
WARD: A deterministic fluid model

C.-Y. Ho, Y.-C. Chan and Y.-C. Chen

Abstract: Queue management, bandwidth share and congestion control are very important to both
the robustness and fairness of the Internet. A new TCP-friendly router-based active queue manage-
ment scheme, called WARD, approximates the fair queueing policy. WARD is a simple packet
dropping algorithm with a random mechanism and discriminates against the flows which submit
more packets per second than is allowed by their fair share. By doing this, it not only protects trans-
mission control protocol (TCP) connections from user datagram protocol (UDP) flows, but also
solves the problem of competing bandwidth among different TCP versions, such as TCP Vegas
and TCP Reno. Furthermore, it is stateless and easy to implement, so WARD controls unresponsive
or misbehaving flows with a minimum overhead. In this article, we present a deterministic fluid
model of TCP/WARD system, and explain the UDP throughput behaviour with WARD. Also,
we prove that, provided the number of TCP flows is large, the UDP bandwidth share peaks at
(2e)21 ¼ 0.184 when UDP input rate is slightly larger than link capacity and drops to zero as
UDP input rate tends to infinity.
1 Introduction

Transmission control protocol (TCP) is believed to be
largely responsible for preventing congestion collapse
while the Internet has undergone dramatic growth in the
last decade. By using additive increase/multiplicative
decrease (AIMD) strategy, TCP helps a traffic source to
determine how much bandwidth is available in the
network and adjust its transmission rate accordingly.
Indeed, numerous measurements have consistently shown
that more than 90% of the traffic on the current Internet is
still TCP packets, which, fortunately, are congestion
controlled.
However, a lot of TCP implementations do not include

the congestion avoidance mechanism either deliberately
or by accident [1]. Moreover, different types of appli-
cations, especially multimedia and audio/video streaming
applications, are being increasingly deployed over the
Internet. Such applications utilise the user datagram pro-
tocol (UDP) instead, which does not employ end-to-end
flow and congestion control. Rather, the sending rate is
set by the application and normally no little or even no
consideration of network congestion is taken into
account during the transmission. As a result, UDP flows
aggressively use up more bandwidth than other TCP com-
patible flows.
Besides, even there is no UDP flow in the network, an

unfairness problem may still occur when the connections
with different TCP versions such as TCP Vegas [2] and
TCP Reno [3] coexist [4, 5] since their slow start, conges-
tion avoidance and fast retransmit mechanisms are different.

The Institution of Engineering and Technology 2007

doi:10.1049/iet-com:20060380

Paper first received 4th April 2006 and in revised form 4th February 2007

C.-Y. Ho and Y.-C. Chen are with the Department of Computer Science,
National Chiao Tung University, No. 1001, Ta Hsueh Road, Hsinchu City
30050, Taiwan, Republic of China

Y.-C. Chan is with the Department of Computer Science and Information
Engineering, National Changhua University of Education, No. 1, Jin-De
Road, Changhua City 50007, Taiwan, Republic of China

E-mail: cyho@csie.nctu.edu.tw
IET Commun., 2007, 1, (4), pp. 711–717
For example, TCP Vegas uses the difference between the
expected and the actual throughput, while TCP Reno
detects the packet loss as an indicator, to estimate the avail-
able bandwidth in the network, control the throughput and
avoid congestion. TCP Vegas achieves much higher
throughput and has a fairer and stabler bandwidth share
than TCP Reno does [2]. However, TCP Reno is an aggres-
sive control scheme in which each connection captures
more bandwidth until the transmitted packets are lost.
Meanwhile, TCP Vegas is a conservative scheme in
which each connection obtains a proper bandwidth. Thus,
the TCP Reno connections take bandwidth from the TCP
Vegas connections when they coexist [6].
Accordingly, it is necessary to have router mechanisms

to shield responsive flows from unresponsive or aggressive
flows, to effectively detect congestion in the network, to
achieve fair share among flows, and to provide a satisfac-
tory quality of service to all users. This has motivated
several active queue management schemes, e.g. [1,
7–14], that aim at penalising aggressive flows and ensur-
ing fairness. The scheme, WARD, of [14] is particularly
interesting in that it does not require any state information
and yet can provide a minimum throughput to TCP flows.
In this article, we provide an analytical model of WARD
that explains both the throughput behaviour and the feed-
back equilibrium of TCP/WARD system. Here, we focus
on a deterministic fluid model of TCP/WARD system
with UDP flows. The discussion of TCP not-friendly will
be addressed in the future work. Moreover, some simu-
lation results of different TCP mechanisms can be found
in [14].
The rest of this paper is organised as follows. Section 2

describes the WARD algorithm in detail. We present in
Section 3 a deterministic fluid model that explicitly
models the feedback equilibrium of TCP/WARD system.
In Section 4, by analysing the TCP/WARD model, we
prove that, provided the number of TCP flows is large, the
UDP bandwidth share peaks at (2e)21 ¼ 0.184, and drops
to zero as UDP input rate tends to infinity. The simulation
results are presented in Section 5. Finally, a summary of
this work is provided in Section 6.
711

2 WARD mechanism description

Suppose that a router maintains a single first in first out
(FIFO) buffer for queueing the packets of all the flows
that share an outgoing link. We describe an algorithm,
WARD, that differentially penalises unresponsive and
unfriendly flows. In addition, even though the idea of
WARD is similar to CHOose and Keep for responsive
flow (CHOKe) [1], the method of WARD is different
from CHOKe. The state, taken to be the number of active
flows and the flow ID of each parameter packets, is
assumed to be unknown to the algorithm. The only observa-
ble for the algorithm is the total occupancy of the buffer.
Before describing the WARD’s algorithm, we give a

weighted value to every position in the FIFO buffer. First,
the index of every position is divided by the FIFO buffer
size. Second, the weighted value of every position equals
the first number beyond a decimal point of above result.
For example, assuming the FIFO buffer size is 100, then
the weighted values of the 1st to 9th position are 0.0, the
10th to 19th are 0.1, . . ., the 90th to 99th are 0.9, and the
last position is 1.0. This is because the packets entering
the beginning or the head of a buffer means that there is
no congestion yet. On the other hand, the congestion may
occur when the buffer is becoming full.
When a packet k, which may be queued into the position

P, arrives at the buffer, we choose a uniformly distributed
random decimal number U, which is no larger than 1. If
U is bigger than the weighted value of position P, this
packet k is queued into the FIFO buffer. Otherwise, the
packet k is compared with two packets i and j which are ran-
domly selected from the FIFO buffer. First, if these three
packets have the same flow ID, they will be all dropped.
Second, the flow ID of either packet i or packet j is same
as that of the packet k, these two packets with same ID
will be both dropped. Third, if packets i and j have the
same flow ID, which is different from the flow ID of the
packet k, both packets i and j will be dropped too.
Otherwise, the randomly selected packets i and j are kept
in the buffer (in the same position as before) and the arriving
packet k is queued in the position P. Besides, in the sensitive
case, the buffer is full when the packet k comes in. WARD
will do the above steps except queueing the packet k in the
last step. A flow chart of the WARD’s algorithm is given in
Fig. 1.

Fig. 1 WARD algorithm
712
There are two reasons for choosing two packets randomly
from the FIFO buffer. (1) The FIFO buffer is more likely to
have packets belonging to a misbehaving flow and hence
these packets are more likely to be chosen for comparison.
(2) If we randomly choose more than two packets from the
buffer, the comparison of those packets will be complicate.
In addition, although the dropping rate of the unresponsive
flows for choosing more packets is higher (just little) than
that for choosing two packets, the responsive flows’ per-
formance and total throughput decrease according to simu-
lation results.
In short, there are two major differences between WARD

and CHOKe. One is that WARD is embedded in drop tail
and CHOKe is embedded in random early detection
(RED) [7]. Therefore the behaviour of two schemes to
deal with an incoming packet is not the same. The other
is that in order to protect congestion-sensitive flows from
congestion-insensitive or congestion-causing flows effec-
tively, WARD selects more packets queued in the buffer
to compare with an incoming packet than CHOKe does.
In the following sections, we now present a deterministic

fluid model of TCP/WARD system, explain the UDP
throughput behaviour with WARD, and demonstrate that
the proposed scheme improves the fairness of bandwidth
allocation based on the numerical results.

3 Model

We focus on the single bottleneck FIFO buffer where
packets are queued and drained at a rate of c packets per
second. The buffer is shared by N identical TCP flows and
a single UDP flow. All TCP flows have a common round
trip propagation delay of d seconds. Similar to the work
in [15], we assume the system is stable and model its equili-
brium behaviour.

3.1 Notations

Quantities (rate, backlog, dropping probability etc.) associ-
ated with the UDP flow are indexed by 0. Those associated
with TCP flows are indexed by i ¼ 1, . . . , N. These are
equilibrium quantities which we assume exist. We collect
here the definitions of all the variables and some of their
obvious properties.

B Physical buffer sise of a router.

bi Packet backlog from flow i, i ¼ 0, 1, . . . , N.

b Total backlog: b ¼
P

i¼0
N bi.

Pi The position that an incoming packet of flow i,
i ¼ 0, 1, . . . , N, is queued into. Moreover,
Pi ¼ bþ 1.

Wi The probability that an incoming packet of flow i,
i ¼ 0, 1, . . . , N, is compared with two packets
which are randomly selected from the FIFO
buffer by WARD

Wi ¼

10Pi

B

j k
10

Moreover, if Pi . B (buffer overflow), Wi ¼ 1.

hi
3 The probability that three packets of flow i

(including an incoming packet), i ¼ 0, 1, . . . , N,
are dropped by WARD

bi(bi � 1)

b(b� 1)
Wi
IET Commun., Vol. 1, No. 4, August 2007

hi
2 The probability that two packets of flow i (includ-

ing an incoming packet), i ¼ 0, 1, . . . , N, are
dropped by WARD

2bi(b� bi)

b(b� 1)
Wi

di
2 The probability that two packets of flow j (not

including an incoming packet), for some j = i,
are dropped by WARD

(b� bi)(bj � 1)

b(b� 1)
Wi

hi
1 The probability that an incoming packet of flow

i, i ¼ 0, 1, . . . , N, is dropped by WARD while
Wi ¼ 1, or is queued into a buffer when Wi = 1

(b� bi)(b� bi � bj)

b(b� 1)
Wi ¼ 1� h

3
i � h

2
i � d

2
i ,

if Wi ¼ 1

(b� bi)(b� bi � bj)

b(b� 1)
Wi ¼ Wi � h3i � h2i � d2i ,

otherwise

8>>>>>>><
>>>>>>>:

hi
0 The probability that an incoming packet of flow i,

i ¼ 0, 1, . . . , N, is queued into a buffer

(1�Wi)þ d2i ¼ d2i , if Wi ¼ 1

(1�Wi)þ h1i þ d2i ¼ 1� h3i � h2i , otherwise

�

pi Overall probability that a packet of flow i, i ¼ 0,
1, . . . , N, is dropped by WARD before it gets
through

3h3i þ 2h2i þ h
1
i , if Wi ¼ 1

3h3i þ 2h2i , otherwise

�
(1)

The explanation of (1) is provided later

xi Source rate of flow i, i ¼ 0, 1, . . . , N. The
spatial properties of WARD are insensitive to
the specific TCP algorithm. In general,
xi ¼ f (pi, t), i ¼ 1, . . . , N, for some function f
as a function of overall loss probability pi and
queueing delay t at equilibrium.

t Common queueing delay. Round-trip time is
dþ t.

It is important to keep in mind that x0 is the only indepen-
dent variable; all other variables listed above are functions
of x0, though this is not made explicit in the notations.
In the light of the work [15], we also use mi as a shorthand
for flow i’s normalised bandwidth share, mi U xi(12 pi)/c,
i ¼ 0, 1, . . . , N.

3.2 TCP/WARD model

A packet may be dropped, either on arrival due to WARD,
or after it has been admitted into the queue when a future
arrival, which may be from the same flow or not, triggers
a comparison. Let pi be the probability that a packet from
flow i is eventually dropped. To see why pi is related to
WARD dropping probability according to (1), note that
every arrival from flow i can trigger either 0 packet loss
from the buffer, or 1, 2, or 3 packet losses due to WARD.
In addition, the respective probabilities of these events are
described above. Hence, each arrival to the buffer is
IET Commun., Vol. 1, No. 4, August 2007
accompanied by an average packet loss of

3h3i þ 2h2i þ 1h1i þ 2d2i , if Wi ¼ 1

3h3i þ 2h2i þ 0h0i þ 2d2i , otherwise

�

We take the overall loss probability pi to be

3h3i þ 2h2i þ h
1
i , if Wi ¼ 1

3h3i þ 2h2i , otherwise

�

because di
2 is the probability that two packets of flow j, for

some j = i, are dropped by WARD. We now justify this
probability from another perspective.
Consider a packet of flow i that eventually goes through

the queue without being dropped. The probability that it is

not dropped on arrival is hi
0. Once it enters the queue, it

takes t time to go through it. In this time period, there are
on average t

P
m¼0
N xm packets from these (Nþ 1) flows

that arrive at the queue. We assume that the probability
(Si) that this packet is not dropped by WARD is

Si ¼ 1�
1

b

� �txi
1þ 2

1� bi
b(b� 1)

� �t PN

m¼0
xm�xi

� �
(2)

Hence, the overall probability that a packet of flow i
survives the queue is

1� pi ¼ h
0
i Si (3)

According to the work [15], when the link is fully utilised,
the flow throughputs sum to link capacity

XN
i¼0

xi(1� pi) ¼ c (4)

This completes the description of the model. Let z denote
the all dependent variables, which are defined above.
Similar to the work in Ref. [15], (1)–(4) and dependent
variables can be expressed as

F(z, x0) ¼ 0 (5)

This can be regarded as implicitly defining z in terms of x0.
The nonlinear equation (5) that models the TCP/WARD
system can be solved numerically by minimising the quadra-
tic cost. A direct search method [16] for multidimensional
unconstrained nonlinear minimisation implemented in
Matlab is used for this optimisation problem. The solution
is accurately validated with ns2 simulations; see Section 5.2.

4 Throughput analysis

In this section, we make two approximations to above
model. They allow us to readily derive the maximum
achievable UDP throughput and a proof that UDP through-
put approaches zero as x0 ! 1.

4.1 Approximations

4.1.1 First approximation: The first approximation is
that N is so large that a comparison of TCP packets trig-
gered by a packet arrival never yields a match. This
means that, once in the queue, a TCP packet will never be
dropped. Furthermore, since the TCP sources are identical,
those quantities all have the same value, and hence we will
refer to flow 1 as the generic TCP flow.
More importantly, this provides a simple relation

between queueing delay, throughput and backlog.
We assume that x1(12 p1) � x0(12 p0) � Nx1(12 p1).
The queueing delay is t. The number of TCP packets in
713

the buffer is b0þ Nb1 ¼ b. Then Little’s Theorem implies

t ¼
b0 þ Nb1

x0(1� p0)þ Nx1(1� p1)
�

b

(N þ 1)x0(1� p0)

�
b

(N þ 1)x0
([1� p0 � 1) (6)

x0h
0
0

c
¼

x0h
0
0

x0(1� p0)þ Nx1(1� p1)
�

x0h
0
0

2x0(1� p0)

’ x0h
0
0

2x0h
0
0

¼
1

2
(assuming h

0
0 ’ h

0
0S0) (7)

These are the key equations for throughput analysis.

4.1.2 Second approximation: The second approxi-
mation is that the total backlog b is large enough so that

1�
1

b
! 1, 1�

1

b

� �b
’ e�1 (8)

and

1þ 2
1� b0
b(b� 1)

¼
b2 � bþ 2� 2b0

b2 � b
! 1

Using (6) and (8) to rewrite S0, which is from (2), as

S0 ¼ 1�
1

b

� �tx0
1þ 2

1� b0
b(b� 1)

� �tNx1

� 1�
1

b

� �tx0
1þ 2

1� b0
b(b� 1)

� �tNx0

� 1�
1

b

� �(Nþ1)tx0

� 1�
1

b

� �b
¼ e�1 (9)

4.2 Maximum and asymptotic throughput

Recall that m ¼ x0(12 p0)/c denotes the UDP throughput
share, and let m�

0 ¼ maxm0 denote the maximum achievable
UDP share. We now estimate m�

0 and prove that m0

approaches 0 asymptotically as x0 ! 1.

Theorem 1: The maximum UDP bandwidth share is
m�
0 ¼ (2e)21 ¼ 0.184.

Proof: The UDP bandwidth share is

m0 ¼
x0(1� p0)

c
¼

x0h
0
0S0
c

(from (2))

�
x0h

0
0

c
e
�1 (from (9))

�
1

2
e�1 (from (7))

¼
1

2e
¼: m�

0 (10) A

The solution is accurately validated with ns2 simulations;
see Section 5.2.
The next result says that, as UDP rate x0 grows without

bound, its bandwidth share m0 drops to zero.

Theorem 2: As x0 ! 1, m0 ! 0.
714
Proof: b0 ¼ m0b ¼ x0(12 p0)b/c and b0 ¼ b2 Nb1, so we
could obtain 12 p0 ¼ c(b2 Nb1)/(x0b). Since b, c, Nb1 are
constants, we will obtain 12 p0 ¼ c(b2 Nb1)/(x0b) ! 0
as x0 ! 1. Therefore we will have p0 ! 1. This means
that, the UDP packets are almost dropped by WARD
before they get through. Hence, (b2 Nb1) ! 0. Now,
due to (b2 Nb1) ! 0, we have m0 ¼ x0(12 p0)/
c ¼ (b2 Nb1)/b ! 0. A

5 Simulation results

This section presents simulation results of WARD’s per-
formance in penalising misbehaving flows and thus approxi-
mating fair bandwidth allocation. We use the RED, CHOKe
and Drop Tail schemes for comparison. The mechanisms
that require full perflow state information are not included
here because of the practical limitations of scalability,
especially in high-speed routers that usually handle thou-
sands of flows. The simulations range over a spectrum of
network configurations and traffic mixes. Since the space
is limited, only some simulations validating the analysis sol-
ution are shown in this section. Other simulation results and
details, such as TCP sources with different versions and
TCP sources with different round-trip times, can be found
in [14].

5.1 Simulation setup

We use the network simulator ns2 [17] and the dumbbell
topology shown in Fig. 2 to assess the performance of
WARD, which will be compared with Drop Tail, RED,
and CHOKe. The congested link in this network is
between the routers R1 and R2. The link, with capacity of
1 Mbps, is shared by m TCP (with one version) and n
UDP flows. An end host is connected to the routers using
a 10 Mbps link, which is ten times the bottleneck link band-
width. All links have a small propagation delay of 1 ms, so
that the delay experienced by a packet is mainly caused by
the buffer delay rather than the transmission delay [1]. The
maximum window size of TCP is set to 500 segment such
that it does not become a limiting factor of a flow’s through-
put. The TCP flows are derived from FTP sessions which
transmit large sized files. The UDP hosts send packets at
a constant bit rate (CBR) of g Kbps, where g is variable.
The size of all packets are set to 1 KB.

5.2 Single unresponsive flow

To study how much bandwidth a single nonadaptive UDP
source can obtain when the routers use different queue

Fig. 2 Simulation topology
IET Commun., Vol. 1, No. 4, August 2007

management schemes, we set up the simulation with 32
TCP sources (Flow1 to Flow32) and 1 UDP source
(Flow33) in the network. The UDP source sends packets
at a rate of 2 Mbps, twice the bandwidth of the bottleneck
link, such that the link R1–R2 becomes congested.
To observe how WARD achieves fair bandwidth allo-

cation, the individual throughput of each of the 33 connec-
tions with buffer size 132 (4 packets per flow), along with
the numerical solution of TCP/WARD model, which is
described in Section 3.2, are plotted in Fig. 3. In addition,
the ideal fair share throughput is 30.3 Kbps. Although the
throughput of the UDP flow (Flow33) is still higher than
the rest of the TCP flows, it can be seen that each TCP is
allocated a bandwidth relatively close to its fair share.
Furthermore, the dropping probability of UDP flow is
about 96%. Since a packet may be dropped because of a
match or buffer overflow in WARD. A misbehaving flow,
which has a high arrival rate and a high buffer occupancy,
incurs packet dropping mostly due to matches. On the
other hand, the packets of a responsive flow are unlikely
to be matched, so they will be dropped mainly because of
buffer overflow.
The throughput of the UDP flow under different queue

management algorithms: Drop Tail, RED, CHOKe and
WARD, is plotted in Fig. 4. The minimum threshold in
the RED and CHOKe is set to 100, allowing on average
around 3 packets per flow in the buffer before a router
starts dropping packets. Following [7], we set the
maximum threshold to be twice the minimum threshold.
In addition, with no partiality, the physical buffer size of
each queue management is fixed at 300 packets. From
Fig. 4, we could clearly see that the Drop Tail and RED
gateways do not discriminate against unresponsive flows.

Fig. 3 Throughput per flow

Fig. 4 UDP throughput comparison
IET Commun., Vol. 1, No. 4, August 2007
The UDP flow takes away more than 85% of the bottleneck
link capacity and the TCP connections only obtain
the remaining 150 Kbps. Although CHOKe improves the
throughput of the TCP flows dramatically by limiting
the UDP throughput to 250 Kbps, the UDP throughput is
still much higher than each of TCP throughput. WARD
boosts the total TCP flows’ throughput from 150 Kbps (in
Drop Tail gateway) to at least 850 Kbps and limits UDP
throughput to at most 150 Kbps, which is only around
15% of the link capacity.
With the fixed buffer size (200), we vary the UDP arrival

rate g to investigate WARD’s performance under different
traffic load conditions. The simulation results are summar-
ised in Figs. 5 and 6, where the UDP’s and average
TCP’s throughput versus the UDP flow arrival rate are
plotted. The drop percentage of the UDP flow is also
shown in Fig. 5. From Fig. 5, when x0 ¼ 600 Kbps, we
could see that the maximum UDP bandwidth share is
0.1845 (¼184.5 Kbps/1 Mbps), which closes to the
numerical value ((2e)21) of (11). Moreover, from comput-
ing x0(12 p0) ¼ (2e)21c with x0 ¼ 600 Kbps and
c ¼ 1 Mbps, we could obtain p0 ’ 69%. This value is
near to the simulation result with same parameters in the
Fig. 5. From the plots, we can observe some characteristics
of WARD comparing with CHOKe. (1) When UDP arrival
rate is lower than fair share bandwidth, WARD protects the
throughput of UDP flow as best it can. For example, there
is no packets dropped from UDP flow while its arrival
rate is 10 Kbps. As the UDP arrival rate increases, the
drop percentage goes up as well. For instance, WARD
drops 21.9% of the UDP packets when its rate achieves
100 Kbps. Moreover, WARD drops almost all packets
(99.7%) while the arrival rate reaches 10 Mbps since the
probability of obtaining a matched UDP packet increases
with the increasing arrival rate of UDP flow. In other
words, the packets of UDP flow have higher probability to

Fig. 5 Performance under different traffic load

Fig. 6 Average TCP throughput under different traffic load
715

Table 1: Comparisons of WARD with different traffic load

Traffic load 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 –

TCPavg 29.30 27.35 26.51 25.63 24.71 24.50 24.55 23.90 24.03 24.3 24.10 –

UDPthr – 64.60 95.26 129.06 155.26 160.93 163.33 182.00 179.93 170.00 179.26 –

Pdrop (%) – 32.7 41.0 51.4 63.1 68.2 72.3 71.9 78.1 80.0 81.3 –
be matched. (2) The average throughput of TCP flows with
WARD algorithm is higher than that with CHOKe since the
drop percentage of UDP flow by using WARD is bigger
than CHOKe when its rate is higher than the fair share band-
width. In addition, we do not compare WARD with Drop
Tail and RED here because the comparisons of CHOKe,
RED and Drop Tail is already shown in [1].
Now, UDP source uses variable bit rate with Pareto

model and shape being 1.5 to generate the packets. In
addition, UDP source is an ON–OFF source. During ON
periods, UDP sends data at 2 Mbps. The average throughput
of UDP flow is from 0 Kbps to 1 Mbps, which is the link
capacity. The simulation results are shown in Table 1,
where the traffic load is defined as the average throughput
of UDP flow divided by 1 Mbps, TCPavg is average TCP
throughput (Kbps), UDPthr is UDP throughput (Kbps), and
Pdrop is drop percentage of the UDP flow, respectively.
No matter what traffic load is, WARD protects TCP flows
well as the best it can.
With the UDP sending packets at CBR of 2 Mbps, we

vary the buffer sise from 66 (2 times 33 flows) to 330 (10
times 33 flows) to study WARD’s performance. The
details of different conditions are shown in Table 2, where
TCPavg is average TCP throughput (Kbps), UDPthr is UDP
throughput (Kbps), and Pdrop is drop percentage of the
UDP flow, respectively. Although the average TCP flow’s
throughput is still close to the fair share throughput,
however, the UDP throughput increases a lot relatively.
The reason is that, when the buffer size becomes larger,
more UDP packets will be queued in the buffer even the
dropping probability of UDP packets increases.

Table 2: Performance of WARD with different buffer
sizes

Buffer size 66 132 200 264 330 –

TCPavg 28.87 28.61 27.02 25.15 24.2 –

UDPthr 65.26 82.46 131.33 193.8 225.53 –

Pdrop (%) 96.7 95.9 93.4 90.3 88.7 –

Table 3: Average throughput of TCP and throughput of
each UDP

2UDP TCP UDP1 UDP2 UDP3 UDP4

Thr 26.3 65.1 41.2 – –

SR – 2000 1000 – –

Pdrop (%) – 96.75 95.88 – –

4UDP TCP UDP1 UDP2 UDP3 UDP4

Thr 24.8 64.4 62.7 57.6 25.5

SR – 2000 1000 100 30

Pdrop (%) – 96.78 93.73 42.40 15.11
716
5.3 Multiple unresponsive flows

We follow the traffic model mentioned above (i.e., Fig. 2).
Recall that the first model includes 32 TCP flows (Flow1 to
Flow32) and 1 UDP flow (Flow33), we do not change any
variables here except the number of sources with TCP or
UDP flows. The second traffic model includes 31 TCP
flows (Flow1 to Flow31) and 2 UDP flows (one (Flow32)
sending rate is 2 Mbps and the other (Flow33) is 1 Mbps),
and there are 29 TCP flows (Flow1 to Flow29) and 4
UDP flows (Flow30 to Flow33) in the third traffic model.
The rates of the UDP flows are 2 Mbps, 1 Mbps,
100 Kbps and 30 Kbps, which is smaller than the ideal
fair share throughput, respectively. The results of these
two traffic models are shown in Table 3, where Thr is
throughput (Kbps) of a flow, SR is sending rate (Kbps) of
a UDP flow, and Pdrop is dropping probability, respectively.
In addition, the ideal fair share throughput is 30.3 Kbps.
From Table 3, we could see that the UDP flow with a low
rate is also treated fairly. In other words, the dropping prob-
ability is bigger when the sending rate becomes higher.
When the number of TCP and UDP flows change, the
WARD algorithm tries to achieve fair queueing. If we
concern the input rates of UDP flows, the performance is
really satisfactory.

5.4 Web-mixed experiments

Fig. 7 shows the dropping rate of web packets of Drop
Tail, RED, CHOKe and WARD for the web-mixed exper-
iments with different web traffic load and FTP flows. In
addition, the dropping rate of web packets is counted
from the number of dropping web packets divided by
the number of dropping packets. From this figure, we
could see that when the web traffic load is lower than
93%, WARD drops less web packets than other three
mechanisms do. In other words, short-lived TCP connec-
tions may have better protections from long-lived TCP

Fig. 7 Dropping rate of web packets under different web traffic
load
IET Commun., Vol. 1, No. 4, August 2007

flows with WARD while the web traffic load is lower than
93%. On the other hand, when the web traffic load is
higher than 93%, only the performance of Drop Tail is
better than that of WARD. Maybe this is because the
probability of choosing packets from the same web
source is growing. In order to further improve the per-
formance of WARD with high web traffic load, the
scheme will need to be fine-tuned in the future.

6 Conclusions

In this article, we introduce a packet dropping scheme,
called WARD. It aims to approximate fair queueing at a
minimal implementation cost. We also develop the feed-
back equilibrium of TCP/WARD model. We prove that
as UDP input rate increases, its bandwidth peaks at
(2e)21 ¼ 0.184 when UDP input rate is slightly larger
than link capacity, and drops to zero as UDP input rate
tends to infinity. Simulations demonstrate that it works
well in protecting congestion-sensitive flows from
congestion-insensitive or congestion-causing flows. Our
model applies only to the equilibrium behaviour of TCP/
WARD which presumes an asymptomatically stable
system. It is restricted to the simple case of homogeneous
TCP flows, a single UDP flow, a single drop candidate, at
a single bottleneck link. It would be interesting to extend
the analysis to a more general setting. Therefore further
work involves studying the performance and spatial charac-
teristics analysis of this algorithm under a wider range of
parameters, network topologies and real traffic traces,
obtaining more accurate theoretical models and insights,
and considering hardware implementation issues. Also,
more analysis and simulation of WARD with short-lived
TCP flows such as Web traffic will be discussed in our
future work.
IET Commun., Vol. 1, No. 4, August 2007
7 References

1 Pan, R., Prabhakar, B., and Psounis, K.: ‘CHOKe: A stateless active
queue management scheme for approximating fair bandwidth
allocation’. IEEE INFOCOM’2000, March 2000, vol. 2, pp. 942–951

2 Brakmo, L.S., and Peterson, L.L.: ‘TCP Vegas: end to end congestion
avoidance on a global internet’, IEEE J. Select. Areas Commun., 1995,
13, pp. 1465–1480

3 Jacobson, V.: ‘Modified TCP congestion avoidance algorithm’.
Mailing list, end-to-end-interest, April 1990

4 Ait-Hellal, O., and Altman, E.: ‘Analysis of TCP Vegas and TCP
Reno’. IEEE ICC’97, June 1997, vol. 1, pp. 495–499

5 Mo, J., La, R.J., Anantharam, V., and Walrand, J.: ‘Analysis and
comparison of TCP Reno and Vegas’. IEEE INFOCOM’99, March
1999, vol. 3, pp. 1556–1563

6 Lai, Y.C., and Yao, C.L.: ‘Performance comparison between TCP
Reno and TCP Vegas’. IEEE ICPADS’2000, July 2000, pp. 61–66

7 Floyd, S., and Jacobson, V.: ‘Random early detection gateways for
congestion avoidance’, IEEE/ACM Trans. Networking, 1993, 1, (4),
pp. 397–413

8 Lin, D., and Morris, R.: ‘Dynamics of random early detection’. ACM
SIGCOMM’97, September 1997, pp. 127–137

9 Anjum, F.M., and Tassiulas, L.: ‘Fair bandwidth sharing among
adaptive and non-adaptive flows in the internet’. IEEE
INFOCOM’99, March 1999, pp. 1412–1420

10 Ott, T.J., Lakshman, T.V., and Wong, L.H.: ‘SRED: Stabilised RED’.
IEEE INFOCOM’99, 1999, vol. 3, pp. 1346–1355

11 Feng, W., Kandlur, D.D., Saha, D., and Shin, K.G.: ‘Stochastic fair
blue: A queue management algorithm for enforcing fairness’. IEEE
INFOCOM’2001, 2001, pp. 1520–1529

12 Albuquerque, C., Vickers, B.J., and Suda, T.: ‘Network border patrol:
Preventing congestion collapse and promoting fairness in the internet’,
IEEE/ACM Trans. Networking, 2004, 12, (1), pp. 173–186

13 Mahajan, R., Floyd, S., and Wetherall, D.: ‘Controlling
high-bandwidth flows at the congested router’. IEEE ICNP’2001,
November 2001, pp. 192–201

14 Ho, C.-Y., Chan, Y.-C., and Chen, Y.-C.: ‘WARD: A TCP-friendly
stateless AQM scheme’. IET Commun. (accepted for publication)

15 Tang, A., Wang, J., and Low, S.H.: ‘Understanding CHOKe:
Throughput and spatial characteristics’, IEEE/ACM Trans.
Networking, 2004, 12, (4), pp. 694–707

16 Nelder, J.A., and Mead, R.: ‘A simplex method for function
minimisation’, Comput. J., 1965, 7, pp. 308–313

17 http://www.isi.edu/nsnam/ns/
717

