|
JavaTM 2 Platform Standard Ed. 5.0 |
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectjava.awt.geom.Area
public class Area
The Area class is a device-independent specification of an
arbitrarily-shaped area. The Area object is defined as an
object that performs certain binary CAG (Constructive Area Geometry)
operations on other area-enclosing geometries, such as rectangles,
ellipses, and polygons. The CAG operations are Add(union), Subtract,
Intersect, and ExclusiveOR. For example, an Area can be
made up of the area of a rectangle minus the area of an ellipse.
| Constructor Summary | |
|---|---|
Area()
Default constructor which creates an empty area. |
|
Area(Shape s)
The Area class creates an area geometry from the
specified Shape object. |
|
| Method Summary | |
|---|---|
void |
add(Area rhs)
Adds the shape of the specified Area to the
shape of this Area. |
Object |
clone()
Returns an exact copy of this Area object. |
boolean |
contains(double x,
double y)
Tests if a specifed point lies inside the boundary of this Area object. |
boolean |
contains(double x,
double y,
double w,
double h)
Tests whether or not the interior of this Area object
completely contains the specified rectangular area. |
boolean |
contains(Point2D p)
Tests if a specified Point2D lies inside the boundary of the
this Area object. |
boolean |
contains(Rectangle2D p)
Tests whether or not the interior of this Area object
completely contains the specified Rectangle2D. |
Area |
createTransformedArea(AffineTransform t)
Creates a new Area object that contains the same
geometry as this Area transformed by the specified
AffineTransform. |
boolean |
equals(Area other)
Tests whether the geometries of the two Area objects
are equal. |
void |
exclusiveOr(Area rhs)
Sets the shape of this Area to be the combined area
of its current shape and the shape of the specified Area,
minus their intersection. |
Rectangle |
getBounds()
Returns a bounding Rectangle that completely encloses
this Area. |
Rectangle2D |
getBounds2D()
Returns a high precision bounding Rectangle2D that
completely encloses this Area. |
PathIterator |
getPathIterator(AffineTransform at)
Creates a PathIterator for the outline of this
Area object. |
PathIterator |
getPathIterator(AffineTransform at,
double flatness)
Creates a PathIterator for the flattened outline of
this Area object. |
void |
intersect(Area rhs)
Sets the shape of this Area to the intersection of
its current shape and the shape of the specified Area. |
boolean |
intersects(double x,
double y,
double w,
double h)
Tests whether the interior of this Area object
intersects the interior of the specified rectangular area. |
boolean |
intersects(Rectangle2D p)
Tests whether the interior of this Area object
intersects the interior of the specified Rectangle2D. |
boolean |
isEmpty()
Tests whether this Area object encloses any area. |
boolean |
isPolygonal()
Tests whether this Area consists entirely of
straight edged polygonal geometry. |
boolean |
isRectangular()
Tests whether this Area is rectangular in shape. |
boolean |
isSingular()
Tests whether this Area is comprised of a single
closed subpath. |
void |
reset()
Removes all of the geometry from this Area and
restores it to an empty area. |
void |
subtract(Area rhs)
Subtracts the shape of the specified Area from the
shape of this Area. |
void |
transform(AffineTransform t)
Transforms the geometry of this Area using the specified
AffineTransform. |
| Methods inherited from class java.lang.Object |
|---|
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public Area()
public Area(Shape s)
Area class creates an area geometry from the
specified Shape object. The geometry is explicitly
closed, if the Shape is not already closed. The
fill rule (even-odd or winding) specified by the geometry of the
Shape is used to determine the resulting enclosed area.
s - the Shape from which the area is constructed| Method Detail |
|---|
public void add(Area rhs)
Area to the
shape of this Area.
Addition is achieved through union.
rhs - the Area to be added to the
current shapepublic void subtract(Area rhs)
Area from the
shape of this Area.
rhs - the Area to be subtracted from the
current shapepublic void intersect(Area rhs)
Area to the intersection of
its current shape and the shape of the specified Area.
rhs - the Area to be intersected with this
Areapublic void exclusiveOr(Area rhs)
Area to be the combined area
of its current shape and the shape of the specified Area,
minus their intersection.
rhs - the Area to be exclusive ORed with this
Area.public void reset()
Area and
restores it to an empty area.
public boolean isEmpty()
Area object encloses any area.
true if this Area object
represents an empty area; false otherwise.public boolean isPolygonal()
Area consists entirely of
straight edged polygonal geometry.
true if the geometry of this
Area consists entirely of line segments;
false otherwise.public boolean isRectangular()
Area is rectangular in shape.
true if the geometry of this
Area is rectangular in shape; false
otherwise.public boolean isSingular()
Area is comprised of a single
closed subpath. This method returns true if the
path contains 0 or 1 subpaths, or false if the path
contains more than 1 subpath. The subpaths are counted by the
number of SEG_MOVETO segments
that appear in the path.
true if the Area is comprised
of a single basic geometry; false otherwise.public Rectangle2D getBounds2D()
Rectangle2D that
completely encloses this Area.
The Area class will attempt to return the tightest bounding box possible for the Shape. The bounding box will not be padded to include the control points of curves in the outline of the Shape, but should tightly fit the actual geometry of the outline itself.
getBounds2D in interface ShapeRectangle2D for the
Area.Shape.getBounds()public Rectangle getBounds()
Rectangle that completely encloses
this Area.
The Area class will attempt to return the tightest bounding box possible for the Shape. The bounding box will not be padded to include the control points of curves in the outline of the Shape, but should tightly fit the actual geometry of the outline itself. Since the returned object represents the bounding box with integers, the bounding box can only be as tight as the nearest integer coordinates that encompass the geometry of the Shape.
getBounds in interface ShapeRectangle for the
Area.Shape.getBounds2D()public Object clone()
Area object.
clone in class ObjectCloneablepublic boolean equals(Area other)
Area objects
are equal.
other - the Area to be compared to this
Area
true if the two geometries are equal;
false otherwise.public void transform(AffineTransform t)
Area using the specified
AffineTransform. The geometry is transformed in place, which
permanently changes the enclosed area defined by this object.
t - the transformation used to transform the areapublic Area createTransformedArea(AffineTransform t)
Area object that contains the same
geometry as this Area transformed by the specified
AffineTransform. This Area object
is unchanged.
t - the specified AffineTransform used to transform
the new Area
Area object representing the transformed
geometry.
public boolean contains(double x,
double y)
Area object.
contains in interface Shapex, y - the specified point
true if the point lies completely within the
interior of the Area;
false otherwise.public boolean contains(Point2D p)
Point2D lies inside the boundary of the
this Area object.
contains in interface Shapep - the Point2D to test
true if the specified Point2D
lies completely within the interior of the Area;
false otherwise.
public boolean contains(double x,
double y,
double w,
double h)
Area object
completely contains the specified rectangular area.
contains in interface Shapex, y - the coordinates of the upper left corner of
the specified rectangular areaw - the width of the specified rectangular areah - the height of the specified rectangular area
true if the specified rectangular area
lies completely within the interior of the Area;
false otherwise.Area,
Shape.intersects(double, double, double, double)public boolean contains(Rectangle2D p)
Area object
completely contains the specified Rectangle2D.
contains in interface Shapep - the Rectangle2D to test
true if the Rectangle2D lies
completely within the interior of the Area;
false otherwise.Shape.contains(double, double, double, double)
public boolean intersects(double x,
double y,
double w,
double h)
Area object
intersects the interior of the specified rectangular area.
intersects in interface Shapex, y - the coordinates of the upper left corner of
the specified rectangular areaw - the width of the specified rectangular areah - the height of teh specified rectangular area
true if the interior intersects the specified
rectangular area; false otherwise;Areapublic boolean intersects(Rectangle2D p)
Area object
intersects the interior of the specified Rectangle2D.
intersects in interface Shapep - the Rectangle2D to test for intersection
true if the interior intersects the
specified Rectangle2D;
false otherwise.Shape.intersects(double, double, double, double)public PathIterator getPathIterator(AffineTransform at)
PathIterator for the outline of this
Area object. This Area object is unchanged.
getPathIterator in interface Shapeat - an optional AffineTransform to be applied to
the coordinates as they are returned in the iteration, or
null if untransformed coordinates are desired
PathIterator object that returns the
geometry of the outline of this Area, one
segment at a time.
public PathIterator getPathIterator(AffineTransform at,
double flatness)
PathIterator for the flattened outline of
this Area object. Only uncurved path segments
represented by the SEG_MOVETO, SEG_LINETO, and SEG_CLOSE point
types are returned by the iterator. This Area
object is unchanged.
getPathIterator in interface Shapeat - an optional AffineTransform to be
applied to the coordinates as they are returned in the
iteration, or null if untransformed coordinates
are desiredflatness - the maximum amount that the control points
for a given curve can vary from colinear before a subdivided
curve is replaced by a straight line connecting the endpoints
PathIterator object that returns the
geometry of the outline of this Area, one segment
at a time.
|
JavaTM 2 Platform Standard Ed. 5.0 |
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
Copyright 2004 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms. Also see the documentation redistribution policy.