Data Manipulation

IS U] R B B R BT L ?
GHSETHARAE _F)
X Re

tsaiwn@csie.nctu.edu.tw
WA NEE AT IEERA

UOISIaA [P} 18Julidno0p DIA

Copyright © 2009 Pearson Education, Inc. AR @B REE TR

Chapter 2-1

http://www.neevia.com

UOISISA [Pl 18JUlidNO0pP DIASSN AQ pajoard

HAPTER 2

-

Pearson International Edition

J. Glenn Brookshear

An Overview

EE*EES R LS EESERES AR R ES R TSR EAR RS
€27 7T€27T TO0O7T T T OO 17000
1 OOOTOTOTO0T0MT01T07T0A(
O7T007T007T07T007T01T0010-
TO001T 1010010010101 1
O7T7T07T10101T107TM"01T1 1010
DOT1T01T101T01T10110100"1
MO 110101010101 0«C
LEOO0OT 10T 10011010
2JOOTTO00007TT001TT0O0N0
OT07T07T07T007T01T010AC

1317 11 1T 11y 1T Tty 1 A Y-

Copyright © 2009 Pearson Education, Inc. LA @GHERNEFE T A

Chapter 2-2

/EE?EF%@E:*E%E}

A V.

1 2 #¢%] CPU
1 3 #iE] CPUIA

—

N

;ﬁﬁ@m

_T

\LliraRe s

1 RS Bl R6 JIMHEEAHE] R5

Ko R (1)

Input Tt
A

UOISISA |DLI} 18julidnd0op bmeen—kcrpemejo
e 4+1~ ‘—H-

Copyright © 2009 Pearson Education, Inc. ZAAE @2EARE

FLAHUL B8 243-

NG A2
B AN AT

g TR (M) . ,| WEER (OU)
; Memory Thut ! icnatpat ot
| imsmr @ |
' :] 1T ! CALTT T
i Arthretie and Logie Tt | pxs CPU
v l | akER)
. #i ¥ & (L) L
| Contio] Tnit !
e > (RHER | BH ERERORE

B
‘Hﬂ»
%

P R B AR AR S
Chapter 2-3

0

2 Figure 2.1: CPU and main memory connected
® =

E via a bus (BEFLHE)

&

2, Central processing unit Main memory
0

o

0

0

5 []

=

®

= Arithmetic/logic :l Control Bus

Q unit . unit

< :

2 []

o]

> []

_[

Registers

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-4

Figure 2.2: Adding values stored in memory

% | Main

CPU 7
bus Memory

Read data by supplying memory cell address
Write data by supplying memory cell address

Example of adding 2 values

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

1. Get first value from memory and place in a register R1
Get second value from memory and place in another register R2
Activate addition circuitry with R1 and R2 as inputs and R3 to hold results

2
3
4. Store contents of R3 (result) in memory
5

Stop

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-5

Figure 2.3: Dividing values stored in memory

Step 1. LOAD a register with a value
from memory.

Step 2. LOAD another register with
another value from memory.

Step 3. If this second value is zero,
JUMP to Step 6.

Step 4. Divide the contents of the
first register by the second
register and leave the result
In a third register.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Step 5. STORE the contents of the
third register in memory.

Step 6. STOP.

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-6

Central processing unit

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Arithmetic/logic Control unit
unit Registers
- 0 Program counter
[] 1
Instruction register
1 2
1 F

Copyright © 2009 Pearson Education, Inc. e @GEREE TR

Figure 2.4: The architecture of the machine
described in Appendix C

Main memory

Address Cells

00

Bus 01

02

03

Chapter 2-7

Machine Instructions:.

Data transfer Movement of data from one location to another

LOAD fill a register with contents of a memory cell
STORE transfer contents of a register to a memory cell
Arithmetic/Logic T, R
- AR CPURAE

Arithmetic operations

Logic operations AND, OR, XOR ﬁg{ﬁﬁggg{ﬁﬁgﬁ
SHIFT, ROTATE ik, WAL, ..

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Control direct execution of program

JUMP direct control unit to execute an instruction other than the next one
Unconditional Skip to step 5
Conditional If resulting value is 0, then skip to step 5

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-8

Machine Instructions.:

Example for a conditional JUMP: (K~ ZEERLEL0)

1- LOAD a register R1 with a value from memory
2- LOAD register R2 with another value from memory
3- If contents of R2 1s zero, JUMP to step 6

Example for a Division:

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

4- Divide contents of R1 by contents of R2, result stored in R3
5- STORE the content of R3 into memory
6- STOP

HEERTICPURSR

BERUHY AR IR 0k, AR Z, ...

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-9

Stored-Program Concept
AR RS R MemoryzCPUYT

*Program (instructions) stored in memory instead of being built
into the control unit as part of the machine

*A machine recognizes a bit pattern as representing a specific
instruction

Instruction consists of two parts

OP-code (OPerationcode) | operand field(s)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

*STORE operands would be
v'Register containing data to be stored

v’ Address of memory cell to receive data

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-10

Q
D
Q
—f
9]
Q

A Sample Machine Architecture (1/2)

Program Counter address of next instruction to be executed

Instruction Register hold instruction being executed

Copyright © 2009 Pearson Education, Inc. F e @CHREA TR Chapter 2-11

A Sample Machine Architecture (2/2)

Instruction Format

Instruction consists of 4 hex digits (2 bytes)

Op-code Operand Fields

1347, LOAD register 3 with contents of the memory cell at
address 47,

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Textual representation might be “LOAD R3,47”

JUMP to instruction at address S8, if contents of register 2 is
the same as register 0

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-12

Figure 2.5: The composition of an instruction
for the machine in Appendix C

Op-code Operand
I I

|] |
0011 0101 1010 0111 Actual bit pattern (16 bits)

3 5 A 7 Hexadecimal form (4 digits)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

STORE 5, A7

See Appendix C for more 1nstruction code

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-13

Instruction{ 3

Op-code 3 means

to store the contents
of a registerin a
memory cell.

OISIOA D1} 19JUlidNO0pP DIASSN AQ pajpaid

81 RXY =LOADR, XY
2 RXY =LOADIR, XY
3 RXY = STORE R, XY
4 0RS = MOVER, S
5RST = ADDR,S,T

6 RST = ADDF R,S,T

Copyright © 2009 Pearson Education, Inc.

to be stored.

See Appendix C

Figure 2.6: Decoding the instruction 35A7

This part of the operand identifies
the address of the memory cell
that is to receive data.

This part of the operand identifies
the register whose contents are

7RST =ORR,S,T

8§ RST = ANDR.S,T

0 RST = XORR.S,T
AROX =RORR, X

B RXY = JUMP R, XY
C 000 = HALT

Chapter 2-14

Figure 2.7: An encoded version of the
Instructions in Figure 2.2

O

9

9-

9,

Q

O

<

Z

D

@ Encoded

o instructions Translation

8

0 156C Load register 5 with the bit pattern

S found in the memory cell at

5 address 6C.

o

. 166D Load register 6 with the bit pattern

3- found in the memory cell at

< address 6D.

1)

&, 5056 Add the contents of register 5 and

g 6 as though they were two’s
complement representation and
leave the result in register 0.

306E Store the contents of register 0
in the memory cell at address 6E.
C000 Halt.

Copyright © 2009 Pearson Education, Inc.

KA e @GR E TR

Chapter 2-15

UMP Instruction B258 ¢

1.Fetch

Retrieve next
instruction from
memory (as per
program counter)
and then increment
program counter

UOISIaA [DL} JajulidNoop BiASBN AQ paypal)

Copyright © 2009 Pearson Education, Inc.

Machine cycle

Figure 2.8: The machine cycle
(Program Execution)

2. Decode

Decode bit
pattern in
instruction
register

3. Execute

Perform action
requested by instruction
in instruction register

Chapter 2-16

Figure 2.9: Decoding the instruction B258

Op-code B means to
change the value of
the program counter
if the contents of the
indicated register is
the same as that in
register 0.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

OP Operand
code
Instruction—[B 2 5] 8

This part of the operand is the
address to be placed in the
program counter.

This part of the operand identifies
the register to be compared to
register 0.

Copyright © 2009 Pearson Education, Inc.

e @EANFE TR Chapter 2-17

Figure 2.10: The program from Figure 2.7 stored
in main memory ready for execution

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Program counter contains
address of first instructions.
CPU Main memory
Address Cells
Registers
Program counter AQ [15]
0 B
[A0 B Al 6C
us
1 [A2 |16 | —Program is
A3 6D stored in
main memory
2 [beginni
) A4 50 eginning at
[50] address AO.
A5 56
Instruction register A6 30
A7 6E
A8 (640)
F [
A9 [00] _

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-18

Figure 2.11a: Performing the fetch step of the
machine cycle (continued)

CPU Main memory

Program counter
A0

Address Cells
15

A0 r
/
Al 6C
Instruction register
156C A2 16 |

A3 6D

Bus

UOISIOA [Dl} J9julidno0op DIA8SN AQ pajpald

a. At the beginning of the fetch step the instruction starting at address AQ is
retrieved from memory and placed in the instruction register.

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-19

CPU

Program counter
A2

Instruction register
156C

UOISIOA [Dl] J9julidno0op DIASN AQ pajpald

Bus

Figure 2.11b: Performing the fetch step of the
machine cycle

Main memory

Address

AQ

Al

A2

A3

Cells

15

6C

16

6D

b. Then the program counter is incremented so that it points to the next instruction.

Copyright © 2009 Pearson Education, Inc.

£ e @

Chapter 2-20

)
2 Figure 2.12: Rotating the bit pattern A3 one bit
) :
Q
5 to the right
=z
1 o 1 0 0 O 1 1 The bit pattern represented
=1 | by A3 (hexadecimal)
Q
o)
)
C
v
3
o
E | | The bits move one position
< 1 0 1 0 0 0 1 to the right. The rightmost
2 — bit “falls off” and is placed
g. K i in the hole at the other end.
_ 1
1 1 0 1 0 0 0 1 The final bit pattern, which

is represented by D1
(hexadecimal)

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-21

R AAELE?

Instruction
CPU Polnter

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Stack
Pointer

Auto Varlables use STACK are

Heap Fii L5 T 5%
Stack H ™M+ EE

A memory

-

Copyright © 2009 Pearson Education, Inc.

EHE @SGERNFE TR

cAuto BEIFL 2R E static BY Local 88

address 0 L
System 2l

Program+static data
FE A +fiEdata
HEAPH#E:FE

malloc(), new()

- STACK

(ZH L Autofi# 8

System il

Chapter 2-22

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Copyright © 2009 Pearson Education, Inc.

2.

Example of adding 2 values
1.

Example of program execution (1/7)

Get first value from memory and place in a register R1
Get second value from memory and place in another register

R2

Activate addition circuitry with R1 and R2 as inputs and R3 to

hold results

Store contents of R3 (result) in memory

Stop

1.156C LOAD S, 6C
2.166D LOAD 6, 6D
3.5056 ADDO,5,6
4.306E STORE 0, 6E
5.C000 HALT

*Each instruction has 2 bytes

*Values to be added stored in 2’s

complement notation at memory address
6C and 6D

*Sum placed in memory at address 6E

PC &R BN 2 KB 4%EF{[E instruction /& 2 bytes long

e @EANFE TR Chapter 2-23

Example of program execution (2/7)

Program stored in

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Memory
Program 1 memOI'y Cell iS 8 bltS
Address | Contents Program stored in
1. 156C -
consecutive addresses at

2.166D A0 15 address A0
3. 5056 Al 6C

A2 16 Program Counter PC
4. 306E

A3 6D Instruction Register IR
5. C000 v 0

AS 56 Program Counter &

A6 30

A7 6 B EERIBHY Instruction

A8 Co Pointer

A9 00

\J

24

. ’ = . =
Copyright © 2009 Pearson Edu('agg.c%%&%ﬁ@gg@% ction & 2 bytes 1OngChap‘[er

Example of program execution (3/7)

Place address A0 in program
counter and start machine

Machine Cycle 1

Program Counter PC

Instruction Register IR

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Fetch Decode Execute
*Read from memory Analyze instruction in | Load contents of
instruction at address A0 IR and deduce need to | memory cell at
Place instruction 156C in | load RS with contents | address 6C in RS
instruction register of memory cell at
*Update program counter to address 6C
be A2 (Why?)
*At end of fetch cycle

PC: A2

IR: 156C

Control unit starts a new cycle

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-25

Example of program execution (4/7)

Machine Cycle 2
: y Program Counter PC
PC is A2 : :
Instruction Register IR
Fetch Decode Execute

*Read from memory
instruction at address A2

*Place instruction 166D in
instruction register

*Update program counter to
be A4

*At end of fetch cycle
PC: A4
IR: 166D

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Analyze instruction in
IR and deduce need to
load R6 with contents
of memory cell at
address 6D

Load contents of

memory cell at
address 6D 1n R6

Control unit starts a new cycle

Copyright © 2009 Pearson Education, Inc. LKA HE @ZCHRFHET A

Chapter 2-26

Example of program execution (5/7)

Machine Cycle 3
l y Program Counter PC
PC 1s A4 : :
Instruction Register IR
Fetch Decode Execute

*Read from memory

instruction register

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

be A6

*At end of fetch cycle
PC: A6
IR: 5056

*Update program counter to

Analyze instruction in

instruction at address A4 IR and deduce need to
«Place instruction 5056 in | add contents of

registers RS and R6
and place result in RO

Activate 2’s
complement
addition circuitry

with inputs RS and
R6

ALU performs
addition leaving
result in RO

Control unit starts a new cycle

Copyright © 2009 Pearson Education, Inc.

EHE @SGERNFE TR

Chapter 2-27

Example of program execution (6/7)

Machine Cycle 4

Program Counter PC
PC 1s A6

Instruction Register IR
Fetch Decode Execute

*Read from memory
instruction at address A6

*Place instruction 306E in
instruction register

*Update program counter to
be A8

*At end of fetch cycle
PC: A8
IR: 306E

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Analyze instruction in
IR and deduce need to
store contents of RO in
memory location 6E

Store contents of
RO in memory
location 6E

Control unit starts a new cycle

Copyright © 2009 Pearson Education, Inc. LKA HE @ZCHRFHET A

Chapter 2-28

Example of program execution (7/7)

Machine Cycle S Program Counter PC
PCis A8 Instruction Register IR
Fetch Decode Execute

*Read from memory
instruction at address A8

*Place instruction C000 in
instruction register

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

*Update program counter to
be AA (Why?)

*At end of fetch cycle
PC: AA
IR: C000

Analyze instruction in
IR and deduce this is a
HALT instruction

Machine stops and
program is
completed

Control unit stops at A8, while the PC is AA; why?

Copyright © 2009 Pearson Education, Inc. LKA HE @ZCHRFHET A

Chapter 2-29

An Emulator for this simple instruction computer

N Aq pajpaid

IAO©

* http://www.csie.nctu.edu.tw/~tsaiwn/sisc/
— Download the sisc.zip 1n that directory

— Unazip the sisc.zip and you will find a subdirectory
named SISC

— Execute the SISC.EXE 1n that directory

— Press ALT ENTER to switch into FULL screen
mode

UOISIaA [P} 1ajulignoop b

— You can press H for Help, press I to see Instruction

* sisc.pas, siscl20.c (text mode)

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-30

0

%SISC Emulator 1s running

e CCAWINDO Wsystem 32 md exe - sisc

Simple Instruction Set Computer ver 3.33
J.Glenn Brookshear tsaiwn@csie.nctu.ed

000: 2101 LDI 1,01

command can be either Upper case 002: 2200 LDI 2,00
or lower case: 004: 233A LDI 3,3A

Q Quit this system 006: 3209 STORE 2,09
H/I Help message/Instructions 008: 1600 LOAD 6,00
A Assemble assembly program
B set break pointer PC: h break Pointer(Chex): none
E show/Enter memory data MEM[PC]= 21 01 LDI 1,01
L/S Load/Save the Machine Code 1024 bytes,Carry: No <=>status: EQ =
P set Program counter R0O=07 R1=01 R2=3A R3=3A R4=00 R5=00
R? modify content of Register ? R6=FF R7=00 R8=00 R9=00 RA=00 RB=00
G Go (RUN) start from PC RC=00 RD=00 RE=00 RF=00

T Trace the program one step
U Unassemble (4 instructions)
M Memory size toggle
=+- show/change RUNNING speed
other cmd: CK F XY . ,
Oonly CMP affects LT/EQ/GT status
Yes>

e of mine... Are you going to Scarbo

H for Help, 1 for Instructions, P to set PC: Program Counter

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-31

SISC extension Instructions
More Instructions, 1024 bytes memory

In addition to instructions on our text book ("?'" means don't care)
D0??/D1?? Get/Put Char to/from R0

D2??/D3?? Get/Put int to/from R0

DSXY/D6XY In/Put string to/from XY

EZXY (zzzz xxxx yyyy in binary):

 Ezz00 xxxx yyyy: LOAD F,zzxxxxyyyy (10 bit memory address)
 Ezz01 xxxx yyyy:STORE F,zzxxxxyyyy (10 bit memory address)
 Ezz10 xxxx yyyy: CALL zzxxxxyyyy (10 bit memory address)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

« FZXY compare/conditional Jump
. Zz7z in binary:

. 2200 xxxx yyyy: CMP RX to RY New Instruction
. zz01 xxxx yyyy: JLT zzxxxxyyyy 00

« zz10 xxxx yyyy: JEQ zzxxxxyyyy DD?? RAND — generate
o zzl1 xxxx yyyy: JGT zzxxxxyyyy a RANDome# 1n RD

* Only CMP affects LT/EQ/GT status

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-32

0
8 A SISC example (Assembly program)

oto print its content in decimal samp.asm (1/2)

ORG 0

LDI1,1; 21,01 ; R1=1 (00)

LDI2,0; 2200 ; R2=0 (02)

LDI 3,58 ; 233A ; R3 =length of this program

AGAIN: STORE 2, THERE+1 53209 ;storer2into9 ; STORE 2,9
THERE: LOAD 6,0 5 16 00 ; LOAD r6 from ?? (:08 :09)
LDIO0,'M'; 204d ; r0="M" 8¢:E LDI 0,77 LDI 0,$4d

PUTC ; d100 ; print "M"

LDIO,'(";2028 ;"(" == LDI0,40 5 LDI 0,$28 8¢ LDI 0,28h
PUTC ; d100 ; print"(" (:10h)

MOV 2,0; 4020 ;mover2tor0 (:12h)

PUTI ; d300 ; printr0 as integer

UOISIOA |DL JajuLIdnoop DIASSN A

LDIO0,")'; 2029;")" ===LDI 0,41 5 LDI 0,29h
PUTC ; d100
LDI0,'=";203d;"=" ===LDI0, 61 5% LDI 0,2dh

PUTC ; d100

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-33

0
8 A SISC example (Assembly program)
gto print its content in decimal samp.asm (2/2)

<
§ MOV 6,0 ; 40 60 ; move r6 to r0

E- PUTI ; d300 ; print r0 as integer

Q bl 0,13 ; 200d; CR

Q' pPUTC ; dl 00

S LDI 0,10 ; 20 OA ;LF

® PUTC ; dl 00

gﬁ MOV 3,0 ; 40 30 ; move r3 to r0O (program length)
%'.ADD 2,2,1 ; 5221 ; r2 := r2+1l (rl contains 1)

s BR 2,0K ; B232 ; jump to OK if R2=RO=R3

S BR O0,AGAIN ; B006 ; goto :AGAIN=06

OK: 1LDI 0,7 ; 2007 ; bell

PUTC ; dl 00
HALT ; c000 ; halt
END

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-34

s bR GBS H T AR & A R

22 I 3% Al B AR 35
21,01 ; R1=1 (00)

2200 ; R2=0 (02)

233A ; R3 =length of this program
3209 ; storer2 into 9 (:AGAIN = 06)
16 00 ; LOAD r6 from ?? (:08 :09)
204d ; r0="M"

d1 00 ; print "M"

2028 ;"("

UOISIOA |DL JajULIdNO0p DIASSN AQ pajpald

d100 ; print"(" (:10h)

40 2,0 ; mover2tor0 (:12h)
d300 ; print r0 as integer
2029 ;")"

d100

203d;"=""

d100

203d;"="

d100

The machine code for the samp.asm
samp.asm =» samp.mc

4060; move ré6 to r0

d300 ; out content of mem|r2] (:20h)
200d; CR

d100

20 0A ;LF

d100 ; print Line Feed (:28h)

40 30 ; move r3 to r0 (program length)
5221 ;r2 :=r2+1 (r1 contains 1)

B232 ; jump to done if R2=R0=R3
b006 ; goto :AGAIN=06 (this line :30)
2007 ; bell (:done = 32)

d100 ; beep the speaker

c000 ; halt

ftff ; for man check only

Copyright © 2009 Pearson Education, Inc.

Chapter 2-35

Figure 2.13: Controllers attached to a
machine’s bus

CD drive Modem
Controller Controller
m Bus
CPU : :]

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

|

Controller Controller

Monitor Disk drive

Copyright © 2009 Pearson Education, Inc. LKA HE @ZCHRFHET A

Main
memory

Chapter 2-36

Figure 2.14: A conceptual representation of
memory-mapped /O

Bus Main
CPU memory

— Controller — Peripheral device

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Port

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-37

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Direct memory access

Direct memory access (DMA) 1s a process in which an

external device takes over the control of system bus from the
CPU.

DMA 1s for high-speed data transfer from/to mass storage
peripherals, e.g. Hard Disk drive, magnetic tape, CD-ROM, and
sometimes video controllers.

A DMA controller interfaces with several peripherals that may
request DMA.

The DMA controller handles these data transfers between the
main memory and the interface controllers bypassing the CPU.

The basic 1dea of DMA 1s to transfer blocks of data directly
between memory and peripherals. The data don’t go through the
microprocessor but the data bus 1s occupied.

“Normal” transfer of one data byte takes up to 29 clock cycles.
The DMA transfer requires only 5 clock cycles.

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-38

Other Machine Architectures

CISC Complex Instruction Set Computer

*Complex machine that can decode and execute a wide variety of instructions

Easier to program (single instruction performs the task of several instructions in
RISC)

*Complex CPU design

*To reduce required circuitry, use microprogram approach where each machine
instruction is actually executed as a sequence of simpler instructions

Example is Pentium processors by Intel

RISC Reduced Instruction Set Computer

*Simple machine that has a limited instruction set

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

*Simpler CPU design

*Machine language programs are longer than CISC counterpart because several
instructions are required to perform the task of a single instruction in CISC

Example is PowerPC developed by Apply, IBM and Motorola

*Other concepts: Pipelining, multiprocessor machines

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-39

Unpipelined Microprocessors

Typically (in most RISC CPU) an instruction enjoys
five phases 1n 1its life:

- Instruction fetch from memory

- Instruction decode and operand fetch

- Execute

|DU} J9juULdNO0P DIASSN AQ palbald

- Data memory access
- Register write back

- Unpipelined execution would take a long single cycle
or multiple short cycles

UOISISA

- Only one instruction inside processor at any
point in time

a;, 7/ ght © 2009 Pearson Education, Inc. FOLHE @B LA Chapter 2-40

Pipelining (&7#x; HiL/Kik)

One simple observation

- Exactly one piece of hardware is active at any
point 1n time

Why not fetch a new 1nstruction every cycle?

- Five instructions in five different phases

- Throughput increases five times (1deally)

Bottom-line 1s

- If consecutive 1nstructions are independent, they can
be processed 1n parallel

- The first form of Instruction-Level Parallelism (ILP)

o
9]
Q
—
O
Q
O
<
Z
9,
g
<.
Q
Q
o
%
5
—
®
=
§
<
9
%4
O
-

& W)3) NN TS sEh e
K ; {wy” cht © 2009 Pearson Education, Inc. FEIHE @PCERNEE TR Chapter 2-41

Moore's Law (EEE 2 13)

dl

Number of transistors on-chip doubles
every 18 months

- So much of innovation was possible only
because we had transistors

- Phenomenal 58% performance growth every
year

Moore's Law is facing a danger today

- Power consumption is too high when
clocked at multi-GHz frequency and it is
proportional to the number of switching

Gordon Moore (
co-founder of Intel)
predicted in 1965 that

UOISISA DI} 19jUlidnoop DIASSN, AQ pajpaid

transistors] .
. , . the transistor density of
* Wire delay doesn't decrease with semiconductor chips
transistor size would double roughly

every 18 months.

2 (o) ¢ H . LB SIS e R
NS {wy} sht © 2009 Pearson Education, Inc. ZhE @BREHE TR Chapter 2-42

Moore’'s Law and Technology Scaling

)
Q
O e ’
Z T) , : . _ -. "
3 10° DRAM Memories [$300mm |/ | 256M.-- 3G WG 1A
0 .H‘ : .& . . ! | LQORNm B ', A e 1
5' ;_-Irl‘nprutessurs n_-;.:u- %EG >
a Eﬂmﬂ . , 16M | ‘ Lo SGH
o = | | sl 5% 25GH
0 w7 ' . . * Pentium 4
% = | y o\ £, Pentium [l
= = I = a 4| Pentium EI ar
> ., 105] | K~k | Pro 599
-3 [$100mm B03BE_ 5 Pentium Xeon ——
(‘_lz ; _ S Q{ e | 80486 Celeron
=+ 2 10° | BEal |
= X] (o
= , N R
< 107 b fr-ﬂr".t.
® » B ;_ EL‘IEE.FEEiEE
%‘ Il:ﬁ f mq, ; i | PPN | S, S TR | deet, IR Sl vy (R ! Pl b L T TeY | . E T] s
> Desk calculator 2.0um 1.2um 500nm | 250nm 130nm 70nm
102 LB.0um 5.0um 3.0um 1.2um | 800nm | 350nm 180nm | 100nm 50nm
ss) 1970 1974 1978 i 1082 1986 IDQHI} 1904 1998 IEUBE 2006 2010
mMsl —e LS | vLSI e ULSI L g —
Years

..the performance of an IC, including the number components on it, doubles
every 18-24 months with the same chip price ... - Gordon Moore - 1960

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-43

http:// www.acm.vt.edu/~andrius/work/microproc/

* 1970 Intel releases DRAM memory chip
e Intel 4004 (1971)

1MHz, 45 instructions

= 2300 transistors
1972 Intel 8008
1974 Intel 8080, 2-MHz, 78 1nstructions
1974 Motorola 6800
* 1975 Zilog 780, 1976 MOS Technologies 6502
e 1978 Intel 8086, 4.77MHz, 29000 transistors
1979 Intel 8088
e 1982 Intel286, 12 MHz
e 1985 Intel386 , first 32-bit, 2SMhZ

UOISISA |DL} 19}UlidNO0P DIASSN AQ. P

Copyright © 2009 Pearson Education, Inc. FEIHE @PCERNEE TR Chapter 2-44

: http://www.pcmech.com/show/processors/35/2/

e 1989 Intel 486 DX (with 487), 33 MHz
e 1994 AMD 486

e 1993 Intel Pentium, 60MHz

e 1995 AMD AM5x86, 133MHz

e 1995 Intel Pentium Pro
e 1995 Cyrix 6x86

« 1996 AMD K5

e 1997 Penttum MMX

e 1997 Pentium II, 1998 Celeron, 1999 P !!!
e 2000 Celeron II, Pentium IV, AMD Duron

¢ 2003/03/12 Intel® Centrino™ (3HEH™)
e (Core 2 Duo, Quad-core, 2008/11/17 Core-i7, 2009/7 core iS5, core i3

e 2010 Core i7-980x (6-core) (see wikipedia or Intel web)

Copyright © 2009 Pearson Education, Inc. FEIHE @PCERNEE TR Chapter 2-45

UOISIOA |DU} J9julidnoop bIAeSN AQ p

* Chip density 1s
~2X every 2 years

— Number of
processor Cores
may double instead

e There 1s little or no
more hidden
parallelism (ILP) to

. be found

* Parallelism must be
exposed to and
managed by
software

|DU} J9juULdNO0P DIASSN AQ palbald

UOISISA

COIltiIlllil’lg increase 1,000,000

— Clock speed is not 100,000

Revolution 1s Happening Now

10,000,000

10,000

1,000

100

10

- e Transistors (000} [
+ Clock Speed (MHz)

Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond)

P & Power (W)
PerfiClock (ILP}

b | | |

Copyright © 2009 Pearson Education, Inc.

|
|
1970 1875 1980 1885 1990 1995 2000 1&__::\5) 2010

Multi-core (Z#%0»)

- Put a few reasonably complex processors or many
simple processors on the chip
- Each processor has its own primary cache and pipeline

- Often a processor is called a core (£%/[)
- Often called a Chip-MultiProcessor (CMP)

* Did we use the transistors properly?

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

- Depends on 1f you can keep the cores busy
- Introduces the concept of Thread-Level Parallelism (TLP)

Concurrent (Parallel) programming

Core memory fiSSECIERS | | Core Dump EC[RHHEBI(T)

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-47

Communication in Multi-core

* Ideal for shared address space

- Fast on-chip hardwired communication through
cache (no OS intervention)

- Two types of architectures

* Private cache CMP: each core has its private cache
hierarchy (no cache sharing); Intel Pentium D, Dual
Core Opteron, Intel Montecito, Sun UltraSPARC 1V,
IBM Cell (more specialized)

- Shared cache CMP: Outermost level of cache
hierarchy is shared among cores; Intel Woodcrest
(Server-grade Core duo), Intel Conroe (Core2

duo for desktop), Sun Niagara,
IBM Power4, IBM Power5

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-48

Thread-level Parallelism

AQ pajpbal)

* Look for concurrency at a granularity coarser than
instructions

- Put a chunk of consecutive instructions together and call it a
thread (largely wrong!)

- Each thread can be seen as a "dynamic” subgraph of the
sequential control-flow graph: take a loop and unroll its
graph

- The edges spanning the subgraphs represent data dependence
across threads

 The goal of parallelization is to minimize such edges

* Threads should mostly compute independently on different cores; but
need to talk once in a while to get things done!

UOISIaA [P} 18Julidno0p DIASSN

F Java #7285 Thread 1EfEE ©

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-49

“Moore’s Gap™

erformance

qgpeipaId

%GOPS; Giga OPerationS)
. . 6

a Tiled Mul'rucore\oq The
s! 1000 G
5 Multi R GOPS
> 100 Hiticore << Gap
0
E’- 10 SMT, FGMT, C6MT
3 000 R |
&, 1 Superscalar | g |- Diminishing returns from
g NSURTIY iE single CPU mechanisms

0.1 ipelining — (pipelining, caching, etc.)

;.ﬂl = Wire delays
0.01 F [:] = Power envelopes

1992 1998 2002 2006 2010 Ume

N e 50
Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-50

p PIASSN AQ pajpal)

Processor-DRAM Gap (latency)

q QOO0 | g—ggg/olc
20 “Moore’s Law’, oYt
%gP .- -M
°c 100 rocessor-Memory
g.E Performance Gap:
- = (grows 50% / year)
go 10 ..
an_a v DRAM
PRV Yolyr
1 OCr-r ANMITOVDONODDNOT~NMITWVONOBGOD O
O 00 0 VNV VOOV OOODOODOOOHOOOOOO O O O
222222222222 22222222
Time

Copyright © 2009 Pearson Education, Inc. LA @GHERNEFE T A

Chapter 2-51

The Future of Multi core

cores

o
)
Q
)
Q
o
<
Z
o
2000 | Number of cores Para”elism I’eplaceS
o doubles clock frequency scaling
§000 i every 18 months ? and core complexity
A
=1 R :
= esulting Challenges...
@000 - 9 g
g': Scalability
2000 - Programming
@ Power
(%3
g . year,

2002 2005 2008 2011 2014

Sun Ultrasparc T2 IBM XCell 8i _Tilera TILE64

MITRAW

T_F

Chapter 2-52

IBM Research

2 flop/s 1988, Tflop/s 1997, Pflop/s 2008, Exaflop/s ~2018 ??

Flops= : :
:Flgftﬁng OPs Kilo, Mega, Giga, Tera, Peta, Exa, Zeta, Yotta

A Da

©N

g S ~-500 ‘o Projected Performance Development
technology projections @

point to enormous raw
compute capabilities:
100F Flops

— Performance increases i
3 orders of magnitude 10 FFlops : o #500

every 10 years | - Sum
LFfope:) : —— #1 Trend

- Line

100 TFlops _ — #500 Trend
' Line

10 TRops ; — Sum Trend
Line

o what?

— Can we realize these
raw compute
capabilities in systems 100 GFops 325
that can deliver real
value? How?

1 TFlops

Performance

o
<
o
o
o
(@)
C
v
s
—
®
=+
3
<
o
&,
o
-)

And, more importantly,
what might we do with
these capabilities?

c/o Tilak Agarwala (IBM)/adapted by Keyes

ICS 2008 Challenges on the Road to Exascale Computing S =M Corporaiy

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-53

Moore's Law vs. Gilder's Law

— Storage Wired Ethernet 802.11

100000 - Microprocessor performance

BooN Aq pojpeld

~Q_
g 10000 - .
& 1000 - 205
-] O =
5 100 - - = =
g =T 1] 5 &
) 10 —I/ Q E
g . & S
5 @ 5
T 0.1
Q. O Vv PO & O OV O™, .,0

O V" O O O M AV &

D S AT S

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-54

Measuring Memory Capacity

— 7%—‘ — 4\
 Kilobyte: 2!° bytes = 1024 bytes Kmn _F AL

— Example: 3 KB = 3 times1024 bytes
— Sometimes “kib1” rather than “kilo”

« Megabyte: 220 bytes = 1,048,576 bytes
— Example: 3 MB =3 x 1,048,576 bytes

— Sometimes “megi” rather than “mega”

» Gigabyte: 230 bytes = 1,073,741,824 bytes = 10° bytes
— Example: 3 GB =3 x 1,073,741,824 bytes
— Sometimes “gig1” rather than “giga”

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

e Tera= 1024 Giga = 10°
e Peta= 1024 Tera= 102 | |*Zeta=1024 Exa =10
e« Exa = 1024 Peta = 10'8 * Yotta = 1024 Zeta = 10**

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-55

e d = deci = 10!

e ¢ = centi = 10
e m = milli = 103
°* U = micro = 10
e n = nano = 107

* P

UOISIOA |DL JaJULIdNO0P DIASSN AQ pajpald

pico = 1012

s = micro second
760 mm Hg (Atmospheric pressure)

« f= femto = 10"
e ¢ = atto = 1018

¢ z = zepto = 102!

¢ y = yocto = 102

nano second Z=F9 =107 #

pico second F7FH = 102 §

cm = 2No= 2K

mm = 22K
7‘<

nm —

http://en.wikipedia.org/wiki/Exa-

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-56

SOEERR

1950432

* Murphy(ZJH)F > _,333%;§A =

(Murphy's Law) -

SIEER (Murphy's Law)

Anything that can go wrong will go wrong.
HEg AR SE, el e e -

UOISIaA [P} Iajulidno0op bIAeaN AQ peJ,DPJQ
o

AEHD 8 ©

MEEAY -

SRV RN B EEEAE 0 A1
KRR EI’JT%%M—%H&Murphy
f:% ? ﬁiE‘Eﬁ/E '

FTRRRIEE

o PEERIFBIAFERIFHERLE LLIRBERIHHER 5-)

o {RIEEERH

Copyright © 2009 Pearson Education, Inc. LB @AENEE TR

NEE G A IEERRRERTHL. . .

Chapter 2-57

Chapter 2 Data Manipulation

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Q&A

Copyright © 2009 Pearson Education, Inc. L e @CHRNEA TR Chapter 2-58

