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Abstract—The outbreak of the COVID-19 pandemic in 2019 
led to a significant increase in the number of people wearing 
masks. As the demand for masks soared, numerous 
manufacturers entered the mask production industry. However, 
traditional quality control and defect detection processes in 
mask manufacturing heavily relied on manual inspection, 
resulting in substantial manpower requirements and time-
consuming procedures. Although the implementation of AI-
powered visual inspection aided in categorizing defects, 
distinguishing certain intricate flaws remained challenging, 
with an average model accuracy of 89.5% and an error rate of 
10.5%. To address this limitation, this study adopts an ensemble 
learning approach, utilizing multiple models for prediction and 
employing majority voting to determine the final outcome. The 
ensemble learning technique successfully reduces the model's 
error rate by 16.2%, indicating its effectiveness in mitigating 
errors and enhancing accuracy. Nevertheless, solely relying on 
ensemble learning does not sufficiently lower the error rate. 
Thus, this study further investigates model ensemble by 
adjusting model weights to assess whether accuracy can be 
further improved. Experimental results demonstrate that with 
weight adjustment, the error rate can be minimized to as low as 
7%, representing a two-thirds decrease from the current 
average error rate. This substantial improvement signifies the 
potential of weight adjustment in enhancing mask defect 
detection accuracy. 
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I. INTRODUCTION 
At the end of 2019, the COVID-19 virus broke out and 

spread globally, infecting hundreds of millions of people and 
causing millions of deaths. In order to avoid infection, people 
have taken various protective measures, such as getting 
vaccinated, practicing frequent handwashing, and wearing 
masks. Among these measures, wearing masks is one of the 
most common practices, as masks effectively isolate viruses 
in the air and reduce the risk of infection [1]. As a result, the 
demand for masks has surged, and factories have been 
working tirelessly to produce more masks for the public. 

During the mask production process, defects may 
inevitably occur, rendering some masks unusable, reducing 
their protective functions, or resulting in incomplete 
appearances. Currently, most mask factories rely on manual 
inspection for quality control, which not only takes a 
considerable amount of time but also incurs significant labor 
costs. Therefore, there is a desire to integrate artificial 
intelligence, specifically deep learning methods, to expedite 
the mask inspection process. The aim is to leverage ensemble 
learning techniques to enhance defect detection and minimize 
inspection time. 

Deep learning (DL) is a subset of machine learning (ML), 

which in turn is a subset of Artificial Intelligence (AI). 
Therefore, deep learning can be considered as one of the 
methods within the field of AI. Both machine learning and 
deep learning utilize large datasets to enable machines to 
mimic human brain functions and learn reasoning and 
classification for problem-solving. The main difference 
between the two lies in their learning approach [1]. 

In machine learning, feature extraction is a prerequisite 
step. Taking cats and dogs as an example, assuming that the 
distinguishing features are fur color, ear shape, and face 
structure, these features are first extracted and then fed into the 
training model. On the other hand, deep learning does not 
require manual feature extraction. It directly inputs data into 
the model for training, and the model autonomously extracts 
features and makes judgments. Deep learning allows 
computer networks consisting of multiple layers of neural 
networks to have multiple abstract data representations, 
significantly enhancing breakthroughs in image recognition, 
speech recognition, and other fields. 

In this research, we employ the Convolutional Neural 
Network (CNN) approach for defect detection and 
classification of masks in image recognition [2]. For model 
selection, we opt for the EfficientNets series as our primary 
training model. EfficientNets were introduced by Google in 
2019, proposing a novel neural network scaling method that 
balances the network's depth, width, and image resolution. 
Here, depth refers to the number of layers in the neural 
network, width pertains to the number of channels in the 
network, and image resolution denotes the size of the image 
input into the neural network. Through the balance of these 
three dimensions, the network expansion becomes more 
effective [3]. Additionally, Google employed the Neural 
Architecture Search (NAS) algorithm to obtain a new baseline 
network, which was then scaled to produce a series of models 
known as EfficientNets [3]. 

We chose EfficientNets as our primary model due to their 
outstanding performance on ImageNet compared to other 
models. For instance, EfficientNet-B4 improved the top-1 
accuracy from 76.3% to 83.0% compared to the widely used 
ResNet-50, with reduced computational complexity. 
Moreover, EfficientNet-B7 achieved a top-1 accuracy of 
84.3% on ImageNet, with the model being 8.4 times smaller 
and 6.4 times faster [3]. 

However, during the model training process, it was 
observed that a single EfficientNet model did not perform as 
expected in mask defect recognition. To enhance the model's 
accuracy, we decided to employ ensemble learning [4], which 
involves multiple models classifying an image and then voting 
to determine the final classification result using a majority 
vote approach. We aim to investigate whether this ensemble 
learning method can effectively improve the accuracy of the 
model in image classification. Research supported by the National Science and Technology Council 

(NSTC), Taiwan, under Grant Nos. MOST 109-2221-E-002-213-MY3 and 
NSTC 112-2221-E-002-003. 
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II. RESEARCH METHODS 
In this section, we will outline the steps involved in our 

research. Firstly, masks are categorized manually into seven 
main classes, and the detailed descriptions of each class will 
be provided in the subsequent chapter. Next, the categorized 
masks are photographed and stored using the Insta 360 One R 
action camera. Subsequently, all the images are divided into 
three datasets - Train, Validation, and Test - following a 6:2:2 
ratio. Once the data splitting is complete, data augmentation 
and preprocessing are applied to the Train and Validation 
datasets using an image generator. 

After data preprocessing, we use EfficientNet models from 
B0 to B6, and each model undergoes transfer learning using 
the Train and Validation datasets. The trained models are then 
saved for later use. Finally, employing the Ensemble learning 
method, an odd number of models are selected, and the Test 
dataset is used for validation. We observe whether the 
Ensemble learning approach can enhance the accuracy of the 
models in classifying masks. Figure 1 illustrates the whole 
research workflow. 
Fig. 1. Research workflow. 

 

III. DATASET INTRODUCTION 
The mask data used in this study can be categorized into 

seven main classes, as follows: 

1. Normal: Masks without any defects, fully functional for 
regular use. (Figure 2a) 

2. Ear Strap Defect: Masks with incomplete or detached 
ear straps during production. (Figure 2b) 

3. Missing Ear Straps: Masks with ear straps incompletely 
attached or missing on both sides due to insufficient bonding 
or failure to replenish during production. (Figure 2c) 

4. Nose Bridge Defect: Masks with incorrectly placed nose 
bridge strips during ultrasonic sealing or with nose bridge 
strips cut too short, resulting in incomplete sealing by the 
ultrasonic machine and potential damage to the machine. 
(Figure 2d) 

5. Missing Nose Bridge Strip: Masks with incomplete 
sealing during production, causing the nose bridge strip to 
come off, or forgetting to replenish nose bridge strips during 
manufacturing. (Figure 2e) 

6. Uneven Ear Strap Welding: Masks with securely 
attached ear straps but with different heights on both sides due 
to rotation during the attachment process, causing discomfort 
to the wearer. (Figure 2f) 

7. Appearance Defect: Masks with cosmetic imperfections, 
mainly seen on the upper and lower edges of the mask, 
resulting in uneven fabric appearance. However, this defect 
does not affect the mask's protective performance. (Figure 2g) 

After manually categorizing the masks into the above 
seven classes, detailed documentation of the quantity of each 
category is provided in Table I. Once all masks have been 
photographed and documented, the images are split into Train, 
Validation, and Test datasets following a 6:2:2 ratio. The 
Train and Validation datasets are primarily used for model 
training, while the Test dataset is used for validating the 
ensemble learning models. 

TABLE I.  MASK CLASSES AND THEIR RESPECTIVE QUANTITIES 

Class Class ID No. (pics) 
Normal Normal 2058 

Ear Strap Defect Error_Ear 1562 
Missing Ear Straps No_Ear 1935 
Nose Bridge Defect Error_Iron 2017 

Missing Nose Bridge Strip No_Iron 440 
Uneven Ear Strap Welding Error_Solder 1934 

Appearance Defect NG 2036 
Fig. 2. Seven main classes in mask dataset. 

                        a. Normal                                          b. Ear Strap Defect                     c. Missing Ear Straps                         d. Nose Bridge Defect 

    

          e. Missing Nose Bridge Strip                              f. Uneven Ear Strap Welding                              g. Appearance Defect 
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IV. DATA PROCESSING 
The data preprocessing in this study is divided into two 

parts. Firstly, there are image format processing steps that are 
applied to all three datasets, i.e., Train, Validation, and Test 
datasets. Secondly, specific data augmentation techniques are 
performed exclusively on the Train Data. The following will 
provide separate explanations for these two approaches. 

A. Image Format Processing 
Firstly, before model training, all images in the three 

datasets need to undergo color conversion, resolution resized, 
and value normalization. To reduce the impact of different 
colors of masks on the model's performance, all mask images, 
which were collected in various colors and quantities, are 
converted from colored RGB images to grayscale images. 
This transformation reduces the importance of color during 
model learning as shown in Figure 3. 
Fig. 3. RGB to Grayscale Conversion. 

 
Regarding resolution, the original images captured during 

mask photography are of size 1920 x 1080. Training the model 
with such large images would place a significant burden on 
the GPU due to increased resource requirements. To ensure 
smooth model training while preserving crucial feature 
information, as shown in Table II, three different image sizes 
were tested for training and validation, with the size 240 x 140 
performing the best. Consequently, all images were uniformly 
resized to 240 x 140. 

TABLE II.  RESOLUTION SELECTION 

Image Resolution Classification Accuracy 
120 x 70 0.83534 

240 x 140 0.91037 
360 x 210 0.88995 

Lastly, image value normalization is performed to scale 
the pixel values in the image matrix between 0 and 1. This step 
is implemented to highlight the differences between images 
and eliminate similarities that may exist between them, as 
perceived by the machine's vision. 

B. Data Augmentation 
Large amounts of data are essential for effective deep 

learning model training. During data collection, some mask 
classes, such as "Missing Nose Bridge Strip" and "Uneven Ear 
Strap Welding," are challenging to acquire, resulting in a 
smaller quantity of data compared to other classes. To ensure 
accurate recognition of these categories and reduce overfitting 
during training [5, 6, 7, 8], data augmentation is applied to the 
Train Data. This involves performing vertical and horizontal 
adjustments on the data within the dataset. Figure 4 illustrates 
an example of vertical and horizontal adjustments. 

V. TRAINING AND TESTING OF EFFICIENTNET MODELS 
In the model training phase, this study introduces a total of 

eight EfficientNet models, ranging from B0 to B7, and trains 
them on the mask data. Before commencing training, slight 
adjustments are made to each model  [9, 10, 11]. The original 
Dense layer outputs 1,000 classification neurons, which are 

Fig. 4. An Example of Data Augmentation. 

 
Fig. 5. Adjustment of EfficientNet's Dense Layer Neurons. 

 
modified to only have 7 neurons for classifying the mask 
categories, as there are only 7 mask classes as displayed in 
Figure 5. 

After configuring the neural layers of the models, callback 
functions are set for the training process. Three callback 
functions, namely ModelCheckpoint, ReduceLROnPlateau, 
and EarlyStopping, are employed to serve different purposes. 
ModelCheckpoint is responsible for saving the best-
performing model, comparing the performance after each 
iteration, and overwriting the previous model if the current 
performance is better. ReduceLROnPlateau defines the 
learning rate, reducing it during training when the model 
reaches a point where further significant improvements are 
unlikely. EarlyStopping is used to stop model training early 
when the model's performance plateaus, indicating no further 
improvement is expected. 

Once all parameters are set, the models are trained. After 
completion, the performance of each model in each iteration 
is recorded in Table III. The loss of each model converges well, 
and the accuracy consistently improves, indicating increasing 
precision. In the ideal scenario, the validation data's loss and 
accuracy should closely approach the results of the Train data, 
demonstrating positive progress in model training. However, 
this chart does not fully represent the overall accuracy of the 
models. Therefore, further testing using the Test data is 
required for a comprehensive evaluation. 

After completing the testing phase, Table IV contains the 
accuracy of each model and the corresponding confusion 
matrix for model classification. The results show that the 
accuracy of each model falls approximately between 0.87 and 
0.90, with only the EfficientB0 model achieving an accuracy 
of 0.91. The average accuracy across all models reaches 
89.5%, with an error rate of 10.5%. However, it is noteworthy 
that the classification errors in the "Error_Solder" category are 
particularly severe. Figure 6 shows the confusion matrix for 
each model's classification results. 

To address the classification errors and enhance the overall 
performance, the study aims to leverage ensemble learning 
methods. By combining the predictions from multiple models, 
it is hoped that the ensemble approach will yield improved 
results for defect detection in masks. 
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TABLE III.  MODELS' ITERATIONS 

Model Name Corresponding Iterations 

EfficientNetB0 

 

EfficientNetB1 

 

EfficientNetB2 

 

EfficientNetB3 

 

EfficientNetB4 

 

EfficientNetB5 

 

EfficientNetB6 

 

EfficientNetB7 

 
TABLE IV.  EFFICIENTNETS' ACCURACIES 

Model Name Accuracy Model Name Accuracy 
EfficientNetB0 0.910379 EfficientNetB4 0.866194 
EfficientNetB1 0.899124 EfficientNetB5 0.879949 
EfficientNetB2 0.902876 EfficientNetB6 0.900792 
EfficientNetB3 0.898707 EfficientNetB7 0.902042 

VI. ENSEMBLE MODEL PREDICTIONS 
After completing all EfficientNets' training and testing, the 

selection of models for ensemble learning is based on their 
respective test accuracies. In this study, a total of 6 ensemble 
learning models are constructed, each comprising different 
combinations of EfficientNet models. The two crucial steps in 
model composition are as follows: first, selecting models with 
better performance for ensemble; second, ensuring that the 
number of models in each combination is odd. The reason for 
choosing models with better performance is to leverage their 
strengths to improve overall accuracy, and using an odd 
number of models avoids potential tie situations during voting, 
which could lead to random selection of a result. Thus, all 
ensemble models are composed of an odd number of 
constituent models as shown in Table V. 

From Table V, it can be observed that the ensemble 
learning models achieve a slight improvement in test accuracy. 
The average accuracy of individual models was 89.5%, with 
an average error rate of 10.5%. However, through ensemble 
learning, the average accuracy is increased to 91.7%, with a 
16.2% decrease in error rate. Though the improvement is 
modest, it is worth noting that the correct classifications in the 

TABLE V.  ENSEMBLE LEARNING TEST ACCURACIES 

Ensemble Learning Combinations Accuracy 
B0+B1+B2+B3+B5+B6+B7 0.919132 

B0+B1+B2+B6+B7 0.918716 
B0+B2+B6 0.913714 
B0+B6+B7 0.917465 
B0+B2+B7 0.918299 
B2+B6+B7 0.915798 

"Error_Solder" category have significantly increased, and 
even the accuracy of the "Normal" category has slightly 
improved as shown in Figure 7. 

In order to further investigate the potential for enhancing 
the accuracy of ensemble learning, this study performed 
weight adjustments on the ensemble models with only three 
constituent models. This choice of three models allows for 
better weight distribution based on individual model 
performance, determining the proportional weight for each 
model in the ensemble learning as shown in Table VI. 

The weights in Table VI are assigned to models based on 
their better performances. Through various combinations and 
comparisons, the optimal weight distribution for each 
ensemble model is determined. From Table VI, it can be 
observed that after adjusting the weights, the overall accuracy 
also improves. The accuracy increases from the original 0.91 
to 0.92 and even 0.93, with the highest reaching 0.93. The  

Fig. 6. Confusion Matrix for Each Model's Classification Results. 

                a. EfficientNetB0                              b. EfficientNetB1 

   
                c. EfficientNetB2                              d. EfficientNetB3 

   
                e. EfficientNetB4                              f. EfficientNetB5 

   
                g. EfficientNetB6                              h. EfficientNetB7 
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average accuracy is improved to 92.5%, and the model 
achieves an error rate of only 7%, compared to the initial 2/3 
error rate. There is also a significant increase in correct 
classifications for the "Error_Solder" category as shown in 
Figure 8. 

VII. CONCLUSION 
Throughout the entire research process, it was observed 

that ensemble learning can indeed effectively improve the 
accuracy of object classification models, raising the accuracy 
from the original 0.89 to 0.91. Furthermore, when combined 
with adjusting the model's weights, ensemble learning further 
enhances the model's accuracy, increasing it to 0.92~0.93. 
However, during the research, it was found that regardless of 
using ensemble learning or adjusting the weights, there were 
still many misclassifications in the "Error_Solder" category. 
The model tended to classify them into the "Normal" category. 
This conclusion was drawn because the features of this 
category were not distinct enough, making it difficult for the 
machine to learn them. To achieve more accurate 
classification, the possible solutions are to increase the data 
volume or set new rules during data classification in the early 
stages, such as defining how much offset qualifies as an error 
in solder points. These are the key findings and conclusions of 
this research. 

 

 

 

 

 

 

TABLE VI.  ACCURACY AFTER WEIGHT ADJUSTMENTS 

Ensemble Learning 
Combinations 

Weight 
Distribution Accuracy 

B0+B2+B6 0.5+0.25+0.25 0.92621 
B0+B6+B7 0.5+0.1+0.4 0.93038 
B0+B2+B7 0.5+0.25+0.25 0.92997 
B2+B6+B7 0.4+0.2+0.4 0.91663 
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Fig. 7. Confusion Matrix for Ensemble Learning Combinations in Table V. 

       a. B0+B1+B2+B3+B5+B6+B7               b. B0+B1+B2+B6+B7 

   
                   c. B0+B2+B6                                     d. B0+B6+B7 

   
                   e. B0+B2+B7                                     f. B2+B6+B7 

                 

Fig. 8. Confusion Matrix for Ensemble Learning Combinations in Table VI. 

                   a. B0+B2+B6                                     b. B0+B6+B7 

   
                   c. B0+B2+B7                                     d. B2+B6+B7 
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