV 3,0 ; 40 30 ; move r3 to r0 (program length)

ADD 2,2,1 ; 5221 ; r2 := r2+1 (r1 contains 1)

BR 2,OK ; B232 ; jump to OK if R2=R0=R3

BR 0,AGAIN ; B006 ; goto :AGAIN=06

OK: LDI 0,7 ; 2007 ; bell

PUTC ; d1 00

HALT ; c000 ; halt

END

蔡文能@交通大學資工系 Chapter 2-35Copyright © 2009 Pearson Education, Inc.

The machine code for the samp.asm

samp.asm� samp.mc
;分號開始或空白行都會被忽略分號開始或空白行都會被忽略分號開始或空白行都會被忽略分號開始或空白行都會被忽略
;空白和逗號可出現於任何地方空白和逗號可出現於任何地方空白和逗號可出現於任何地方空白和逗號可出現於任何地方
2 1,01 ; R1=1 (00)
2200 ; R2=0 (02)
233A ; R3 = length of this program
3209 ; store r2 into 9 (:AGAIN = 06)
16 00 ; LOAD r6 from ?? (:08 :09)
20 4d ; r0="M"
d1 00 ; print "M"
20 28 ; "("

d100 ; print "(" (:10h)
40 2,0 ; move r2 to r0 (:12h)
d300 ; print r0 as integer
20 29 ; ")"
d100
203d;"="
d100
203d;"="
d100

4060; move r6 to r0

d300 ; out content of mem[r2] (:20h)

200d; CR

d100

20 0A ;LF

d100 ; print Line Feed (:28h)

40 30 ; move r3 to r0 (program length)

5221 ; r2 := r2+1 (r1 contains 1)

B232 ; jump to done if R2=R0=R3

b006 ; goto :AGAIN=06 (this line :30)

2007 ; bell (:done = 32)

d100 ; beep the speaker

c000 ; halt

ffff ; for man check only

蔡文能@交通大學資工系 Chapter 2-36Copyright © 2009 Pearson Education, Inc.

Figure 2.13: Controllers attached to a

machine’s bus

蔡文能@交通大學資工系 Chapter 2-37Copyright © 2009 Pearson Education, Inc.

Figure 2.14: A conceptual representation of

memory-mapped I/O

蔡文能@交通大學資工系 Chapter 2-38Copyright © 2009 Pearson Education, Inc.

• Direct memory access (DMA) is a process in which an
external device takes over the control of system bus from the
CPU.

• DMA is for high-speed data transfer from/to mass storage
peripherals, e.g. Hard Disk drive, magnetic tape, CD-ROM, and
sometimes video controllers.

• A DMA controller interfaces with several peripherals that may
request DMA.

• The DMA controller handles these data transfers between the
main memory and the interface controllers bypassing the CPU.

• The basic idea of DMA is to transfer blocks of data directly
between memory and peripherals. The data don’t go through the
microprocessor but the data bus is occupied.

• “Normal” transfer of one data byte takes up to 29 clock cycles.
The DMA transfer requires only 5 clock cycles.

Direct memory access

蔡文能@交通大學資工系 Chapter 2-39Copyright © 2009 Pearson Education, Inc.

Other Machine Architectures
CISC Complex Instruction Set Computer

•Complex machine that can decode and execute a wide variety of instructions

•Easier to program (single instruction performs the task of several instructions in

RISC)

•Complex CPU design

•To reduce required circuitry, use microprogram approach where each machine

instruction is actually executed as a sequence of simpler instructions

•Example is Pentium processors by Intel

RISC Reduced Instruction Set Computer

•Simple machine that has a limited instruction set

•Simpler CPU design

•Machine language programs are longer than CISC counterpart because several

instructions are required to perform the task of a single instruction in CISC

•Example is PowerPC developed by Apply, IBM and Motorola

•Other concepts: Pipelining, multiprocessor machines

蔡文能@交通大學資工系 Chapter 2-40Copyright © 2009 Pearson Education, Inc.

Unpipelined Microprocessors

• Typically an instruction enjoys five phases in its life
– Instruction fetch from memory
– Instruction decode and operand fetch
– Execute
– Data memory access
– Register write

• Unpipelined execution would take a long single cycle
or multiple short cycles

– Only one instruction inside processor at any
point in time

蔡文能@交通大學資工系 Chapter 2-41Copyright © 2009 Pearson Education, Inc.

Pipelining (管線; 流水線)

• One simple observation
– Exactly one piece of hardware is active at any
point in time

• Why not fetch a new instruction every cycle?

– Five instructions in five different phases

– Throughput increases five times (ideally)

• Bottom-line is
– If consecutive instructions are independent, they can
be processed in parallel

– The first form of Instruction-Level Parallelism (ILP)

蔡文能@交通大學資工系 Chapter 2-42Copyright © 2009 Pearson Education, Inc.

Moore’s Law (摩爾定律)

• Number of transistors on-chip doubles

every 18 months

– So much of innovation was possible only

because we had transistors

– Phenomenal 58% performance growth every

year

• Moore’s Law is facing a danger today
– Power consumption is too high when

clocked at multi-GHz frequency and it is

proportional to the number of switching

transistors

• Wire delay doesn’t decrease with
transistor size

Gordon Moore (

co-founder of Intel)

predicted in 1965 that

the transistor density of

semiconductor chips

would double roughly

every 18 months.

Murphy’s Law

蔡文能@交通大學資工系 Chapter 2-43Copyright © 2009 Pearson Education, Inc.

Moore’s Law and Technology Scaling

…the performance of an IC, including the number components on it, doubles

every 18-24 months with the same chip price ... - Gordon Moore - 1960

蔡文能@交通大學資工系 Chapter 2-44Copyright © 2009 Pearson Education, Inc.

http://www.acm.vt.edu/~andrius/work/microproc/

• 1970 Intel releases DRAM memory chip

• Intel 4004 (1971)

1MHz, 45 instructions

= 2300 transistors

• 1972 Intel 8008

• 1974 Intel 8080, 2-MHz

• 1974 Motorola 6800

• 1975 Zilog Z80, 1976 MOS Technologies 6502

• 1978 Intel 8086, 4.77MHz, 29000 transistors

• 1979 Intel 8088

• 1982 Intel286, 12 MHz

• 1985 Intel386 , first 32-bit, 25MhZ

蔡文能@交通大學資工系 Chapter 2-45Copyright © 2009 Pearson Education, Inc.

http://www.pcmech.com/show/processors/35/2/

• 1989 Intel 486 DX (with 487), 33 MHz

• 1994 AMD 486

• 1993 Intel Pentium, 60MHz

• 1995 AMD AM5x86, 133MHz

• 1995 Intel Pentium Pro

• 1995 Cyrix 6x86

• 1996 AMD K5

• 1997 Pentium MMX

• 1997 Pentium II, 1998 Celeron, 1999 P !!!

• 2000 Celeron II, Pentium IV, AMD Duron

• 2003/03/12 Intel® Centrino™（（（（迅馳迅馳迅馳迅馳™））））
• Core 2 Duo, Quad-core, 2008/11/17 Core-i7, 2009/7 core i5, core i3

• 2010 Core i7-980x (6-core)

蔡文能@交通大學資工系 Chapter 2-46Copyright © 2009 Pearson Education, Inc.
46

Revolution is Happening Now

• Chip density is
continuing increase
~2x every 2 years

–Clock speed is not

–Number of
processor cores
may double instead

• There is little or no
more hidden
parallelism (ILP) to
be found

• Parallelism must be
exposed to and
managed by
software

Source: Intel, Microsoft (Sutter) and

Stanford (Olukotun, Hammond)

蔡文能@交通大學資工系 Chapter 2-47Copyright © 2009 Pearson Education, Inc.

Multi-core (多核心多核心多核心多核心)

• Put a few reasonably complex processors or many
simple processors on the chip

– Each processor has its own primary cache and pipeline

– Often a processor is called a core (核心核心核心核心)

– Often called a Chip-MultiProcessor (CMP)

• Did we use the transistors properly?
– Depends on if you can keep the cores busy

– Introduces the concept of Thread-Level Parallelism (TLP)

Core memory 磁蕊記憶體 Core Dump 記憶體傾倒傾倒傾倒傾倒(存)

Concurrent (Parallel) programming

蔡文能@交通大學資工系 Chapter 2-48Copyright © 2009 Pearson Education, Inc.

Communication in Multi-core

• Ideal for shared address space
– Fast on-chip hardwired communication through
cache (no OS intervention)

– Two types of architectures
• Private cache CMP: each core has its private cache
hierarchy (no cache sharing); Intel Pentium D, Dual
Core Opteron, Intel Montecito, Sun UltraSPARC IV,
IBM Cell (more specialized)

• Shared cache CMP: Outermost level of cache
hierarchy is shared among cores; Intel Woodcrest
(Server-grade Core duo), Intel Conroe (Core2
duo for desktop), Sun Niagara,
IBM Power4, IBM Power5

蔡文能@交通大學資工系 Chapter 2-49Copyright © 2009 Pearson Education, Inc.

Thread-level Parallelism

• Look for concurrency at a granularity coarser than
instructions

– Put a chunk of consecutive instructions together and call it a
thread (largely wrong!)

– Each thread can be seen as a “dynamic” subgraph of the
sequential control-flow graph: take a loop and unroll its
graph

– The edges spanning the subgraphs represent data dependence
across threads
• The goal of parallelization is to minimize such edges
• Threads should mostly compute independently on different cores; but
need to talk once in a while to get things done!

用用用用 Java 練習寫練習寫練習寫練習寫 Thread 很簡單很簡單很簡單很簡單 ☺☺☺☺

蔡文能@交通大學資工系 Chapter 2-50Copyright © 2009 Pearson Education, Inc.
50

“Moore’s Gap”

1998
time

2002

0.01

1992 2006

0.1

1

10

100

1000

2010

Tr
an
sis

to
rs

� Diminishing returns from

single CPU mechanisms

(pipelining, caching, etc.)

� Wire delays

� Power envelopes

Pipelining

Superscalar

SMT, FGMT, CGMT

OOO

The
GOPS
Gap

Multicore

Tiled Multicore

Performance

(GOPS; Giga OPerationS)

蔡文能@交通大學資工系 Chapter 2-51Copyright © 2009 Pearson Education, Inc.

Processor-DRAM Gap (latency)

µProc

60%/yr.

DRAM

7%/yr.
1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU
1
9
8
2

Processor-Memory

Performance Gap:

(grows 50% / year)

P
e
rf
o
rm

a
n
c
e

Time

“Moore’s Law”

蔡文能@交通大學資工系 Chapter 2-52Copyright © 2009 Pearson Education, Inc.
52

Number of cores

doubles

every 18 months

The Future of Multi_core

Parallelism replaces
clock frequency scaling
and core complexity

Resulting Challenges…

Scalability

Programming

Power

MIT RAW Sun Ultrasparc T2 IBM XCell 8i Tilera TILE64

蔡文能@交通大學資工系 Chapter 2-53Copyright © 2009 Pearson Education, Inc.

Kilo, Mega, Giga, Tera, Peta, Exa, Zeta, Yotta
Flops=

Floating OPs

蔡文能@交通大學資工系 Chapter 2-54Copyright © 2009 Pearson Education, Inc.

0.1

1

10

100

1000

10000

100000

20
04
20

06
20

08
20

10
20

12
20

14

P
e
rf
o
rm

a
n
c
e
 i
n
 G
fl
o
p
/
s

Microprocessor performance

20
16

Moore's Law vs. Gilder's Law

20
00
20

02

S
p
e
e
d
 i
n
 G
b
p
s

Wired EthernetStorage

S
to
ra
g
e
in
 G
B

802.11

蔡文能@交通大學資工系 Chapter 2-55Copyright © 2009 Pearson Education, Inc.

Measuring Memory Capacity

• Kilobyte: 210 bytes = 1024 bytes

– Example: 3 KB = 3 times1024 bytes

– Sometimes “kibi” rather than “kilo”

• Megabyte: 220 bytes = 1,048,576 bytes

– Example: 3 MB = 3 x 1,048,576 bytes

– Sometimes “megi” rather than “mega”

• Gigabyte: 230 bytes = 1,073,741,824 bytes =

109 bytes

– Example: 3 GB = 3 x 1,073,741,824 bytes

– Sometimes “gigi” rather than “giga”

• Tera = 1024 Giga = 109

• Peta = 1024 Tera = 1012

• Exa = 1024 Peta = 1018
• Zeta = 1024 Exa = 1021

• Yotta = 1024 Zeta = 1024

Km = 千米=公里

蔡文能@交通大學資工系 Chapter 2-56Copyright © 2009 Pearson Education, Inc.

µs = micro second

760 mm Hg (Atmospheric pressure)

• d = deci = 10-1

• c = centi = 10-2

• m = milli = 10-3

• µ = micro = 10-6

• n = nano = 10-9

• p = pico = 10-12

• f = femto = 10-15

• a = atto = 10-18

• z = zepto = 10-21

• y = yocto = 10-24

cm = 公分=厘米 mm = 毫米

http://en.wikipedia.org/wiki/Exa-

蔡文能@交通大學資工系 Chapter 2-57Copyright © 2009 Pearson Education, Inc.

莫非定律莫非定律莫非定律莫非定律 (Murphy's Law)

• 莫非定律 (Murphy's Law)：

Anything that can go wrong will go wrong.

只要會出差錯的事情, 它就會出差錯。

• Murphy(莫非)者，查無其人，是個是個是個是個虛構人物虛構人物虛構人物虛構人物。
1950年代美國海軍的教育宣導卡通裡面，有個
笨手笨腳的機械士叫做Murphy。所謂莫非定所謂莫非定所謂莫非定所謂莫非定
律律律律，，，，最早就是出自這部卡通最早就是出自這部卡通最早就是出自這部卡通最早就是出自這部卡通。。。。

• 排隊時別人排的那排就是比你排的那排快排隊時別人排的那排就是比你排的那排快排隊時別人排的那排就是比你排的那排快排隊時別人排的那排就是比你排的那排快 ;-)

• 你在電梯內想著會不會停電被關住阿就你在電梯內想著會不會停電被關住阿就你在電梯內想著會不會停電被關住阿就你在電梯內想著會不會停電被關住阿就. . .

BACK

蔡文能@交通大學資工系 Chapter 2-58Copyright © 2009 Pearson Education, Inc.

Chapter 2 Data Manipulation

Q&A

