|
JavaTM 2 Platform Std. Ed. v1.4.2 |
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||||
java.lang.Objectjava.awt.geom.QuadCurve2D
The QuadCurve2D class defines a quadratic parametric curve
segment in (x, y) coordinate space.
This class is only the abstract superclass for all objects that store a 2D quadratic curve segment. The actual storage representation of the coordinates is left to the subclass.
| Nested Class Summary | |
static class |
QuadCurve2D.Double
A quadratic parametric curve segment specified with double coordinates. |
static class |
QuadCurve2D.Float
A quadratic parametric curve segment specified with float coordinates. |
| Constructor Summary | |
protected |
QuadCurve2D()
This is an abstract class that cannot be instantiated directly. |
| Method Summary | |
Object |
clone()
Creates a new object of the same class and with the same contents as this object. |
boolean |
contains(double x,
double y)
Tests if a specified coordinate is inside the boundary of the shape of this QuadCurve2D. |
boolean |
contains(double x,
double y,
double w,
double h)
Tests if the interior of the shape of this QuadCurve2D entirely contains the specified
set of rectangular coordinates. |
boolean |
contains(Point2D p)
Tests if a specified Point2D is inside the boundary of
the shape of this QuadCurve2D. |
boolean |
contains(Rectangle2D r)
Tests if the interior of the shape of this QuadCurve2D entirely contains the specified
Rectangle2D. |
Rectangle |
getBounds()
Returns the bounding box of this QuadCurve2D. |
abstract Point2D |
getCtrlPt()
Returns the control point. |
abstract double |
getCtrlX()
Returns the x coordinate of the control point in double precision. |
abstract double |
getCtrlY()
Returns the y coordinate of the control point in double precision. |
double |
getFlatness()
Returns the flatness, or maximum distance of a controlpoint from the line connecting the endpoints, of this QuadCurve2D. |
static double |
getFlatness(double[] coords,
int offset)
Returns the flatness, or maximum distance of a controlpoint from the line connecting the endpoints, of the quadratic curve specified by the controlpoints stored in the indicated array at the indicated index. |
static double |
getFlatness(double x1,
double y1,
double ctrlx,
double ctrly,
double x2,
double y2)
Returns the flatness, or maximum distance of a controlpoint from the line connecting the endpoints, of the quadratic curve specified by the indicated controlpoints. |
double |
getFlatnessSq()
Returns the square of the flatness, or maximum distance of a controlpoint from the line connecting the endpoints, of this QuadCurve2D. |
static double |
getFlatnessSq(double[] coords,
int offset)
Returns the square of the flatness, or maximum distance of a controlpoint from the line connecting the endpoints, of the quadratic curve specified by the controlpoints stored in the indicated array at the indicated index. |
static double |
getFlatnessSq(double x1,
double y1,
double ctrlx,
double ctrly,
double x2,
double y2)
Returns the square of the flatness, or maximum distance of a controlpoint from the line connecting the endpoints, of the quadratic curve specified by the indicated controlpoints. |
abstract Point2D |
getP1()
Returns the start point. |
abstract Point2D |
getP2()
Returns the end point. |
PathIterator |
getPathIterator(AffineTransform at)
Returns an iteration object that defines the boundary of the shape of this QuadCurve2D. |
PathIterator |
getPathIterator(AffineTransform at,
double flatness)
Returns an iteration object that defines the boundary of the flattened shape of this QuadCurve2D. |
abstract double |
getX1()
Returns the x coordinate of the start point in double in precision. |
abstract double |
getX2()
Returns the x coordinate of the end point in double precision. |
abstract double |
getY1()
Returns the y coordinate of the start point in double precision. |
abstract double |
getY2()
Returns the y coordinate of the end point in double precision. |
boolean |
intersects(double x,
double y,
double w,
double h)
Tests if the shape of this QuadCurve2D intersects the
interior of a specified set of rectangular coordinates. |
boolean |
intersects(Rectangle2D r)
Tests if the shape of this QuadCurve2D intersects the
interior of a specified Rectangle2D. |
void |
setCurve(double[] coords,
int offset)
Sets the location of the endpoints and controlpoints of this QuadCurve2D to the double coordinates at
the specified offset in the specified array. |
abstract void |
setCurve(double x1,
double y1,
double ctrlx,
double ctrly,
double x2,
double y2)
Sets the location of the endpoints and controlpoint of this curve to the specified double coordinates. |
void |
setCurve(Point2D[] pts,
int offset)
Sets the location of the endpoints and controlpoints of this QuadCurve2D to the coordinates of the
Point2D objects at the specified offset in
the specified array. |
void |
setCurve(Point2D p1,
Point2D cp,
Point2D p2)
Sets the location of the endpoints and controlpoint of this QuadCurve2D to the specified Point2D
coordinates. |
void |
setCurve(QuadCurve2D c)
Sets the location of the endpoints and controlpoint of this QuadCurve2D to the same as those in the specified
QuadCurve2D. |
static int |
solveQuadratic(double[] eqn)
Solves the quadratic whose coefficients are in the eqn
array and places the non-complex roots back into the same array,
returning the number of roots. |
static int |
solveQuadratic(double[] eqn,
double[] res)
Solves the quadratic whose coefficients are in the eqn
array and places the non-complex roots into the res
array, returning the number of roots. |
static void |
subdivide(double[] src,
int srcoff,
double[] left,
int leftoff,
double[] right,
int rightoff)
Subdivides the quadratic curve specified by the coordinates stored in the src array at indices
srcoff through srcoff + 5
and stores the resulting two subdivided curves into the two
result arrays at the corresponding indices. |
void |
subdivide(QuadCurve2D left,
QuadCurve2D right)
Subdivides this QuadCurve2D and stores the resulting
two subdivided curves into the left and
right curve parameters. |
static void |
subdivide(QuadCurve2D src,
QuadCurve2D left,
QuadCurve2D right)
Subdivides the quadratic curve specified by the src
parameter and stores the resulting two subdivided curves into the
left and right curve parameters. |
| Methods inherited from class java.lang.Object |
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface java.awt.Shape |
getBounds2D |
| Constructor Detail |
protected QuadCurve2D()
QuadCurve2D.Float,
QuadCurve2D.Double| Method Detail |
public abstract double getX1()
double in precision.
public abstract double getY1()
double precision.
public abstract Point2D getP1()
Point2D that is the start point of this
QuadCurve2D.public abstract double getCtrlX()
double precision.
public abstract double getCtrlY()
double precision.
public abstract Point2D getCtrlPt()
Point2D that is the control point of this
Point2D.public abstract double getX2()
double precision.
public abstract double getY2()
double precision.
public abstract Point2D getP2()
Point object that is the end point
of this Point2D.
public abstract void setCurve(double x1,
double y1,
double ctrlx,
double ctrly,
double x2,
double y2)
double coordinates.
public void setCurve(double[] coords,
int offset)
QuadCurve2D to the double coordinates at
the specified offset in the specified array.
coords - the array containing coordinate valuesoffset - the index into the array from which to start
getting the coordinate values and assigning them to this
QuadCurve2D
public void setCurve(Point2D p1,
Point2D cp,
Point2D p2)
QuadCurve2D to the specified Point2D
coordinates.
p1 - the starting pointcp - the control pointp2 - the ending point
public void setCurve(Point2D[] pts,
int offset)
QuadCurve2D to the coordinates of the
Point2D objects at the specified offset in
the specified array.
pts - an array containing Point2D that define
coordinate valuesoffset - the index into pts at which to start
getting the coordinate values and assigning them to this
QuadCurve2Dpublic void setCurve(QuadCurve2D c)
QuadCurve2D to the same as those in the specified
QuadCurve2D.
c - the specified QuadCurve2D
public static double getFlatnessSq(double x1,
double y1,
double ctrlx,
double ctrly,
double x2,
double y2)
public static double getFlatness(double x1,
double y1,
double ctrlx,
double ctrly,
double x2,
double y2)
public static double getFlatnessSq(double[] coords,
int offset)
coords - an array containing coordinate valuesoffset - the index into coords at which to
to start getting the values from the array and
assigning them to a quadratic curve
public static double getFlatness(double[] coords,
int offset)
coords - an array containing coordinate valuesoffset - the index into coords at which to
start getting the coordinate values and assigning
them to a quadratic curve
public double getFlatnessSq()
QuadCurve2D.
QuadCurve2D.public double getFlatness()
QuadCurve2D.
QuadCurve2D.
public void subdivide(QuadCurve2D left,
QuadCurve2D right)
QuadCurve2D and stores the resulting
two subdivided curves into the left and
right curve parameters.
Either or both of the left and right
objects can be the same as this QuadCurve2D or
null.
left - the QuadCurve2D object for storing the
left or first half of the subdivided curveright - the QuadCurve2D object for storing the
right or second half of the subdivided curve
public static void subdivide(QuadCurve2D src,
QuadCurve2D left,
QuadCurve2D right)
src
parameter and stores the resulting two subdivided curves into the
left and right curve parameters.
Either or both of the left and right
objects can be the same as the src object or
null.
src - the quadratic curve to be subdividedleft - the QuadCurve2D object for storing the
left or first half of the subdivided curveright - the QuadCurve2D object for storing the
right or second half of the subdivided curve
public static void subdivide(double[] src,
int srcoff,
double[] left,
int leftoff,
double[] right,
int rightoff)
src array at indices
srcoff through srcoff + 5
and stores the resulting two subdivided curves into the two
result arrays at the corresponding indices.
Either or both of the left and right
arrays can be null or a reference to the same array
and offset as the src array.
Note that the last point in the first subdivided curve is the
same as the first point in the second subdivided curve. Thus,
it is possible to pass the same array for left and
right and to use offsets such that
rightoff equals leftoff + 4 in order
to avoid allocating extra storage for this common point.
src - the array holding the coordinates for the source curvesrcoff - the offset into the array of the beginning of the
the 6 source coordinatesleft - the array for storing the coordinates for the first
half of the subdivided curveleftoff - the offset into the array of the beginning of the
the 6 left coordinatesright - the array for storing the coordinates for the second
half of the subdivided curverightoff - the offset into the array of the beginning of the
the 6 right coordinatespublic static int solveQuadratic(double[] eqn)
eqn
array and places the non-complex roots back into the same array,
returning the number of roots. The quadratic solved is represented
by the equation:
eqn = {C, B, A};
ax^2 + bx + c = 0
A return value of -1 is used to distinguish a constant
equation, which might be always 0 or never 0, from an equation that
has no zeroes.
eqn - the array that contains the quadratic coefficients
-1 if the equation is
a constant
public static int solveQuadratic(double[] eqn,
double[] res)
eqn
array and places the non-complex roots into the res
array, returning the number of roots.
The quadratic solved is represented by the equation:
eqn = {C, B, A};
ax^2 + bx + c = 0
A return value of -1 is used to distinguish a constant
equation, which might be always 0 or never 0, from an equation that
has no zeroes.
eqn - the specified array of coefficients to use to solve
the quadratic equationres - the array that contains the non-complex roots
resulting from the solution of the quadratic equation
-1 if the equation is
a constant.
public boolean contains(double x,
double y)
QuadCurve2D.
contains in interface Shapex - the specified x coordinatey - the specified y coordinate
true if the specified coordinate is inside
the boundary of the shape of this
QuadCurve2D; false otherwise.public boolean contains(Point2D p)
Point2D is inside the boundary of
the shape of this QuadCurve2D.
contains in interface Shapep - the specified Point2D
true if the specified Point2D is
inside the boundary of the shape of this
QuadCurve2D.
public boolean intersects(double x,
double y,
double w,
double h)
QuadCurve2D intersects the
interior of a specified set of rectangular coordinates.
intersects in interface Shapew - the width of the specified rectangular areah - the height of the specified rectangular areax - the x coordinate of the specified rectangular areay - the y coordinate of the specified rectangular area
true if the shape of this
QuadCurve2D intersects the interior of the
specified set of rectangular coordinates;
false otherwise.Areapublic boolean intersects(Rectangle2D r)
QuadCurve2D intersects the
interior of a specified Rectangle2D.
intersects in interface Shaper - the specified Rectangle2D
true if the shape of this
QuadCurve2D intersects the interior of
the specified Rectangle2D;
false otherwise.Shape.intersects(double, double, double, double)
public boolean contains(double x,
double y,
double w,
double h)
QuadCurve2D entirely contains the specified
set of rectangular coordinates.
contains in interface Shapew - the width of the specified rectangular areah - the height of the specified rectangular areax - the x coordinate of the specified rectangular areay - the y coordinate of the specified rectangular area
true if the interior of the shape of this
QuadCurve2D entirely contains the specified
rectangluar area; false otherwise.Area,
Shape.intersects(double, double, double, double)public boolean contains(Rectangle2D r)
QuadCurve2D entirely contains the specified
Rectangle2D.
contains in interface Shaper - the specified Rectangle2D
true if the interior of the shape of this
QuadCurve2D entirely contains the specified
Rectangle2D; false otherwise.Shape.contains(double, double, double, double)public Rectangle getBounds()
QuadCurve2D.
getBounds in interface ShapeRectangle that is the bounding box of the shape
of this QuadCurve2D.Shape.getBounds2D()public PathIterator getPathIterator(AffineTransform at)
QuadCurve2D.
The iterator for this class is not multi-threaded safe,
which means that this QuadCurve2D class does not
guarantee that modifications to the geometry of this
QuadCurve2D object do not affect any iterations of
that geometry that are already in process.
getPathIterator in interface Shapeat - an optional AffineTransform to apply to the
shape boundary
PathIterator object that defines the boundary
of the shape.
public PathIterator getPathIterator(AffineTransform at,
double flatness)
QuadCurve2D.
The iterator for this class is not multi-threaded safe,
which means that this QuadCurve2D class does not
guarantee that modifications to the geometry of this
QuadCurve2D object do not affect any iterations of
that geometry that are already in process.
getPathIterator in interface Shapeat - an optional AffineTransform to apply
to the boundary of the shapeflatness - the maximum distance that the control points for a
subdivided curve can be with respect to a line connecting
the endpoints of this curve before this curve is
replaced by a straight line connecting the endpoints.
PathIterator object that defines the
flattened boundary of the shape.public Object clone()
clone in class ObjectOutOfMemoryError - if there is not enough memory.Cloneable
|
JavaTM 2 Platform Std. Ed. v1.4.2 |
||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||||
Copyright 2003 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms. Also see the documentation redistribution policy.