516

IEICE TRANS. COMMUN., VOL.E90-B, NO.3 MARCH 2007

[PAPER

TCP-Ho: A Congestion Control Algorithm with Design and

Performance Evaluation

Cheng-Yuan HO'?, Student Member, Yi-Cheng CHAN'", and Yaw-Chung CHEN', Members

SUMMARY A critical design issue of Transmission Control Protocol
(TCP) is its congestion control that allows the protocol to adjust the end-
to-end communication rate based on the detection of packet loss. However,
TCP congestion control may function poorly during its slow start and con-
gestion avoidance phases. This is because TCP sends bursts of packets
with the fast window increase and the ACK-clock based transmission in
slow start, and respond slowly with large congestion windows especially
in high bandwidth-delay product (BDP) networks during congestion avoid-
ance. In this article, we propose an improved version of TCP, TCP-Ho, that
uses an efficient congestion window control algorithm for a TCP source.
According to the estimated available bandwidth and measured round-trip
times (RTTs), the proposed algorithm adjusts the congestion window size
with a rate between exponential growth and linear growth intelligently. Our
extensive simulation results show that TCP-Ho significantly improves the
performance of connections as well as remaining fair and stable when the
BDP increases. Furthermore, it is feasible to implement because only send-
ing part needs to be modified.

key words: congestion control, TCP, slow start, congestion avoidance,
transport protocol

1. Introduction

With the fast growth of Internet traffic, we need a congestion
control scheme that can efficiently utilize the network’s re-
sources. TCP is the most popular transport protocol for the
current Internet because it provides a reliable data transport
between two end hosts of a connection as well as controls
the connection’s bandwidth usage to avoid network conges-
tion.

The essential strategy of TCP is sending packets to the
network without a reservation and then reacting to observ-
able events occurred. Original TCP is officially defined in
[1]. It has a simple sliding window flow control mecha-
nism without any congestion control. After observing a se-
ries of congestion collapses in 1980’s, Jacobson introduced
several innovative congestion control mechanisms into TCP
in 1988. This TCP version, called TCP Tahoe [2], includes
the slow start, additive increase and multiplicative decrease
(AIMD), and fast retransmit algorithms. Two years later,
the fast recovery algorithm was added to Tahoe to form
a new TCP version called TCP Reno [3]. Reno is cur-

Manuscript received September 1, 2005.
Manuscript revised March 8, 2006.

"The authors are with the Department of Computer Science,
National Chiao Tung University, No. 1001, Ta Hsueh Road,
Hsinchu City, 30050, Taiwan.

""The author is with the Department of Computer Science and
Information Engineering, National Changhua University of Edu-
cation, No. 1, Jin-De Road, Changhua City, 50007, Taiwan.

a) E-mail: cyho@csie.nctu.edu.tw

DOI: 10.1093/ietcom/e90-b.3.516

rently the dominating TCP version deployed in the Internet.
TCP Reno can be thought as a reactive congestion control
scheme. It uses packet loss as an indicator for congestion.
In order to probe the available bandwidth along the end-to-
end path, TCP congestion window will be increased until a
packet loss is detected, at which point the congestion win-
dow is halved and a linear increase algorithm will take over
until further packet loss is experienced. It is known that
TCP Reno may periodically generate packet loss by itself
and can not efficiently recover multiple packet losses from
a window of data [4]-[8]. Moreover, the AIMD strategy
of TCP Reno leads to periodic oscillations in the aspects of
congestion window size, round-trip delay, and queue length
of the bottleneck node [9]-[14].

To alleviate the performance degradation problem of
packet loss, many researchers attempted to refine the fast
recovery algorithm embedded in TCP Reno. New propos-
als includes TCP NewReno [4], SACK [5], FACK [6], Net
Reno [7], and LT [8]. All these algorithms bring perfor-
mance improvement for a connection after a packet loss
is detected. To combat the inherent oscillation problem
of Reno, many congestion avoidance mechanisms are pro-
posed. These works include DUAL [9], CARD [10], Tri-
S [11], Packet-Pair [12], TCP Vegas [13], and TCP Santa
Cruz [14]. Among these creative mechanisms, TCP Vegas
is a notable approach because it can successfully avoid the
congestion in the network.

Although TCP has several implementation versions
which intend to improve network utilization, TCP still suf-
fers problems that inhere in its congestion control algorithm.
For example, the sender has no prior knowledge regard-
ing the available bandwidth on the networks, this leads to
the abrupt transition of congestion window with exponen-
tial growth and transmission of highly bursty traffic from the
source, and it in turn would cause buffer overflow at the bot-
tleneck link during the slow start phase. When the per-flow
product of bandwidth and latency increases, the congestion
avoidance scheme of TCP becomes inefficient. This will be
problematic for TCP as the bandwidth-delay product (BDP)
of Internet continues to grow. All these problems may pre-
vent TCP from achieving a success.

In this work, we propose a modified congestion con-
trol mechanism for TCP (abbreviated as TCP-Ho hereafter).
By estimating the available bandwidth of the bottleneck link
and measuring the RTT for every packet, TCP-Ho updates
the congestion window size with a rate between exponen-
tial growth and linear growth intelligently, so that a smooth

Copyright © 2007 The Institute of Electronics, Information and Communication Engineers

HO et al.: A CONGESTION CONTROL ALGORITHM WITH DESIGN AND PERFORMANCE EVALUATION

transmission can be achieved. Furthermore, TCP-Ho inte-
grates slow start and congestion avoidance phases into one
fundamental mechanism. We demonstrate the effectiveness
of the proposed algorithm based on the results of analysis
and simulation. Moreover, the implementation of TCP-Ho
is simple because only the sending part requires modifica-
tions, thus it facilitates incremental deployment in today’s
Internet.

The remainder of this paper is organized as follows.
Related work is described in Sect. 2. Section 3 explains our
motivation and goals for using the TCP-Ho mechanism and
describes it in detail. The mathematical analysis of TCP-Ho
is presented in Sect.4. Section 5 demonstrates the simula-
tion results. Lastly, we conclude this work in Sect. 6 with a
summary of the results and highlights of the future works.

2. Related Work

Several studies have been made to improve the connection
performance over Internet. These approaches can be divided
into two categories. One needs some changes or modifica-
tions in the slow start phase such as Smooth-start [15], y
Selection [16], Smooth Slow Start [17], and Limited Slow-
Start [24]. The other varies the congestion avoidance mech-
anism, for example, HighSpeed TCP [18], Scalable TCP
[19], XCP [20], DUAL [9], CARD [10], and FAST TCP
[25].

2.1 Modifications in Slow Start Phase

The first approach (Smooth-start) is to set the maximum
slow start threshold to avoid buffer overflow and limit the
sending rate, but it not only reduces the throughput of a
sender but also sets the maximum slow start threshold to
64 kbytes. In a large BDP network, this value may be too
small and causes TCP switching to congestion avoidance
phase early. On the other hand, this fixed slow start thresh-
old may be of no use in a small BDP network. Another
way (y Selection) is selecting y dynamically to suit various
kinds of BDP networks, but it needs to estimate the available
bandwidth of the network at the steady state. However, to
estimate the available bandwidth based on end-to-end con-
gestion avoidance mechanism on a global internet is difficult
and this mechanism is only for TCP Vegas.

Next, Smooth Slow Start uses a smooth slow start al-
gorithm to reduce burst data transfer. However, it uses
200 msec timer interrupt to control data transfer and it only
fits some network topology. Furthermore, using timer inter-
rupt increases the overhead of the operating system. Over-
all, these proposed mechanisms only work well in some net-
work models, and the burstiness problem is still not solved
completely. The last method (Limited Slow-Start) intro-
duces a parameter, max_ssthresh which is smaller than slow
start threshold (SSTHRESH). During slow start, the sender
doubles its congestion window when the congestion win-
dow size (CWND) is not greater than max_ssthresh. If the
value of CWND is between max_ssthresh and SSTHRESH,

517

the congestion window is increased by 1/2 maximum seg-
ment size (MSS) or less for each arriving acknowledgement
(ACK). Otherwise, the sender leaves its slow start phase and
goes into the congestion avoidance phase. Although Lim-
ited Slow-Start algorithm can reduce the number of drops, a
proper value of max_ssthresh is hard to decide. The authors
recommend a sender to set the max_ssthresh value at 100
MSS. It is obvious that a fixed value may be not adapted to
varied network topologies.

2.2 Congestion Avoidance Schemes

HighSpeed TCP involves a subtle change in the congestion
avoidance response function to allow connections to capture
available bandwidth more readily. Scalable TCP is similar
to HighSpeed TCP in that the congestion window response
function for large windows is modified to recover more
quickly from loss events and hence reduce the penalty for
probing the available bandwidth. The same as TCP Reno,
both HighSpeed TCP and Scalable TCP use packet loss as
an indication for congestion. This causes periodic oscilla-
tions in the congestion window size, round-trip delay, and
queue length of the bottleneck node. These drawbacks may
not be appropriate for emerging Internet applications. XCP
is a new transport protocol designed for high BDP networks.
It separates the efficiency and fairness policies of conges-
tion control, and enables connections to quickly make use
of available bandwidth. However, because XCP requires all
routers along the path to participate, deployment feasibility
is a concern.

The window in Jain’s CARD approach is increased by
one packet size and decreased by one-eighth based on the
gradient of delay-window curve, which is used to evaluate
the optimal point of the system’. The performance of the
window control mechanism was studied with a determinis-
tic simulation model of a connection in a wide-area network.
DUAL scheme defines one optimal point with queue length
and uses the corresponding delay as the congestion signal.
The congestion window normally uses fine-tuning to adjust
window size, namely increases by 1/CWND for each ACK
received. The algorithm decreases the congestion window
by one-eighth if the current RTT is greater than the average
of the minimum and maximum RTTs observed so far for
every two RTTs. If a timeout is detected, the algorithm as-
sumes that substantial traffic increase and severe congestion
have occurred. It uses quick-turning to reduce the window
size, similar to TCP Tahoe timeout action.

FAST TCP incorporates multiplicative increase if the
buffer occupied by the connection at the bottleneck is far
less than some pre-defined threshold @ and switch to lin-
ear increase if it is near «. Then, FAST tries to maintain
the buffer occupancy around @ and reduces sending rate if
delay is further increased. Theoretical analysis and experi-
ments show that FAST TCP has better properties than pure

"Note that the window changes during every adjustment, that
is, it oscillates around its optimal point.

518

loss-based approaches, such as higher utilization, less self-
induced packet losses, faster convergence speed, better RTT
fairness and stabilization. However, FAST may not be able
to obtain fair share when it is competing with loss-based ap-
proaches like TCP Reno. Moreover, how to set a suitable o
value for a FAST source may be another possible problem
since the « is a function of buffer size and the number of
concurrent connections, which are generally unknown in a
real world network.

3. TCP-Ho
3.1 Motivation

There are some problems of TCP in the slow start and
congestion avoidance phases. TCP Reno takes packet loss
as an indiction of congestion. In order to probe available
bandwidth along the end-to-end path, it periodically creates
packet losses by itself. It is well-known that TCP Reno may
feature poor utilization of bottleneck link under high BDP
networks. Since TCP Reno uses AIMD algorithm to ad-
just its window size, when packet losses occur, it cuts the
congestion window size to half and linearly increases the
congestion window until next congestion event is detected.
The additive increase policy limits TCP’s ability to acquire
spare bandwidth at one packet per round. The BDP of a sin-
gle connection over very high bandwidth links may be thou-
sands of packets, thus TCP Reno might waste thousands of
rounds to ramp up to full utilization of the link. For ex-
ample, the time of a connection to converge to an optimal
bandwidth value can take the order of minutes in a high
BDP network which with 1 Gbps available bandwidth and
100 ms RTT. Thus, if TCP’s convergence mechanism is too
sluggish, TCP will eventually become a performance bottle-
neck itself.

Unlike TCP Reno which uses binary congestion signal,
packet loss, to adjust its window size, TCP Vegas adopts a
more fine-grained signal, queuing delay, to avoid conges-
tion. Although it successfully detects network congestion
in the early stage, the burstiness causes TCP Vegas to tend
to prematurely stop the exponentially increasing slow start
phase and enter the slower congestion avoidance phase un-
til it reaches its equilibrium congestion window size, espe-
cially in high BDP networks. As a result, a new TCP Vegas
connection may experience a very long transient period and
throughput suffers. In addition, the availability of network
resources and the number of competing users may vary over
time unpredictably. It is sure that the available bandwidth
does not vary linearly. Since TCP Vegas adjusts its con-
gestion window linearly in the congestion avoidance phase,
this prevents TCP Vegas from quickly adapt to the changing
environments.

3.2 The Scheme of TCP-Ho

Doubling the congestion window size during slow start

IEICE TRANS. COMMUN., VOL.E90-B, NO.3 MARCH 2007

512

448 / -+- Exponential growth

i
384 7 —— Stable growth

= Linear growth

320

cwnd (packet)

Time

Fig.1 The growth of congestion window size.

causes the traffic burstiness in the network and a linear in-
crease in the congestion avoidance phase limits a sender’s
ability to ramp up to full utilization of the link; therefore, in
TCP-Ho, we increase the congestion window between expo-
nential growth and linear growth. We call this growth Stable
growth as in Fig. 1. Furthermore, the ‘quick shift’ phase is
introduced into our proposed mechanism instead of using
the slow start and congestion avoidance phases. In other
words, we combine slow start and congestion avoidance to
quick shift. The details of TCP-Ho including the quick shift
phase and Stable growth are as follows.

TCP-Ho’s window adjustment algorithm consists of
two phases: quick shift (QS), and fast retransmit and fast
recovery (FF). The congestion window is updated based on
the currently executing phase. Before describing the al-
gorithm of TCP-Ho to adjust the congestion window, we
have to define some parameters and terms. Let ‘incr’ be
the current window increment, with value O at the begin-
ning of a new connection or after a retransmission timeout,
and ‘maxincr’ be a dynamic value representing the maxi-
mum value of the congestion window increment. The min-
imum RTT and the maximum RTT measured from pack-
ets with one round are called ‘Minimal RTT’ and ‘Maxi-
mal RTT’ respectively. It is because the minimum RTT in
this round does not necessarily equal the minimum of ever
measured round-trip times. Similarly, the maximum RTT
in this round does not necessarily equal the maximum of
ever measured round-trip times. ‘Prior’ means the (n — 2)th
round’s and ‘Current’ represent the nth round’s. For ex-
ample, Current Maximal Throughput (CMaT) and Current
Minimal Throughput (CMiT) are the maximal throughput
and minimal throughput in the nth round, and Prior Max-
imal Throughput (PMaT) and Prior Minimal Throughput
(PMiT) are the maximal throughput and minimal through-
put in the (n —2)th round, where Maximal Throughput is the
CWND divided by Minimal RTT and Minimal Throughput
is the CWND divided by Maximal RTT. In addition, CMiT
< CMaT and PMiT < PMaT. In order to record the compari-
son result of CMaT, CMiT, PMaT, and PMiT at the last time,
we also create a parameter ‘status,” whose default value is 1.
Table 1 shows the meanings of the status’ value.

During the quick shift phase, TCP-Ho does not con-
tinually increase the congestion window. Instead, it tries to

HO et al.: A CONGESTION CONTROL ALGORITHM WITH DESIGN AND PERFORMANCE EVALUATION

Table1 The meanings of the status’ values.
status’ value comparison situation
PMaT < CMiT
CMaT < PMiT

PMIT < CMiT and PMaT < CMaT
CMIT < PMIT and CMaT < PMaT
Otherwise

O O N

Table 2 Comparison results, two steps, status’ values, and correspond-
ing motivations.

comparison steps status
results values
PMaT < CMiT One (1)lor3

corresponding
motivations

‘incr’ +=1.
If ‘incr’ > ‘maxincr,
‘maxincr’ = ‘incr’

2) o/w ‘maxincr’ =1,

& ‘incr’ = 1.

Two CWND += ‘incr,’
& ‘status’ = 1.
‘maxincr’ -= 1,
& ‘maxiner’ > 1.

CMaT < PMiT One 2o0r4

Two CWND -= ‘maxincr,
& CWND > 2,
‘incr’ =0,
& ‘status’ = 2.
PMIT < CMIT & One (I)lor3 ‘incr’ [= 2,
& ‘incr’ > 1.
PMaT < CMaT (2) o/w ‘incr’ = 1.
Two CWND += ‘incr,
& ‘status’ = 3.

CMIT < PMIT & One 2or4 ‘maxincr’ [= 2

CMaT < PMaT & ‘maxiner’ > 1.
Two CWND -= ‘maxincr,
& CWND > 2,
‘incr’ =0,
& ‘status’ = 4.
Otherwise 1-5 ‘maxincr’ =0,
‘incr’ =0,
& ‘status’ = 5.

detect relative congestion by comparing CMiT and CMaT
with PMiT and PMaT. We do not increase congestion win-
dow size in the first round, which is the beginning of a new
connection and/or after a retransmission timeout, because
we have no idea about the available bandwidth in the end-
to-end path. When a sending source increases (or decreases)
its congestion window at the ith round, the influence to the
network can be detected at the (i + 2)th round. As a result,
from the second round, we adjust the increase (or decrease)
amount every other round (if it is possible). In other words,
the increase (or decrease) amounts in the ith and (i + 1)th
rounds will be the same. The increase (or decrease) amount
and CWND is updated according to the following descrip-
tions, as briefly presented in Table 2. After comparing CMiT
and CMaT with PMiT and PMaT, there are two steps for ad-
justing increase or decrease amount and CWND. (1) PMaT
is smaller than CMiT: Step one, when ‘status’ value equals
1 or 3, ‘incr’ is increased by one and set the ‘maxincr’ to
‘incr’ if ‘incr’ is bigger than ‘maxincr’; otherwise, set the
value of ‘incr’ and ‘maxincr’ to 1. Step two, CWND is in-
creased by the ‘incr’ value and set ‘status’ to 1; (2) CMaT

519

START Coarse-grained Timeout/

\ Idle

Duplicate ACK

New ACK{ Triple Duplicate ACK/
COérse—gralned Fine-grained Timeout
Timeout/Idle

Fig.2 Phase transition diagram of TCP-Ho.

is smaller than PMiT: Step one, while ‘status’ value equals
2 or 4, ‘maxincr’ is decreased by one and ‘maxincr’ is not
smaller than 1. Step two, CWND is decreased by the ‘max-
incr’ value and CWND is not smaller than 2, let ‘incr’ to
0, and set ‘status’ to 2; (3) PMIT is smaller than CMiT and
PMaT is smaller than CMaT: Step one, when ‘status’ value
equals 1 or 3, ‘incr’ value is halved and ‘incr’ is not smaller
than 1; otherwise, set the value of ‘incr’ to 1. Step two,
CWND is increased by the ‘incr’ value and set ‘status’ to 3;
(4) CMIT is smaller than PMiT and CMaT is smaller than
PMaT: Step one, while ‘status’ value equals 2 or 4, ‘max-
incr’ is halved and ‘maxincr’ is not smaller than 1. Step two,
CWND is decreased by the ‘maxincr’ value and CWND is
not smaller than 2, let ‘incr’ to 0, and ‘status’ to 4; and (5)
otherwise, set the value of ‘incr’ and ‘maxincr’ to 0, and
‘status’ to 5.

This approach for increasing and decreasing conges-
tion window is more efficient comparing with TCP Reno and
TCP Vegas, and the effect can be observed by both simula-
tion and analysis. Since we focus on the congestion control
and flow control in this work, the fast retransmit and fast
recovery of TCP-Ho are same as those of TCP Vegas. In ad-
dition, in the FF phase, we reset all parameters used in the
QS phase to their default values. Figure 2 shows the phase
transition diagram of TCP-Ho. A connection begins with
the QS phase. The window-adjustment phase transition is
owing to the specific events as depicted along the edges.

In summary, TCP-Ho transmits one packets when re-
ceiving one ACK, and it sends an extra packet to increase
the congestion window size after getting two or more ACKs.
Through this method, we smooth out the burstiness with-
out using timer. It is because comparing with congestion
window, the increment is always small. Thus, TCP-Ho re-
duces the burstiness in transmission. Furthermore, TCP-Ho
adjusts its congestion window size with Stable growth ac-
cording to the difference between measured available band-
widths in the mth and (m + 2)th rounds. Therefore, the
throughput of TCP-Ho is much larger and grows faster than
TCP Reno and TCP Vegas.

4. Numerical Analysis

In this section, we present behavior analysis of TCP Vegas
and TCP-Ho. A simple case is considered when a single
connection tries to fill up an empty network with N links
connecting the source and the destination. Figure 3 shows

520

@ Rl RZ N Rnl

Fig.3 Network topology for analysis.

the network topology for analysis. We denote the transmis-
sion rate of N links (in packets/s) as X;, i = 1,...,N, and the
total round-trip propagation delay of the route path (in sec-
onds) as 7. Similar to the work in [16], we assume that there
is one bottleneck in the route path and X; < X, < ... < Xy.
Since X, is the smallest transmission rate (i.e., link 1 be-
haves as the bottleneck link), we let u be equal to X;.
The un-congested BDP of this network is then given by ud
where

N
d=r+(1+a)zi, (1)
o X

with a being the ACK size relative to the data packet size.
Without loss of generality, we assume that a is much smaller
than the data packet size, so we use 1 to approximate 1+a
(e.d=17+3Y, XL[).

Throughout our analysis, we assume a fluid model and
the source always has a packet to transmit, the buffer sizes
in routers are large enough so that packet loss can be ig-
nored when analyzing the behavior of TCP Vegas and TCP-
Ho. Moreover, the ith round starts with the transmission of
W; packets where W; is the size of congestion window in
this round. The ith round ends when the source receives the
ACK of the first packet in this round, then the source starts
transmitting a new packet of the next round. Suppose that
there is no congestion in ACK path. The mth round-trip time
is named ‘conspicuous round-trip time’ when the “steady
throughput” of a sender reaches the available bandwidth at
the first time. In the following subsections, we derive math-
ematically the conspicuous round-trip time for TCP Vegas
and TCP-Ho. Then we ascertain the better transient perfor-
mance for TCP-Ho by examples and simulations.

4.1 TCP Vegas

In this subsection, we derive the conspicuous round-trip
time for TCP Vegas. Table 3 shows the value of W; and z; at
the ith round if A is smaller than y, where z; is the increase
amount at the ith round and

{ W;=2%,7=0, ifiisoddor0
W;=z =23, if i is even.

Vegas doubles its congestion window every other
round. Assuming that in the /th round, A is smaller than
v at the last time and W, is the congestion window size,
where [is an integer in Table 3. According to the work
[16], the BaseRTT, newly measured RTT, and the conges-
tion window size W, from which Vegas gets out of slow start

phase are given by d, D = d + 2%’, and W, > LV ';rsﬂd,

respectively. In an actual Vegas implementation, D is the

IEICE TRANS. COMMUN., VOL.E90-B, NO.3 MARCH 2007

Table 3 The congestion window size and the increase amount for Vegas
at the ith round.

ith 0 1 2 3 4 5 6 7 8 9 10

w, 2 2 2 4 4 8 8 16 16 32 32

z 0 0 2 0 4 0 8 0 16 0 32

Table 4 The congestion window size and the increase amount for TCP-
Ho at the ith round.

ith 0 1 2 3 4 5 6 7 8 9 10

w, 2 2 2 3 4 6 8 11 14 18 22

z 0 O 1 1 2 2 3 3 4 4 5

smoothed RTT rather than the RTT of a specific packet.
Thus, D for the last packet is the average of the actual RTTs
of all packets in the same round, i.e., D=d+W;/4u, rather
than D=d+W,/2u, as given above. By using the smoothed

RTT, we have W, > Lryiriond ‘l;mﬂd, and TCP Vegas changes the

slow start phase to congestion avoidance in the /th round,
where [> 21og,(1+ 4/1 + 16ud)—1 because [is even. Then,
it takes [ud — 7W;/8] rounds to the conspicuous round-trip
time; therefore, at the

(I+ Tud =TW;/8])th 2)

round, TCP Vegas attains the available bandwidth.

4.2 TCP-Ho

In this subsection, we derive the conspicuous round-trip
time for TCP-Ho. Table 4 shows the value of W; and z; at
the ith round when PMaT < CMiT where

W; = (i2 —-2i+9)/4,z;=({-1)/2, ifiisodd
W= -2i+8)/4,z = i/2, otherwise.

Moreover, z;_1 +z; =i— 1, fori > 1.

TCP-Ho increases its congestion window with Stable
growth every other round. Moreover, with Stable growth,
the extra packet” will be transmitted to the network when
two or more ACKs of the previous round are received. For
example, at the twelfth round in Table 4, TCP-Ho sends an
extra packet when it receives the sixth ACK, then it trans-
mits another extra packet after five ACKs (i.e., the eleventh
ACK is received). Since in this round, TCP-Ho increases
% packet to the congestion window size whenever an ACK
of the previous round is received, and sends an extra packet
to the network when the additional value is no smaller than
one (as % X6 = % > 1). In the light of the work [16],
the spacing between each ACK of the previous round is 1/ u
seconds because u is the smallest transmission rate (and we
assume that there is no congestion along the ACK path).
Assuming that the kth round is the conspicuous round-trip
time, then the congestion window size is Wy in this round,

"When a source receives an ACK of the previous round, it
transmits two packets to the network. The difference between two
packets and one packet is called the extra packet. For example,
in Table 4, the source transmits two packets when it receives the
second ACK at the fourth round.

HO et al.: A CONGESTION CONTROL ALGORITHM WITH DESIGN AND PERFORMANCE EVALUATION

the last packet will see z;—; (= % — 1) packets waiting
ahead of it in the sender queue. However, for the queues
at other nodes along the connection, the last packet will see
no packet from the same connection in the queues because
1/X; > 1/X, > ... = 1/Xy. Therefore, this last packet ex-
periences the highest RTT. The minimal (or minimum) RTT
and newly measured RTT are given by d and

D=d+ 3oy k4 3)

u 2u

respectively. TCP-Ho changes its way to increase the con-
gestion window size when

Wi < Wi

D d
By combining Eq. (3) and Eq. (4), we could get the follow-
ing formula:

: “4)

k> — 10k* + (40 — 8ud)k + (16ud — 64) > 0. (5)

We could get k by Cardan’s formula [21],[22] because
Eq. (5) is a cubic equation, which is the closed-form solu-
tion for the roots of a cubic polynomial.

kz4(i/Q+3\/13+i/Q—3\/F), (6)

where Q = 18ud + 8 and P = 21 — 18ud + 96u>d>. Thus, we
solve the value of conspicuous round-trip time k and TCP-
Ho reaches the available bandwidth with steady throughput
in this round.

4.3 Analysis with Examples

We use three examples to quantify our analysis and show
that the performance of TCP-Ho is more efficient than TCP
Vegas. In the following examples, the packet size = 1 kbytes
and d=0.1 sec.

Example 1: u=187.5 packets/s (equals 1.5 Mbps.)

In TCP-Ho, we will get k > 14.8 by Eq. (5). Since k
is even, k = 16. Thus, TCP-Ho takes 1.6 seconds to the
available bandwidth. By using the values of u and d to the
Eq. (2), we can get that the conspicuous round-trip times of
TCP Vegas is 1.3 seconds. In addition, from simulations,
the actual conspicuous round-trip times of TCP Vegas and
TCP-Ho are 1.5 seconds and 1.5 seconds respectively.

Example 2: u=2500 packets/s (equals 20 Mbps.)

Similar to Example 1, by using the values of u and d
to the Eq. (2) and Eq. (5), we can get that the conspicuous
round-trip times of TCP Vegas and TCP-Ho are 20.7 sec-
onds and 3.4 seconds, respectively. In addition, from simu-
lations, the actual conspicuous round-trip times of TCP Ve-
gas and TCP-Ho are 20.9 seconds, and 3.8 seconds respec-
tively.

Example 3: 4=6250 packets/s (equals 50 Mbps.)

Similarly, by using the values of and d to the Eq. (2)
and Eq. (5), we can get that the conspicuous round-trip times

521

of TCP Vegas and TCP-Ho are 58.1 seconds and 4.7 sec-
onds, respectively. In addition, from simulations, the actual
conspicuous round-trip times of TCP Vegas and TCP-Ho are
58.4 seconds and 5.1 seconds respectively.

From the above examples, we could see that the dif-
ference between analysis results and simulation results are
small, and the value of TCP-Ho’s conspicuous round-trip
time is smaller than that of TCP Vegas. Thus, the utilization
of bandwidth in TCP-Ho is more efficient than that in TCP
Vegas.

5. Performance Evaluation

In this section, we compare the performance of TCP-Ho
with TCP Reno, TCP Vegas, and FAST TCP' by using the
network simulator ns-2 [26]. We show the simulation results
for the basic behavior of a single source, and the fairness and
friendliness among the competing connections with same or
different TCP versions. The sizes of data packets and ACKs
are 1 kbytes and 40 bytes respectively. To ease the compar-
ison, we assume that the sources always have data to send.
The network configuration for the simulations is shown in
Fig.4. Sources, destinations, and routers are expressed as
S, D;, and R; respectively. A source and a destination with
the same subscript value represent a traffic pair. The band-
width and propagation delay are 1 Gbps and 1 ms for each
full-duplex access link, and X Mbps and Y ms for the full-
duplex connection link between R; and R,. The X and Y are
set based on the need of simulation scenarios.

5.1 Basic Behavior

In this subsection, we compare the basic behavior among
TCP Reno, TCP Vegas, FAST TCP, and TCP-Ho in the as-
pects of convergence time [16], congestion window size,
and throughput. In the following simulation scenarios, the
objectives are to explore how fast for a new connection can
ramp up to equilibrium and how fast a connection can con-
verge to a steady state as the available bandwidth is changed.

5.1.1 A New Connection

In this simulation, the buffer size of a router is 100 pack-
ets. We use the convergence time with different BDPs (from

Ims

X Mbps, Y ms

Fig.4 Network configuration for the simulations.

"The value of @ for FAST TCP is 100 in simulations.

522
700
QO 650
E 600 -
D 550F
500
O 450t
8 400 |
O 350
O 300t
E—)I 250 F —®— Reno
:> 200 F ——Vegas
g 150 F - TCP-Ho
o oo
50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BDP (Kb)

Fig.5 The convergence time with different BDPs of communication net-
works.

50000

—-Reno
- Vegas
—+~ FAST TCP

40000
30000

20000

Throughput (Kbps)

o
10000f |

Time (s)

Fig.6 Throughput comparison with 50 Mbps bottleneck bandwidth, and
48 ms link propagation delay.

150 Kb to 5000 Kb) of communication networks to com-
pare TCP-Ho with TCP Reno and TCP Vegas. The result
is shown in Fig. 5. FAST’s state is unstable due to the large
buffer size requirement, so the convergence time of FAST
is not presented here. We can see that the convergence
time of TCP-Ho grows slowly (or linearly) while BDP in-
creases quickly. On the other hand, the convergence time of
both Reno and Vegas climb up very fast. For instance, at
5000 Kb, the convergence time of Reno is more than 12.5
times of TCP-Ho and, similarly, the convergence time of
Vegas is about 11 times of TCP-Ho. In addition, Fig. 6 de-
picts the throughput comparison with Reno, Vegas, FAST
and TCP-Ho when the bottleneck bandwidth and link prop-
agation delay are 50 Mbps and 48 ms respectively.

By observing the throughput shown in Fig. 6, we can
find that the transient period for a new Reno or Vegas con-
nection is quite long. For example, TCP Reno takes about 66
seconds to reach the available bandwidth (48 Mbps); how-
ever, it halves both the congestion window size and through-
put in the 76.2th second because its AIMD algorithm causes
the buffer overflow. Similarly, Vegas prematurely stops the
exponentially-increasing slow start phase at the 1.3th second
because doubling the sending rate in short interval causes
A bias so that it enters the linearly-increasing congestion
avoidance phase. Therefore, it takes 58.8 seconds to reach
equilibrium. As mentioned before, FAST needs more buffer
size in a router, so a lot of packets are lost. This results in
bad performance and unstable state of FAST. In compari-

IEICE TRANS. COMMUN., VOL.E90-B, NO.3 MARCH 2007

son with Reno, Vegas, and FAST, TCP-Ho reacts faster and
better. The ramp up time of TCP-Ho to the maximum con-
gestion window size is 5.4 seconds, and that to reach the
available bandwidth (50 Mbps) is less than 7 seconds, which
is one-tenth of Reno and Vegas’ cost times to reach equilib-
rium. We could conclude that TCP-Ho is as good as Vegas
or Reno in the small BDP and much better than these two in
the large BDP with the demonstration in Figs. 5 and 6.

5.1.2 Various Available Bandwidth

The bottleneck capacity X is set at 50 Mbps, propagation de-
lay Y is set at 48 ms and the buffer size of a router is set at
1000 packetsT. A TCP connection of Reno, Vegas, FAST
or TCP-Ho from S to D, starts sending data at 0 second
and a constant bit rate (CBR) traffic flow from S, to D, with
25 Mbps rate starts at the 80th second and stops at the 160th
second. Figures 7, 8, 9, and 10 exhibit the basic behav-
ior of TCP Reno, TCP Vegas, FAST TCP, and TCP-Ho re-
spectively. By observing the congestion window evolution
shown in Figs. 7, 8, 9, and 10, we can find that the transient
period for a new connection of Reno or Vegas is quite long.
In the beginning, Reno increases its congestion window size
to 3017 packets, which is much larger than the number of
packets held by the bottleneck bandwidth and buffer, so it
faces the coarse-grained timeout and retransmission, and fi-
nally Reno reaches the available bandwidth after 6 seconds.
On the other hand, Vegas prematurely stops the slow start
phase at the 1.3th second, then enters congestion avoid-
ance and takes 57.5 seconds to reach equilibrium. When
the available bandwidth is halved at the 80th second, Vegas
takes 47.7 seconds to converge to a new steady state. As the
available bandwidth is doubled at the 160th second, there is
a 31.6 seconds transient period for Vegas. On the other hand,
Reno re-enters the slow start phase due to buffer overflow
and coarse-grained timeout when the CBR traffic flow sends
data and then it spends about 33 seconds to get the available
bandwidth (24 Mbps). The performance of Reno is so inef-
fective because Reno uses packet loss to detect the available
bandwidth and increases the congestion window size with
linear growth in the congestion avoidance phase. In compar-
ison with TCP Reno and TCP Vegas, when a new connection
enters the empty link or the available bandwidth is either
halved or doubled, TCP-Ho only converges the congestion
window size in a short time (less than 7 seconds). Further-
more, even when the buffer is large enough, the throughput
of TCP-Ho is a bit better than that of FAST and TCP-Ho’s
packets queued in the router (at most 51 packets) are fewer
than FAST’s (about 98 packets) in the steady state, although
the time for a FAST’s connection to adjust its throughput to
the available bandwidth is little shorter than that of TCP-Ho.

With high BDP networks, the transient period of TCP
can greatly affect overall performance. Now, we use a met-
ric convergence time to capture the transient performance of

"The reasons for setting such a large buffer size are that we
want to compare TCP-Ho with FAST under the steady state and
FAST needs more buffer size in a router.

HO et al.: A CONGESTION CONTROL ALGORITHM WITH DESIGN AND PERFORMANCE EVALUATION

CWND (packets)

Throughput (Kbps)

CWND (packets)

Throughput (Kbps)

3200

2800

2400

2000

—Reno

1600

1200

Time (s)
60000

50000

40000

30000

20000

10000

0 40 80 120 160 200 240
Time (s)
Fig.7 Basic behavior of TCP Reno.

700
600
500
— Vegas
400 |
300 |
200 |
100
o
0 40 80 120 160 200 240
Time (s)
60000
50000F
400001
— Vegas

30000
20000
10000

0

0 40 80 120 160 200 240
Time(s)

Fig.8 Basic behavior of TCP Vegas.

TCP. The traffic sources are same as those in the previous
simulation. The bottleneck capacity is varied for different
BDP. At some time instant, the CBR traffic source starts or
stops sending packets to halve or double the available band-
width, respectively. Figures 11 and 12 display the conver-

523
800
—~ 700
n
)
Q600 — FAST TCP
LY
U 500
©
8 400
% 300
O 200t
100
0
0 40 80 120 160 200 240
Time (s)
60000
n
Q, 50000f
Q
N
~— 40000
i8] — FAST TCP
3
O, 30000
N
o
3 20000
[e)
g
S 10000
B
0
0 40 80 120 160 200 240
Time (s)
Fig.9 Basic behavior of FAST TCP.
800
—~ 700
e
D 600F
A
O s00[— TCP-Ho
©
82 w00
% 300
O 200
100
0
0 40 80 120 160 200 240
Time (s)
—~ 60000
n
8
50000
Y
45’ 40000[— TCP-Ho
[o}}
"g, 30000f
3
(o]
< 20000
N
=]
10000
o , , , , ,
0 40 80 120 160 200 240
Time (s)
Fig.10 Basic behavior of TCP-Ho.

gence time as the available bandwidth is halved and doubled
respectively. Obviously, TCP-Ho greatly improves the tran-
sient performance of connection in both scenarios as com-
pared to TCP Reno and TCP Vegas. On the other hand, the

524

1000

900 —<Reno

| -+ Vegas
- FAST TCP

[-=TCP-Ho

Convergence Time
(52
8

o =R i " il ; i n n h h

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
BDP (Kb)

Fig.11 Convergence time of connections when available bandwidth is
halved.

700

—o— Reno

600
© -+ Vegas
E so0 |~ FASTTCP
= -a-TCP-Ho
3
Q 400
[0}
2 300
)
g
S 200
(&)

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
BDP (Kb)

Fig.12 Convergence time of connections when available bandwidth is
doubled.

difference in convergence time between TCP-Ho and FAST
is not clear in both scenarios if we give FAST enough buffer
size. Moreover, from Figs. 11 and 12, we can see that the
convergence time of TCP-Ho is under 100 no matter how
large the BDP is.

5.2 Fairness and Friendliness

Other important issues of TCP are the fairness and friend-
liness. Multiple connections of same TCP scheme must in-
teroperate nicely and converge to their fair shares. Simi-
larly, a friendly TCP scheme should be able to coexist with
other TCP variants without causing them starvation. We use
the fairness index function, proposed in [23], to justify the
fairness and friendliness of TCP schemes.2 The fairness in-
dex function is expressed as F(x) = %, where x; is the
throughput of the ith connection, and n is the number of
connections. F(x) ranges from 1/n to 1.0. A perfectly fair
bandwidth allocation would result in a fairness index of 1.0.
On the contrary, if all bandwidth are consumed by one con-
nection, fairness index would yield 1/n.

5.2.1 Fairness
First, we are interested in the performance of sources with

same TCP method and RTT. The network topology for sim-
ulations is shown in Fig. 4, where the bandwidth and prop-

IEICE TRANS. COMMUN., VOL.E90-B, NO.3 MARCH 2007

Table 5 Fairness index for Reno, Vegas, FAST and TCP-Ho.
Reno Vegas FAST TCP-Ho
Fairness Index | 99.97% | 97.32% | 99.99% 99.99%

Utilization 80-96% 100% 18.2% 100%

1 Gbps, lms

S2
R1 Rat» 'I .
100 Mbps,

Fig.13 The network topology for sources with different RTTs.

Table 6 The fairness index for four TCP versions.
Reno Vegas FAST TCP-Ho
Fairness Index 67% 75% 99% 82%
Utilization 96% 100% 96% 100%

agation delay are 100 Mbps and 23 ms for the full-duplex
trunk link respectively, five sources (n = 5) using same TCP
scheme (i.e., Reno, Vegas, FAST, or TCP-Ho) all start at
0 second, and buffer size is 300 packets. We use the fair-
ness index and utilization of bottleneck bandwidth to repre-
sent the result, as shown in Table 5. From Table 5, we find
that the fairness index of TCP-Ho (99.9995%) is better than
that of Reno (99.9663%), Vegas (97.3188%), and FAST
(99.9979%), and the utilization of bandwidth for TCP-Ho
(100%) is not worse than that for Reno (only uses 80-96%),
Vegas (100%), and FAST (18.19%). Furthermore, Reno
takes at least 6 seconds to approach the available band-
width, Vegas spends 6.5 seconds to converge, FAST is never
close to the available bandwidth (i.e., never converges), and
TCP-Ho uses 2 seconds, which is one-third of 6 or 6.5, to
achieve the balance of connections. Then, we simulate the
sources with different RTTs, and the network topology is
shown in Fig.13. The bandwidth and propagation delay
are 1 Gbps and 1 ms for the full-duplex access link, and
100 Mbps and 23 ms for the full-duplex trunk link respec-
tively. The sources are TCP Reno, TCP Vegas, FAST TCP,
or TCP-Ho. Table 6 depicts the fairness index and utiliza-
tion of bottleneck bandwidth for four TCP versions with n =
5. We observe that the fairness index of TCP-Ho is about 1.1
times of Vegas, more than 1.2 times of Reno, and about 0.83
times of FAST, and the utilization of bandwidth for TCP-Ho
is better than TCP Reno and FAST TCP from Table 6.

From these simulation results, we can observe that the
TCP-Ho is more suitable than Reno and Vegas for multiple
sources with same mechanism.

HO et al.: A CONGESTION CONTROL ALGORITHM WITH DESIGN AND PERFORMANCE EVALUATION

Table 7 Friendliness of different TCP versions.

Fairness Index / Mean Throughput (kbps)

Reno—Vegas TCP-Ho—Vegas TCP-Ho-Reno
15-05 80%/(608-89) 95%/(533-403) 85%/(474-570)
10-10 59%/(840-120) 86%/(564-438) 89%/(453-557)
05-15 39%/(1526-138) 89%/(592-471) 96%/(435-524)

FAST-TCP-Ho FAST-Vegas FAST-Reno

15-05 80%/(376-158) 72%/(504-118) 88%/(395-154)
10-10 54%/(665-222) 52%/(731-148) 79%/(554-317)
05-15 39%/(1139-251) 27%/(1380-166) 76%/(591-250)

5.2.2 Friendliness

To verify the friendliness of our proposed mechanism, we
construct the network topology shown in Fig. 4, where Reno
coexists with Vegas, FAST coexists with Reno, or Vegas,
and TCP-Ho coexists with Reno, Vegas, or FAST. There are
20 pairs of connections, of which some connections use one
TCP algorithm and the others are another TCP mechanism
connections. The bandwidth of connection link is 10 Mbps,
propagation delay is 1 ms, and the buffer size of a router is
120 packets. We vary the proportion of these TCP schemes
in the network by adjusting the number of sources. Without
the presence of congestion, all 20 connections are expected
to share the bottleneck bandwidth equally. The friendli-
ness results and mean throughput of each TCP scheme are
listed in Table 7, where the mean throughput is the aver-
age throughput of sources with same mechanism under the
steady state. We observe following phenomenons. First,
while Vegas users compete with other TCP Reno users, they
do not receive a fair share of bandwidth due to the differ-
ent congestion avoidance mechanisms used by Vegas and
Reno. Next, FAST sources keep inserting much more pack-
ets into the buffer and stealing more bandwidth no matter
which mechanism coexists with FAST. Finally, when TCP-
Ho competes with TCP Reno, it still can insert much packets
into the buffer and get its fair share of bandwidth; neverthe-
less, TCP-Ho do not steal more bandwidth when it coexists
with TCP Vegas. Therefore, TCP-Ho is friendlier towards
TCP Reno and TCP Vegas schemes than FAST is. In other
words, TCP-Ho is a friendly transport protocol.

6. Conclusion

In this article, we propose and evaluate a new variant of
TCP, TCP-Ho, to reduce the burstiness, to adjust the rate
to the available bandwidth in shorter time, and to improve
the throughput for a TCP source. We achieve a significantly
higher performance comparing with TCP Reno and Vegas.
From simulation results, although TCP-Ho is more suitable
for large bandwidth or long-delay networks, it still increases
transmit performance in small bandwidth or short-delay net-
works. The design of TCP-Ho is simple and implementa-
tion feasible on existing operating systems. Further work

525

involves studying the performance and spatial characteris-
tics analysis of this algorithm under a wider range of param-
eters, network topologies and real traffic traces, obtaining
more accurate theoretical models and insights, and consid-
ering hardware implementation issues.

References

[1] J. Postel, “Transmission control protocol,” IETF RFC 793, Sept.
1981.

[2] V. Jacobson, “Congestion avoidance and control,” Proc. ACM SIG-
COMM, pp.314-329, Aug. 1988.

[3] V.Jacobson, “Modified TCP congestion avoidance algorithm,” End-
2-End-Interest Mailing List, Tech. Rep., LBL, April 1990.

[4] J.C. Hoe, Start-up Dynamics of TCP’s Congestion Control and
Avoidance Schemes, Master’s Thesis, MIT, June 1995.

[S] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgement options,” IETF RFC 2018, Oct. 1996.

[6] M. Mathis and J. Mahdavi, “Forward acknowlegement: Refining
TCP congestion control,” Proc. ACM SIGCOMM, pp.181-191,
Aug. 1996.

[7] D. Lin and H.T. Kung, “TCP fast recovery strategies: Analysis and
improvements,” Proc. IEEE INFOCOM, pp.263-271, March 1998.

[8] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s loss
recovery using limited transmit,” IETF RFC 3042, Jan. 2001.

[9] Z. Wang and J. Crowcroft, “Eliminating periodic packet losses in
4.3-Tahoe BSD TCP congestion control algorithm,” ACM Computer
Communication Review, vol.22, no.2, pp.9-16, 1992.

[10] R. Jain, “A delay-based approach for congestion avoidance in in-
terconnected heterogeneous computer networks,” ACM Computer
Communication Review, vol.19, no.5, pp.56-71, 1989.

[11] Z. Wang and J. Crowcroft, “A new congestion control scheme: Slow
start and search (Tri-S),” ACM Computer Communication Review,
vol.21, no.1, pp.32-43, 1991.

[12] S. Keshav, “A control-theoretic approach to flow control,” ACM
Computer Communication Review, vol.25, no.1, pp.188-201, 1995.

[13] L.S. Brakmo and L.L. Peterson, “TCP Vegas: End to end conges-
tion avoidance on a global Internet,” IEEE J. Sel. Areas Commun.,
vol.13, pp.1465-1480, 1995.

[14] C. Parsa and J.J. Garcia-Luna-Aceves, “Improving TCP congestion
control over Internet with heterogeneous transmission media,” Proc.
IEEE ICNP, pp.213-221, Nov. 1999.

[15] H. Wang, H. Xin, D.S. Reeves, and K.G. Shin, “A simple refinement
of slow-start of TCP congestion control,” Proc. IEEE ISCC 2000,
pp-98-105, July 2000.

[16] S. Vanichpun and W. Feng, “On the transient behavior of TCP Ve-
gas,” Proc. IEEE ICCCN, pp.504-508, Oct. 2002.

[17] Y. Nishida, “Smooth slow-start: Refining TCP slow-start for large-
bandwidth with long-delay networks,” Proc. IEEE LCN, pp.52-60,
Oct. 1998.

[18] S. Floyd, “HighSpeed TCP for large congestion windows,” Internet
draft draft-oyd-tcp-highspeed-02.txt, Feb. 2003.

[19] T. Kelly, “Sclable TCP: Improving performance in highspeed wide
area networks,” ACM Computer Communication Review, vol.33,
no.2, pp.83-91, 2003.

[20] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for
high bandwidth-delay product networks,” Proc. ACM SIGCOMM,
pp.89-102, Aug. 2002.

[21] R. Calinger, Classics of Mathematics, pp.235-237, Moore Publish-
ing, Oak Park, Illinois, 1982.

[22] J. Stillwell, Mathematics and its History, p.55, Springer-Verlag, New
York, 1989.

[23] R.Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer sys-
tems,” DEC, Research Report TR-301, Sept. 1984.

[24] S. Floyd, “Limited slow-start for TCP with large congestion win-

IEICE TRANS. COMMUN., VOL.E90-B, NO.3 MARCH 2007
526

dows,” IETF RFC 3742, March 2004.

[25] C. Jin, D.X. Wei, and S.H. Low, “FAST TCP: Motivation, archi-
tecture, algorithms, performance,” Proc. IEEE INFOCOM, vol.4,
pp-2490-2501, March 2004.

[26] http://www.isi.edu/nsnam/ns/

Cheng-Yuan Ho is currently a Ph.D. can-
didate in computer science at National Chiao
Tung University, Hsinchu City, Taiwan. He
also works with the Wireless and Networking
Group of Microsoft Research Asia, Beijing,
China since Dec., 2005. His research interests
include the design, analysis, and modelling of
the congestion control algorithms, high speed
networking, QoS, and mobile and wireless net-
works.

Yi-Cheng Chan received his Ph.D. degree
in computer science and engineering from Na-
tional Chiao Tung University, Taiwan in 2004.
He is now an assistant professor in the depart-
ment of computer science and information en-
gineering of National Changhua University of
Education, Changhua City, Taiwan. His re-
search interests include network protocols, wire-
less networks, and AQM.

Yaw-Chung Chen received his Ph.D. de-
gree in computer science from Northwestern
University, Evanston, Illionis, USA in 1987.
During 1987-1990, he worked at AT&T Bell
Laboratories. Now he is a professor in the de-
partment of computer science of National Chiao
Tung University. His research interests include
multimedia communications, high speed net-
working, and wireless networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

