Pearson International Edition

J. Glenn Brookshear

' I | .] [} ' .}
* i

An Overview

. I
oo Aleorithms.:iz

D 6 0TS B L £ 3 T 4 3L €y 4

O R DI EOlD R0 RSl S RS B e w

<
Q
Q
(o)
0
-
-
=3
—
@
—
‘1
<
D
&,
o)
-

tO1 01010 C
T T T O WYY T Wy

AT BATHE 2 Shide 5-1

http://www.neevia.com

Chapter 5: Algorithms

5.1 The Concept of an Algorlthm

20p DIAGSN AQ pajbal)d

s 5.4 Iterative Structures

UOISIaA DI} |

3 5.5 Recursive Structures
5.6 Efficiency and Correctness

AT BATHE 2 Slide 5-2

Detinition

IN9SN AQ papal)

~» An algorithm 1s an ordered set of

a unambiguous, executable steps that defines a
¢ terminating process.

:

G . Program

g_ — Formal representation of an algorithm

"« Process

— Activity of executing a program

AT BARE SHE Slide 5-3

Ordered Set

Steps 1n an algorithm must have a well-
established structure in terms of the order 1n
which its steps are executed

May involve more than one thread (parallel
algorithms)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
o

Steps must be an executable instruction

— Example: Making a list of all the positive integers
1s not an executable instruction

RWARE T BHE 51 Slide 5-4

Unambiguous Steps

* During execution of an algorithm, the information 1n
the state of the process must be sufficient to determine
uniquely and completely the actions required by each
step

The execution of each step in an algorithm does not
require creative skills. Rather, it requires only the
ability to follow directions.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

AT BARE SHE Shide 5-5

Terminating Process

* All execution of an algorithm must lead to an end.

« Computer science seeks to distinguish problems
whose answers can be obtained algorithmically and
problems whose answers lie beyond the capabilities of
algorithmic systems

* There are, however, many meaningful application for
non-terminating processes

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

AT BARE SHE Slide 5-6

Chapter 5: Algorithms

5.1 The Concept of an Algorithm
5.2 Algorithm Representation

dNo0p PIASSN AQ palpal)d

1

5 5.3 Algorithm Discovery
§5.4 Iterative Structures
§ 5.5 Recursive Structures
5.6 Efficiency and Correctness

RAET 2ESChE FHEE Slide 5-7

Algorithm and Its Representation

* Like a story and a story book

« Example: converting temperature readings from
Celsius to Fahrenheit
— F=(9/5)C+32

— Multiply the temperature reading in Celsius by 9/5 and then
add 32 to the product

— Implemented by electronic circuit

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— Underlying algorithm is the same, only the representation
differ

AT BARE SHE Slide 5-8

Ievel of Details

* May cause problems in communicating algorithms

 Example:

— “Convert the Celsius reading to its Fahrenheit equivalent”
suffices among meteorologists

— But a layperson would argue that this instruction 1s
ambiguous

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— The problem 1is that the algorithm is not represented in
enough detail for the layperson

RWARE T BHE 51 Slide 5-9

An Example: Origami

[(]] D=2 |

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RT3 FHlE Shde >-10

Algorithm Representation

* Primitive
— Set of building blocks from which algorithm
representations can be constructed

* Programming language

— Collection of primitives

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— Collection of rules stating how the primitives can
be combined to represent more complex 1deas

AT BATHE 2 Shide 5-11

Primitives

e Syntax
— Symbolic representation
* Semantics

— Concept represented (meaning of the primitive)

e [evels of abstraction

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RARET FEXHE 3HE Slide 5-12

[.evels of Abstraction

* Problem
— Motivation for algorithm
e Algorithm
— Procedure to solve the problem

— Often one of many possibilities

* Representation

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— Description of algorithm sufficient to communicate it to the
desired audience

— Always one of many possibilities

RT3 FHlE Shde >-13

Origami Primitives

Syntax Semantics

Turn paper over

—Oo - as in @ —o = ¢

Shade one side Distinguishes between different sides of paper
of paper
as in O O O
N Represents a valley fold

\
\
\ so that ® represents @

Represents a mountain fold

so that 9 represents ®

Fold over

ST (
{ so that @ produces @
Push in ‘

\ so that produces ﬁ

RWRET B 318 Slide 5-14

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

_I‘L

Machine Instructions as Primitives

Algorithm based on machine instructions 1s suitable
for machine execution

However, expressing algorithms at this level 1s tedious §

Normally uses a collection of higher level primitives,
each being an abstract tool constructed from the low-
level primitives provided in the machine’s language —
formal programming language

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RT3 FHlE Shde 5-15

Pseudocode

Less formal, more intuitive than the formal
programming languages

A notation system 1n which 1deas can be expressed
informally during the algorithm development process

A consistent, concise notation for representing
recurring semantic structure

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Comparison with flow chart

AT BARE SHE Slide 5-16

Pseudocode Primitives

* Assignment

— name € expression

 Conditional selection

— if condition then action

» Repeated execution

— while condition do activity

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

e Procedure

— procedure name (generic names)

RT3 FHlE Shde >-17

An Example: Greetings

procedure Greetings

Count « 3;
while (Count > 0) do
(print the message "Hello” and

Count « Count —1)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RT3 FHlE Shde 5-18

Basic Primitives

e total < price + tax

(sales have decreased)

(lower the price by 5%)
(year 1s leap year)

(divide total by 366)

(divide total by 365)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

(tickets remain to be sold)
(sell a ticket)

RT3 FHlE Shde >-19

Procedure Primitive

_* total < price + tax

e tax?

* A procedure to calculate tax

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RT3 FHlE Shde 5-20

Tax as a Procedure

Procedure tax

if (1tem 1s taxable)

then (1f (price > limit)
then (return price™0.1000)
else (return price*0.0825)

)

else (return 0)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RT3 FHlE Shde 5-21

Nested Statements

* One statement within another

op pbIAeaN AQ pajpald

» 1f (1tem 1s taxable)

' then (if (price > limit)

' then (return price®*0.1000)
else (return price*0.0825)
)

else (return 0)

UQISISA |DLI} Iojulldn

AT BATHE 2 Slide 5-22

Indentations

e FEasier to tell the levels of nested statements

1IJNO0P DIASSN Aq pajpald

1f (1tem 1s taxable)

then (if (price > limit)
then| (return price®0.1000)
else,(return price*0.0825)

UOISIaA [P} Jaju

)

else (return 0)

AR FEChE FHlE Shide 5-23

Structured Program

* Divide the long algorithm into smaller tasks
* Write the smaller tasks as procedures
 (Call the procedures when needed

* This helps the readers to understand the structure of
the algorithm

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

[a—
=5
~
@
o
0]
ﬂ
-
@
-
O
-
@
(N
—
[a—
0p]
agQ
Qo
Qo
Q.
p—

then (ProcessLoan)
else (RejectApplication)

AT BATHE 2 Slide 5-24

The Point of Pseudocode

* To communication the algorithm to the readers
* The algorithm will later turn 1nto program

* Also help the program maintainer or developer
to understand the program

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

AR FEChE FHlE Shide 5-23

Chapter 5: Algorithms

5.1 The Concept of an Algorithm
5.2 Algorithm Representation

dNo0p PIASSN AQ palpal)d

1

5 5.3 Algorithm Discovery
§5.4 [terative Structures
§ 5.5 Recursive Structures
5.6 Efficiency and Correctness

RAET 2ESChE FHEE Slide 5-26

Algorithm Discovery

IN9SN AQ papal)

~» Development of a program consists of

g — Discovering the underlying algorithm

% — Representing the algorithm as a program

% * Algorithm discovery 1s usually the more

& challenging step 1n the software development

8 process

5 Requires finding a method of solving the
problem

RT3 FHlE Shde 5-27

Problem Solving Steps

Understand the problem
Get an 1dea

Formulate the algorithm and represent it as a
program

=

Evaluate the program
1. For accuracy

UOISISA [P} 18juLidND0P DIASSN AQ palpal)d
W N =

2. For 1ts potential as a tool for solving other
problems

AT BARE SHE Slide 5-28

Not Yet Sure What to Do

Understand the problem
Get an 1dea

Formulate the algorithm and represent it as a
program

-

Evaluate the program
1. For accuracy

UOISISA [P} J8JULidNo0pP DIASSN AQ pajbal)d
W N =

2. For 1ts potential as a tool for solving other
problems

AR FEChE FHlE Shde 5-29

Ditficulties

IN9SN AQ papal)

~» Understanding the problem
— There are complicated problems and easy problems

— A complete understanding of the problem before
proposing any solutions 1s somewhat 1dealistic

* Getan idea
— Take the ‘Algorithm’ course

UOISIaA [P} 1ajulignoop b

— Mysterious inspiration

AT BARE SHE Slide 5-30

a. Triples whose product is 36

19]UlidNo0p DIASSN Ag pajpald

(1,1,36) (1,6,6)
- (1,218) (2,29)
. (1,312) (2,3,6)
(149 334

|DLL

UOISISA

RARE T £3CHE 5Tk

Solving the Problem

b. Sums of triples from part (a)

1+1+36=38 1+6+6=13 08

1+2+18=21 2+2+9=13
1+3+12=16 2+3+6=11
1+4+9=14 3+3+4=10

Slide 5-31

Getting a Foot 1n the Door

* Work the problem backwards
— Solve for an example and then generalize

— Solve an easier related problem
* Relax some of the problem constraints

* Divide and conquer

— Stepwise refinement
 top-down methodology

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

» Popular technique because it produces modular programs

— Solve easy pieces of the problem first
* bottom up methodology

RAET X FHEE Slide 5-32

Work the Problem Backwards

Simplify the problem
Build up a scenario for the simplified problem

Try to solve this scenario

Generalize the special solution to general
sCenarios

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
[[

Consider a more general problem

Repeat the process

RT3 FHlE Shde 5-33

Divide and Conquer

* Not trying to conquer an entire task at once

* First view the problem at hand 1n terms of several
subproblems

* Approach the overall solution in terms of steps,
each of which 1s easier to solve than the entire
original problem

» Steps be decomposed into smaller steps and these
smaller steps be broken into still smaller ones until
the entire problem has been reduced to a collection
of easily solved subproblems

* Solve from the small subproblems and gradually
have 1t all.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RWARE T BHE 51 Slide 5-34

Chapter 5: Algorithms

5.1 The Concept of an Algorithm
5.2 Algorithm Representation

dNo0p PIASSN AQ palpal)d

1

5 5.3 Algorithm Discovery
§5.4 Iterative Structures
§ 5.5 Recursive Structures
5.6 Efficiency and Correctness

RAET 2ESChE FHEE Slide 5-35

* A collection of
looping manner

[terative Structures

» Used 1n describing algorithmic process

" instructions 1s repeated 1n a

[H repeat £ iS5 LB e A OUHES E

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Example: AJHIAE

x FJ7PJ5HR

Example: FZ&#)EH 03K sin(x), cos(x), ...

RARE T £3CHE 5Tk

Slide 5-36

Search Problem

* Search a list for the occurrence of a particular
target value

 If the value 1s 1n the list, we consider the search
a success; otherwise we consider 1t a failure

* Assume that the list 1s sorted according to some
rule for ordering its entries

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Sequential Search vs. Binary Search

Hash ? Store and retrieve data record through hashing?

AT BARE SHE Slide 5-37

0O
3 :
sSearch Scenario
Q
O
<
& Alice
()
3 Bob
o Carol
% List David
| Query 'S Elaine
(':l:'j Fred
< John George
<
2 Harry
3 Irene
John
Kelly
Result II_/Iarry
ary
Nancy

RWAE T EHe 5 Oliversiide 5-38

Sequential Search Algorithm

procedure Search (List, TargetValue)
“if (List empty)
then
(Declare search a failure)
else
(Select the first entry in List to be TestEntry;
while (TargetValue > TestEntry and
there remain entries to be considered)
do (Select the next entry in List as TestEntry.);
if (TargetValue = TestEntry)
then (Declare search a success.)
else (Declare search a failure.)
) end if

DIANSSN AQ pajbal)d

UOISIaA [P} Iajulidnoop

AT BARE SHE Slide 5-39

The while Loop

0
()]
Q
()]
Q
2
Z C/C++/Java:
: l
<.
o while(cond) {
§ - Condition [*...%/
T est false // whil
3 > condition i // while(
g_':
§ Condition
‘g- frue
-)
Activity

AT BARE SHE Slide 5-40

The repeat Loop (repeat ...

C/C++/Java

[*...%/
} whlle('(cond)),

Pascal/Delphl
-repeat

[*.0.%/
until (cond);

UOISISA D1} 19}Julidno0op DIASaN AqQ pajbaid
o
S
PSS

RARE T £3CHE 5Tk

!

> Activity

i

Test
condition

Condition
false

Condition
true

until)

Slide 5-41

while vs. repeat Structure

* In repeat structure the loop’s body 1s always
performed at least once (posttest loop)

BMI—RK)

C/C++/Java: do {/*...*/ } while(cond.);

* While in while structure, the body 1s never
executed 1f the termination 1s satisfied the first
time it is tested (pretest loop) (Z 4 i 0 %)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RARET 2EACHe 71 Slide 5-42

Sorting HE (FEF1))

* Take a set of items, order unknown

e Return ordered set of the 1items

— Ascending order vs. Descending order

* For instance:
Sorting names alphabetically
Sorting by scores in descending order

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

=» Sorting by height in ascending order
v Issues of interest:

— Running time in worst case, average/other cases
— Space requirements (Space complexity)

RWARE T BHE 51 Slide 5-43

i RIS B Sorting £5¢77

* Insertion Sort #FHAHEYE
 Selection Sort ZEFEHRYI[TE
* Bubble Sort &Y

(Sibling exchange sort; #5317 ELELAZ#47%)

—

e Other Sorting techniques
— Quick Sort, Heap Sort, Merge Sort, ..
— Shell Sort, Fibonacci Sort

UOISIOA |DL JajuLIdNO0P DIASSN AQ pajpald

RAE T BACHE oM Slide 5-44

0O
2 Sorting the list Fred, Alice, David, Bill, and Carol
2alphabetically (1/3)

Insertion Sort

UOISIaA |DLI} I8julidno0p DIASSN A

RARE T £3CHE 5Tk

Initial list; | Fred

Alice

David

Bill

Carol

Sorted{ [Fred Fred | [Alice (Alice Alice |«
Alice Fred Fred
David| =) [David ~P [David David
Bill Bill Bill Bill
Carol Carol Carol Carol
Slide 5-45

0O
2 Sorting the list Fred, Alice, David, Bill, and Carol
Salphabetically (2/3)

Sorted{ Alice Alice /'David Alice| [David Alice /

Fred Fred g David
David| =P =P 4 Fred = | Fred
Bill Bill Bill Bill
Carol Carol Carol Carol

UOISIaA |DLI} I8julidno0p DIASSN A

Alice Alice Bill Alice Bill Alice | /
Sorted { David David Bill ‘/

Fred | == | Fred P g David =4 |David

Bill Fred Fred
Carol Carol Carol Carol

TAE T AHE SHi Slide 5-46

aln

%Sorting the list Fred, Alice, David, Bill, and Carol

Sorted list: | Alice
Bill
Carol
David
Fred

Q .

galphabetically (3/3)

&

)

<.

Q —

g Alice Alice | »|Carol Alice | [Carol Alice
0 | LBl Bill Bill BiEIJ
i Sorted David| == [David —>§ =4 | Carol
3 | Fred Fred David David
(_'E.. Carol 1 Fred Fred
a

<

@

w

2

=)

TAE T AHE SHi Slide 5-47

The 1nsertion sort algorithm
expressed 1n pseudocode
Key 1dea: Keep part of array always sorted

procedure Sort (List)

N « 2;
while (the value of N does not exceed the length of List) do
(Select the Nth entry in List as the pivot entry;
Move the pivot entry to a temporary location leaving a hole in List;
while (there is a name above the hole and that name is greater than the pivot) do
(move the name above the hole down into the hole leaving a hole above the name)
Move the pivot entry into the hole in List;
NeN+1

)

UOISIOA |Dl} Jojulidnoop DIA8SN AQ pajpald

RAET. LIRS 5HE Slide 5-48

Insertion Sort in C Language

Ascending order

V01d sort(double x[], int nox) {
intn =1, k; double tmp; /* C array {i£ 0 5"/

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

0
while(n <= nox-1) { I
k=n-1; tmp =x[n]; /* FICHE] tmp */
while(k>=0 && x[k]>tmp){
x[k+1] = x[k];\/* HUEIFY) copy 2l ~—1@E*/
--k;
h nox-1
x[k+1] = tmp;

++n; /* check next ele

h
h

TAE T AHE SHi Slide 5-49

Test the msertion Sort Algorithm

double y[| = {15, 38, 12, 75, 20, 66, 49, 58};
#include<stdio.h>
void pout(double*, int); void sort(double*, int);
int main() {
printf(''Before sort:\n'""); pout(y, 8);
sort(y, sizeof(y)/sizeof(double));
printf("" After sort:\n"); pout(y, 8);
}
void pout(double*p, int n) {
int i;
for(i=0; i<=n-1; ++i) {
printf("" %7.2f "', p[i]);
} printf("" \n"");

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Before sort:
15.00 38.00 12.00 75.00 20.00 66.00 49.00 58.00
After sort:
12.00 15.00 20.00 38.00 49.00 58.00 66.00 75.00

AT BARE SHE Slide 5-50

Insertion Sort Summary

* Bestcase: Already sorted = O(n)

Worst case:
— # of comparisons : O(n?)

— # of exchanges: O(n?) : MG AH s IE Y
* Space: No external storage needed

* Stable: keep relative order for items have same key
* In practice, good for small sets (<30 1tems)

* Very efficient on nearly-sorted inputs

o FHELVGE/Z) data 2CHAXEY : Selection Sort

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
o

LEEIEAS vs. ZHARYHAR

AT BARE SHE Shide 5-51

U'

Selection Sort FEFEHEYI1E

array index H 0 £l n-1

Ascending order

void sort(double X[], int nox) {
int 1, k, candt; double tmp;
for(1=0; 1 <nox-1; ++1) {

candt =1; /* assume this is our candidate */ ‘

UOISIOA |DL JaJULIdNO0P DIASSN AQ pajpald

for(k= i+1; k<=nox-1; ++k) { jeSanc N
if(x[k] < x[candt]) candt = k; | N
§ |
tmp=x[i]; x[i]=x[candt]; x[candt]=tmp; /*Z5i{EE] E {7 */
+ /] for(i

)

RT3 FHlE Shide 5-52

QU

SelectSort (array A,
array index H 0 £ n-1

Another version of selection sort

for i¢n-1 to 1l // note we are going down
largest index € 0 // assume O0-th is largest ;
for j¢ 1 to i // loop finds max in [1..i] 4
if A[j] > A[largest index]
largest index € j

UOISIOA |DL JajULIdNO0P DIASSN AQ pajpald

00 Jd o U1 » W DD HBH

next j
swap (A[i] ,A[largest index]) //put max in i

IR R (SR 1)

Next 1

(thﬁ

RT3 FHlE Shde 5-53

Selection Sort Summary

* Bestcase: Already sorted
— Passes: n-1
— Comparisons each pass: (n-k) where k pass number
— # of comparisons: (n-1)+(n-2)+...+1 = O(n?)

* Worst case: O(n?)

* Space: No external storage needed
* Very few exchanges:
— Always n-1 (better than Bubble Sort)

* Not Stable (select then swap)

— Can be implemented as stable version: select then insert to
correct position

UOISIOA |DL JajULIdNO0P DIASSN AQ pajpald

RWARE T BHE 51 Slide 5-54

Bubble Sort-vl & JHHEYIE

array index FH 0 %] n-1 Ascending order
void sort(double x[], int nox) {
int 1, k; double tmp;
for(1 = nox-1;1>=1; --1) {
for(k=0; k<1; ++k) {
if(x[k] > x[k+1]) { /* SR/, BETEERHA */
tmp= x[k]; x[k]=x[k+1]; x[k+1]=tmp;

UOISIOA |DL JajuLIdNO0p DIASSN AQ pajpald

h
j // fork Sibling exchange sort
// for 1 < YN
} RS LIRS ik

RT3 FHlE Shide 5-55

Bubble Sort-v1 example(1/2)

15 38 12 75 20 66 49 58

e

15 38 12 75 20 66 49 58
L/

15 12 20 66 49 58
15 12 38 75 20 66 49 58
15 12 20 75 66 49 58

15 12 38 20 66 75 49 58
<

15 12 38 20 66 49 75 58

15 12 38 20 66 49 58 75

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

g (pass 1) : 7 KEGE

a1 a1 75 BEAT
AT EAEE S Shide 5-56

Bubble Sort-v1 example (2/2)

15 38 12 75 20 66 49 58 (original)

gtk 75 B ———
15 12 38 20 66 49 58| 75

AR 66 RENL:
12 15 20 38 49 58 |66 75

—

12 15 20 38 49|58 66 75
— ¢ Al <

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Rl R Y2 1 R ZFH N — Bl S (pass)IG ?
KA EShE FHE Slide 5-57

Bubble Sort-v1 Features

Aq pajpbald

= Time complexity in Worst case: Inverse sorting
— Passes: need n-1 passes
— Comparisons each pass: (n-k) where k 1s pass number
— Total number of comparisons:

(n-1)+(n-2)+(n-3)+...+1 = n(n-1)/2=n%/2-n/2 = O(n?)
*s Space: No auxilary storage needed

-

|DLI} 18JULdNO0P DIASSN

S

S Best case: already sorted
— O(n?) Still: Many redundant passes with no swaps
— Can be improved by using a Flag

AT BARE SHE Slide 5-58

Bubble Sort-v2 & JHHEYIE
R A REHEFE array index [0 %I n-1

void sort(double X[], int nox) {
int 1, k, flag; double tmp;
for(1 =nox-1;1>=1; --1) {
flag = 0; /* assume no exchange 1n this pass */
for(k= 0; k<1; ++k) {
if(x[k] > x[k+1]) { /* FEELRIEL */
tmp= x[k]; x[k]=x[k+1]; x[k+1]=tmp; flag=1;

UOISIOA |DL JajuLIdNO0p DIASSN AQ pajpald

y /1t
+ // for k
if(flag==0) break; /* [l{{lxE[ElS5{R2ZH#L, 1~ FHFHI */
+ // for1

h

AR FEChE FHlE Slide 5-59

Bubble Sort —v2 Features

oN Aq pajpbald

* Bestcase: Already sorted
— O(n) — one pass
» Total number of exchanges

— Best case: 0

— Worst case: O(n?) (BRI PERNEFR)

» Lots of exchanges:

uoIsia

A problem with large data items

KT FESChE 5l Shide 5-60

Another version of Bubble sort (in pseudo code)

ubbleSort (array A[], int n)

array index H 0 £l n-1

i<n-1
quit€false
while (i>0 AND NOT quit)// note: going down
quit<true
for j=1 to i // loop does swaps in [1..i]
if (A[J-11 > A[3]) {
swap (A[j-1]1,A[]j]) // put max in I
quit<false }
next j
10. i<i-1
11.wend

© 00 USISION [} ISIUgnIop b@/\‘eeN Aa.,peme,lg

AT BARE SHE Slide 5-61

Selection Sort vs. Bubble Sort

e Selection sort:

— more comparisons than bubble sort in best case
* Always O(n?) comparisons : n(n-1)/2
— But fewer exchanges : O(n)
— Good for small sets/cheap comparisons, large 1tems

 Bubble sort-v2:

— Many exchanges : O(n?) in worst case

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— O(n) on sorted mput (best case) : only one pass

AT BARE SHE Slide 5-62

Chapter 5: Algorithms

5.1 The Concept of an Algorithm
5.2 Algorithm Representation

dNo0p PIASSN AQ palpal)d

1

5 5.3 Algorithm Discovery
§5.4 [terative Structures
¢ 5.5 Recursive Structures
5.6 Efficiency and Correctness

RAET X FHEE Slide 5-63

Recursive Structures

* Involves repeating the set of instructions as a subtask
of itself

e An example 1s 1 processing incoming telephone calls
using the call-waiting feature

— An incomplete telephone conversation is set aside while
another incoming call 1s processed

— Two conversations are performed

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— But not 1n a one-after-the-other manner as in the loop
structure

— Instead one 1s performed within the other

AT BARE SHE Slide 5-64

Recursion

* Execution 1s performed in which each stage of
repetition 1s as a subtask of the previous stage

* Examples:

— divide-and-conquer in binary search
— Quick sort
— Hanoi tower

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— Factorial(n) = n * Factorial(n-1)
— GCD(m, n) =GCD(n, m%n) ifn!=0

— Fibonacci series formula (Fibonacci Rabbit Problem)

AR FEChE FHlE Shide 5-63

Characteristics of Recursion

» Existence of multiple copies of itself (or
multiple activations of the program)

* At any given time only one 1s actively
progressing

 FEach of the others waits for another activation
to terminate before 1t can continue

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

ZHHN
HIRSERELH (N-1)
RiHTLFIT L N FTAEEI N (NBER)

RT3 FHlE Shide 5-66

Recursive Control

FRAEH Recursive BkE§
 Also involves /DS —F if 5¢kE
— Initialization DL TR RE) AR
— Modification Ere ek |

— Test for termination (degenerative case)

* Test for degenerative case
— Before requesting further activations

— If not met, assigns another activation to solve a revised
problem that is closer to the termination condition

* Similar to a loop control

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

if(n==0)return1; /0! & 1

if(n==0) return m; // GCD(m, 0) 5Z/E m

AR FEChE FHlE Shde 5-67

qsort() in C Library SRR MBI [

* There 1s a library function for quick sort in
C Language: gsort(). (unstable)

e #include <stdlib.h>

void gsort(void *base, size t num, size t size,
int (*comp_func)(const void *, const void *))

void * base --- a pointer to the array to be sorted

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

size t num --- the number of elements

size tsize --- the element size

int (*cf) (...) --- 1s a pointer to a function used to compare

int comp func() /AEEME -1,0,1 K<, ==, >
2ERHT. BESHE SHEE Slide 5-68

0 .
s C++ STL <algorithm> SEE B L

#include <algorithm>
using namespace std;
int x| | = {38, 49, 15, 158, 25, 58, 88,66 }; // array of primitive data
#define n (sizeof(x)/sizeof(x[0]))
/...
sort(x, x+n); // ascending order
// what if we want to sort into descending order
sort(x, x+n, sortfun); // with compare function
sort(y, y+k, sortComparatorObject); // with Comparator Object

UOISIaA DL} Iajulidno0op bIASaN Ag po

Comparison function? Default: bool operator<(first, second)
C++ Comparison function £&bool

AEME true LR F—28 < FFE228 : ascending
Comparator N2 bool operator() (Obj a, Obj b) { /*...*/}

http://www.cplusplus.com/reference/algorithm/sort/
KRBT FE50hE 5HE Slide 5-09

Java P java.util. Arrays.sort()

SHEEATIRE L
o A]3EEEZYIHY compareTo(), E4hi% class 78
implements java.lang.Comparable

o I n[E R {EAG sort —1{[Comparator, 5iLE A
lmplement java.util.Comparator ;. class N B i1,

FE Java (AR S B s 2R g 1

Yava A LR B (R 20
java.util. Arrays.sort() 245 Comparator ¥7J{}-?

ANMERIEr FH 224 sort .2 array BYYIfAIHY compareTo()

ANEm compareTo(), = Comparator NHY compare()
BT, C 1Y gqsort FHRYLEEEKEY, int, B{EH[E] -1, 0, 1

>R C++ STL Y228 5 true Ed false (seeprevious slide)

H'

I

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RT3 FHlE shde 5770

Binary Search

Original list First sublist Second sublist

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Alice

Bob

Carol

David

Elaine

Fred

George

Harry

Irene Irene Irene
John John :| John
Kelly Kelly Kelly
Larry Larry

Mary Mary

Nancy Nancy

Oliver _ Oliver

RT3 FHlE Shde 571

Binary Search Algorithm

if (List empty)
then
(Report that the search failed.)
else
[Select the "middle” entry in the List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Search the portion of List preceding TestEntry for
TargetValue, and report the result of that search.)
case 3: TargetValue > TestEntry
(Search the portion of List following TestEntry for
TargetValue, and report the result of that search.)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

| end if

RT3 FHlE Shde 5-72 .

Binary Search Algorithm in Pseudocode

procedure Search (List, TargetValue)

if (List empty)
then
(Report that the search failed.)
else
[Select the "middle” entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
Is in the portion of List following TestEntry,
and report the result of that search.)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

] end if

AT BARE SHE Slide 5-73

earching for Bill

We are here.

procedure Search (List, TargetValue) procedure Search (List, TargetValue)
if (List empty) if (List empty)

then (Report that the search failed.) then (Report that the search failed.)
else else

[Select the "middle" entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.

[Select the "middle" entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.

|DU} J9juULdNO0P DIASSN AQ palbald

case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)

case 1: TargetValue = TestEntry

(Report that the search succeeded.)

case 2: TargetValue < TestEntry

(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)

case 3: TargetValue > TestEntry

(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)

<] end if] end if
3 List List
o ' Alice
> > Bill
i | Carol

David —(TestEntry)

Evelyn

Fred

George

RAET. LIRS 5HE Slide 5-74

Searching for David

procedure Search (List, TargetValue)

if (List empty)
then (Report that the search failed.)
else
[Select the "middle" entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case |: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)

- W

|DU} J9juULdNO0P DIASSN AQ palbald

] end if

UOISISA
L.
4

We are here.

procedure Search (List, TargetValue)

if (List empty)
then (Report that the search failed.)
else
[Select the "middle" entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)
] end if

List
Alice
> Carol

|

—(TestEntry)

Evelyn
Fred
George

RARE T £3CHE 5Tk

David

Slide 5-75

|DU} J9juULdNO0P DIASSN AQ palbald

UOISISA

procedure Search (List, TargetValue)

if (List empty)
:Ilien {Report that the search failed.)
L1
[Select the "middle” entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
(Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
Is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)
] end if

earching for David

procedure Search (List, TargetValue)

if (List empty)
tllnn (Report that the search failed.)
else
[Select the "middle” entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case |: TargetValue = TestEntry
(Repart that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)
] end if

List

Alice
Carol ——(TestEntry)

Evelyn —(TestEnt ry)
Fred

George

RARE T £3CHE 5Tk

We are here.

procedure Search (List, TargetValue)

if (List empty)
tlllen (Report that the search failed.)
else
[Select the "middle” entry in List to be the TestEntry;
Execute the block of instructions below that is
associated with the appropriate case.
case 1: TargetValue = TestEntry
{Report that the search succeeded.)
case 2: TargetValue < TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of the List preceding TestEntry,
and report the result of that search.)
case 3: TargetValue > TestEntry
(Apply the procedure Search to see if TargetValue
is in the portion of List following TestEntry,
and report the result of that search.)
] end if

List

. David_|

» David

Slide 5-76

Chapter 5: Algorithms

5.1 The Concept of an Algorithm
5.2 Algorithm Representation

dNo0p PIASSN AQ palpal)d

1

5 5.3 Algorithm Discovery
§5.4 Iterative Structures
§ 5.5 Recursive Structures
5.6 Efficiency and Correctness

RAET 2ESChE FHEE Slide 5-77

Software Efficiency

 Measured as number of instructions executed
 notation for efficiency classes

- 0(?)

- Q(?)

10(?)
* Best, worst, and average case

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Time Complexity vs. Space Complexity

AT BARE SHE Slide 5-78

Asymptotic Upper Bound (Big O)

* f(ln) < cg(n)foralln = n,
* g(n) 1s called an
asymptotic upper bound of f(n).
* We write f(n)=0(g(n))
* [t reads f(n) equals big oh of g(n).

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

n

RT3 FHlE shde 579

symptotic Lower Bound (Big Omega)

* f(n) 2 cg(n)foralln > n,
* o(n) 1s called an
asymptotic lower bound of f(n). fin)
* We write f(n)=Q(g(n))
* [t reads f(n) equals big omega of g(n).

UOISIaA [P} Iajulidno0op bIAeaN AQ pem}:)

AR FEChE FHlE Shide 5-50

!

%Asymptotically Tight Bound (Big Theta)

* fin) = O(g(n)) and f(n) = €X(g(n))

* o(n) 1s called an c,8(n)
asymptotically tight bound of f(n).

* We write f(n)=0(g(n))

e It reads f{n) equals theta of g(n). f(n)

UOISIaA [P} Iajulidno0op bIAeaN AQ

/

RAET 2ESChE FHEE Slide 5-81

Insertion Sort in Worst Case

Comparisons made for each pivot

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Initial Sorted
list 1st pivot 2nd pivot 3rd pivot 4th pivot list

Elaine 1CEI:aine] David 5 Carol 10 Barbara Alfred
David David EEIaine David Carol Barbara
Carol Carol Carol Elaine David Carol

Barbara Barbara Barbara 4 Barbara : Elaine David
Alfred Alfred Alfred Ared \ Alfred Elaine

AT BARE SHE Slide 5-82

Worst-Case Analysis Insertion Sort

Time required to execute
the algorithm

Time increasing
by increasing I
increments :

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

: — — ' Length of list
Length increasing by
uniform increments

RT3 FHlE Shide 5-83

Worst-Case Analysis Binary Search

Time required to execute
the algorithm

Time increasing
by decreasing
increments

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

: : ' Length of list
Length increasing by
uniform increments

RAET. LIRS 5HE Slide 5-84

Big-Theta Notation

 Identification of the shape of the graph
representing the resources required with
respect to the size of the input data

— Normally based on the worst-case analysis

— Insertion sort: ®(n?)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— Binary search: ®(log n)

AR FEChE FHlE Shide -85

Formal Definition

N Aq pajpaid

1 ©O(n?): complexity is kn’+o(n?)
—f(n)/n° 2> k,n 2

« o(n?): functions grow slower than 7’
—f(n)/n°-> 0,n 2

DIASO

UOISIaA [P} Iajulidnoop

RAET 2ESChE FHEE Slide 5-86

Problem Solving Steps

Understand the problem
Get an 1dea

Formulate the algorithm and represent 1t as a
program

-

Evaluate the program

1. For its potential as a tool for solving other problems
2. Foraccuracy

UOISISA |DL} 18juUlidnO0p bIASSN AQ pajpal)d)
W N =

Step-wise refinement 1s a technique for software development
using a top-down, structured approach to solving a problem.

Stepwise refinement
http://en.wikipedia.org/wiki/Program refinement

AT BARE SHE Slide 5-87

Software Verification

« Evaluate the accuracy of the solution

his 1s not easy

—

he programmer often does not know whether
the solution 1s accurate (enough)

« Example: Traveler’s gold chain

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
[
—

http://en.wikipedia.org/wiki/Software verification

http://en.wikipedia.org/wiki/Software engineering

AT BARE SHE Slide 5-88

Example: Chain Separating

A traveler has a gold chain of seven links.

He must stay at an 1solated hotel for seven nights.

{

The rent each night consists of one link from the chain.

What 1s the fewest number of links that must be cut
so that the traveler can pay the hotel one link of the
chain each morning without paying for lodging in

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

advance?

AT BARE SHE Slide 5-89

Separating the chain using only three cuts

Cut

|DU} 18JULINO0P DIASSN AQ pajpald

UOISISA

00O0VO0VO

RARE T ZE0HE AT Slide 5-90

Moral of the Story

* You thought there 1s no better way

* You thought it is accurate enough

* But really? who knows?

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

KT FESChE 5l shde 591

Solving the problem with only one cut

Cut

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

D O©

AR T B AR EEER?
FREFETIEAIEE 1 ~1023 {fiig T2 & FEAATFTE?
RARHT. ESHE R Slide 5-92

Ways to Level the Confidence

* For perfect confidence
— Prove the correctness of a algorithm

— Application of formal logic to prove the correctness of a
program

* For high confidence
— Exhaustive tests (2 HIE)
— Application specific test generation
* For some confidence
— Program verification (F2 =028 5Z5HH)

— Assertions

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RT3 FHlE Shde 593

Program Verification (1/2)

 Preconditions

— Conditions satisfied at the beginning of the
program execution

* The next step 1s to consider how the
consequences of the preconditions
propagate through the program

e Assertions

— Statements that can be established at various
points 1n the program

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

AT BARE SHE Slide 5-94

Program Verification (2/2)

* Proof of correctness to some degree
— Establish a collection of assertions

— If the assertion at the end of the program
corresponds to the desired output specifications, we
can conclude that the program 1s correct

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

AT ZESCHE FHEE Shide 395

In a while Structure

_A Precondition

Initialize

Loop invariant l

B
—» Test

l True
C

—— Loop invariant
Body and termination condition

l

Modify v

False

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

RARE T £3CHE 5Tk Slide 5-96

Insertion Sort Algorithm

rocedure Sort (List)

n20@PINSSN AQ pajpald)

T
e

hile (the value of N does not exceed the length of List) do
(Select the Nth entry in List as the pivot entry;
Move the pivot entry to a temporary location leaving a hole in List;
while (there is a name above the hole and that name is greater than the pivot) do
(move the name above the hole down into the hole leaving a hole above the name)

Move the pivot entry into the hole in List;
Ne N+ T
)

UOISIOA DL} 19}Usd

AT BARE SHE Slide 5-97

Asserting of Insertion Sort

* Loop invariant of the outer loop

— Each time the test for termination 1s performed,
the names preceding the Nth entry form a sorted
list

e Termination condition

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— The value of N is greater than the length of the
list

* [If the loop terminates, the list 1s sorted

AR FEChE FHlE Shide 5-9

Q

o

0

-

-

3 7Y
o /

b f-s

=

‘3/

L

BB

tsaiwn(@csie.nctu.edu.tw

X+
= SUHE
WRET ZAHe 5TH%

Slide 5-99

