
IEICE TRANS. COMMUN., VOL.E91–B, NO.4 APRIL 2008
987

PAPER

Quick Vegas: Improving Performance of TCP Vegas for High
Bandwidth-Delay Product Networks∗

Yi-Cheng CHAN†a), Member, Chia-Liang LIN†, Nonmember, and Cheng-Yuan HO††, Student Member

SUMMARY An important issue in designing a TCP congestion control
algorithm is that it should allow the protocol to quickly adjust the end-to-
end communication rate to the bandwidth on the bottleneck link. However,
the TCP congestion control may function poorly in high bandwidth-delay
product networks because of its slow response with large congestion win-
dows. In this paper, we propose an enhanced version of TCP Vegas called
Quick Vegas, in which we present an efficient congestion window con-
trol algorithm for a TCP source. Our algorithm improves the slow-start
and congestion avoidance techniques of original Vegas. Simulation results
show that Quick Vegas significantly improves the performance of connec-
tions as well as remaining fair when the bandwidth-delay product increases.
key words: congestion control, high bandwidth-delay product networks,
TCP Vegas, transport protocol

1. Introduction

Most of the current Internet applications use the Transmis-
sion Control Protocol (TCP) as its transport protocol. Con-
sequently, the behavior of TCP is tightly coupled with the
overall Internet performance. TCP performs an acceptable
efficiency over today’s Internet. However, theory and exper-
iments show when the per-flow product of bandwidth and
latency increases, TCP becomes inefficient [1]. This will be
problematic for TCP as the bandwidth-delay product (BDP)
of Internet continues to grow.

TCP Reno is the most widely used TCP version in
the current Internet. It takes packet loss as an indiction of
congestion. In order to probe available bandwidth along
the end-to-end path, TCP Reno periodically creates packet
losses by itself. It is well-known that TCP Reno may fea-
ture poor utilization of bottleneck link under high BDP net-
works. Since TCP Reno uses additive increase - multiplica-
tive decrease (AIMD) algorithm to adjust its window size,
when packet losses occur, it cuts the congestion window
size to half and linearly increases the congestion window un-
til next congestion event is detected. The additive increase
policy limits TCP’s ability to acquire spare bandwidth at one
packet per round-trip time (RTT). The BDP of a single con-
nection over very high bandwidth links may be thousands of

Manuscript received April 12, 2007.
Manuscript revised July 3, 2007.
†The authors are with the Department of Computer Science

and Information Engineering, National Changhua University of
Education, Changhua, Taiwan.
††The author is with the Department of Computer Science, Na-

tional Chiao Tung University, Hsinchu, Taiwan.
∗This work was sponsored by the National Science Council,

Taiwan, R.O.C., under Grant NSC 96-2221-E-018-008.
a) E-mail: ycchan@cc.ncue.edu.tw

DOI: 10.1093/ietcom/e91–b.4.987

packets, thus TCP Reno might waste thousands of RTTs to
ramp up to full utilization.

Unlike TCP Reno which uses binary congestion sig-
nal, packet loss, to adjust its window size, TCP Vegas [2]
adopts a more fine-grained signal , queuing delay, to avoid
congestion. Studies have demonstrated that Vegas outper-
forms Reno in the aspects of overall network utilization
[2], [5], stability [6], [7], fairness [6], [7], throughput and
packet loss [2], [3], [5], and burstiness [3], [4]. However,
in high BDP networks, Vegas tends to prematurely stop
the exponentially-increasing slow-start phase and enter the
slower congestion avoidance phase until it reaches its equi-
librium congestion window size [8]. As a result, a new Ve-
gas connection may experience a very long transient period
and thus throughput suffers. In addition, the availability of
network resources and the number of competing users may
vary over time unpredictably. It is sure that the available
bandwidth is not varied linearly [10]. Since Vegas adjusts
its congestion window linearly in the congestion avoidance
phase, this prevents Vegas from quickly adapt to the chang-
ing environments.

In this paper, we propose an enhanced version of TCP
Vegas called Quick Vegas for high BDP networks. Quick
Vegas is a sender-side modification that improves the slow-
start and congestion avoidance techniques of original Vegas.
Simulation results show that Quick Vegas significantly im-
proves the performance of connections as well as remaining
fair when the bandwidth-delay product increases.

The rest of this paper is organized as follows. Related
work is reviewed in Sect. 2. Section 3 describes TCP Vegas
and explains the proposed Quick Vegas. The mathematical
analysis is given in Sect. 4 and simulation results are pre-
sented in Sect. 5. Lastly, we conclude this work in Sect. 6.

2. Related Work

Several studies have been made to improve the connection
performance over high-speed and long-delay links. These
approaches can be divided into two categories. One is sim-
pler and needs only easily-deployable changes to the cur-
rent protocols, for example, LTCP [11], TCP-Westwood
[12], CUBIC [13], TCP-Africa [14], AdaVegas [15], and
FAST [16]. The other needs more complex changes with a
new transport protocol, or more explicit feedback from the
routers, examples are XCP [1] and QuickStart [17]. XCP
and QuickStart requires all routers along the path to partici-
pate, deployment feasibility is a concern.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

988
IEICE TRANS. COMMUN., VOL.E91–B, NO.4 APRIL 2008

A protocol that falls in the first category commonly in-
volves a subtle change in its congestion avoidance response
function to allow connections capturing available bandwidth
more readily and realistically at very high congestion win-
dows. However, the variants of TCP Reno [11]–[14] use
packet loss as an indication for congestion. This causes pe-
riodic packet losses and oscillations in the congestion win-
dow size, round-trip delay, and queue length of the bottle-
neck node. These drawbacks may not be appropriate for
emerging Internet applications [3], [4].

AdaVegas is an adaptive congestion control mechanism
based on TCP Vegas. Using the number of successful trans-
missions as feedback, it dynamically changes the additive
increase parameters to decide whether to switch to a more
aggressive strategy. The modification makes connections re-
act faster to a changing network environment.

FAST is also a variation of TCP Vegas. It incorporates
multiplicative increase if the bottleneck buffer occupied by
the connection is far less than a pre-defined threshold (i.e.,
α) and switch to linear increase if it is near α. Then, FAST
tries to maintain the buffer occupancy around α and reduces
sending rate if delay is further increased. Theoretical anal-
ysis and experiments show that FAST has better properties
than pure loss-based approaches, such as higher utilization,
less self-induced packet losses, faster convergence speed,
better RTT fairness and stabilization.

The two TCP Vegas variants improve the connection
performance when it works in a network with a large amount
of available bandwidth. However, AdaVegas uses some con-
stant increments to increase its window size. It may be still
too sluggish when the connection passes through a very high
BDP path. FAST adopts a more aggressive way to update its
window size, nevertheless, it needs a large buffer on the bot-
tleneck to prevent packet losses.

3. TCP Vegas and Proposed Mechanism

TCP Vegas features three improvements as compared with
TCP Reno: (1) a new retransmission mechanism, (2) an im-
proved congestion avoidance mechanism, and (3) a modi-
fied slow-start mechanism. In this section, we first review
the design principles of TCP Vegas and then describe Quick
Vegas in detail.

3.1 TCP Vegas

Vegas adopts a more sophisticated bandwidth estimation
scheme that tries to avoid rather than to react to conges-
tion. It uses the measured RTT to accurately calculate the
amount of data packets that a source can send. Its window
adjustment algorithm consists of three phases: slow-start,
congestion avoidance, and fast retransmit and fast recovery.
The congestion window is updated based on the currently
executing phase.

During the congestion avoidance phase, TCP Vegas
does not continually increase the congestion window. In-
stead, it tries to detect incipient congestion by comparing

the actual throughput to the expected throughput. Vegas es-
timates a proper amount of extra data to be kept in the net-
work pipe and controls the congestion window size accord-
ingly. It records the RTT and sets BaseRTT to the minimum
of ever measured round-trip times. The amount of extra data
(Δ) is estimated as follows:

Δ = (Expected − Actual) × BaseRTT, (1)

where Expected throughput is the current congestion win-
dow size (CWND) divided by BaseRTT, and Actual through-
put represents the CWND divided by the newly measured
smoothed-RTT. The CWND is kept constant when the Δ is
between two thresholds α and β. If Δ is greater than β, it
is taken as a sign for incipient congestion, thus the CWND
will be reduced. On the other hand, if the Δ is smaller than
α, the connection may be under utilizing the available band-
width. Hence, the CWND will be increased. The updating
of CWND is per-RTT basis. The rule for congestion window
adjustment can be expressed as follows:

CWND =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CWND + 1, i f Δ < α
CWND − 1, i f Δ > β
CWND, i f α ≤ Δ ≤ β

. (2)

During the slow-start phase, Vegas intends a connec-
tion to quickly ramp up to the available bandwidth. How-
ever, in order to detect and avoid congestion during slow-
start, Vegas doubles the size of its congestion window only
every other RTT. In between, the congestion window stays
fixed so that a valid comparison of the Expected and Ac-
tual throughput can be made. A similar congestion detection
mechanism is applied during the slow-start to decide when
to switch the phase. If the estimated amount of extra data
is greater than γ, Vegas leaves the slow-start phase, reduces
its congestion window size by 1/8 and enters the congestion
avoidance phase.

As in Reno, a triple-duplicate acknowledgement
(ACK) always results in packet retransmission. However,
in order to retransmit the lost packets quickly, Vegas extends
Reno’s fast retransmission strategy. Vegas measures the RTT
for every packet sent based on fine-grained clock values.
Using the fine-grained RTT measurements, a timeout pe-
riod for each packet is computed. When a duplicate ACK
is received, Vegas will check whether the timeout period of
the oldest unacknowledgement packet is expired. If so, the
packet is retransmitted. This modification leads to packet
retransmission after just one or two duplicate ACKs. When
a non-duplicate ACK that is the first or second ACK after
a fast retransmission is received, Vegas will again check
for the expiration of the timer and may retransmit another
packet.

After a packet retransmission was triggered by a dupli-
cate ACK and the ACK of the lost packet is received, the
congestion window size will be reduced to alleviate the net-
work congestion. There are two cases for Vegas to set the
CWND. If the lost packet has been transmitted just once, the
CWND will be three fourth of the previous congestion win-
dow size. Otherwise, it is taken as a sign for more serious

CHAN et al.: QUICK VEGAS: IMPROVING PERFORMANCE OF TCP VEGAS
989

congestion, and one half of the previous congestion window
size will be set to CWND.

If a loss episode is severe enough that no ACKs
are received to trigger fast retransmit algorithm, eventu-
ally, the losses will be identified by Reno-style coarse-
grained timeout. When this occurs, the slow-start thresh-
old (SSTHRESH) will be set to one half of CWND, then the
CWND will be reset to two, and finally the connection will
restart from slow-start.

3.2 The Proposed Mechanism

TCP sends bursts of packets during its slow-start phase due
to the fast window increase and the ACK-clock based trans-
mission. This phenomenon causes TCP Vegas changing
from slow-start phase to congestion avoidance phase too
early in the large BDP links. Besides, network resources and
competing users may vary over time unpredictably. In order
to react faster and better to high BDP networks, the window
adjustment algorithm of congestion avoidance phase should
be more aggressive than it has been. The proposed Quick
Vegas tries to address these issues.

3.2.1 Slow-Start

According to Eq. (1), Vegas calculates the extra data (Δ)
and doubles its congestion window every other RTT. When
the amount of Δ is greater than γ (usually set to 1), Vegas
leaves the slow-start phase. The fundamental problem is that
when the congestion window should be doubled, a Vegas
sender sends two packets back-to-back whenever it receives
an ACK. This leads the doubled amount of packets being
sent in a short interval. The burst may create a temporary
long queue that causes Δ bias [8]. As a result, Vegas leaves
the slow-start phase too early and performance suffers. A
simple ns-2 [18] simulation has been made to show the phe-
nomenon. Figure 1 depicts the congestion window evolution

Fig. 1 Congestion window evolution of a Vegas connection.

Table 1 The congestion window size for Vegas and Quick Vegas at each
RTT round.

RTT 0 1 2 3 4 5 6 7 8 ...
Vegas 2 2 4 4 8 8 16 16 32 ...

Quick Vegas 2 3 4.5 6.75 10.13 15.19 22.78 34.17 51.26 ...

of a Vegas connection in a communication path with 5 Mb
BDP (50 Mb/s × 100 ms). The slow-start phase stops at 1.2
second with congestion window size 64 packets. Obviously,
Vegas prematurely stop the exponentially-increasing slow-
start phase and enter the slower congestion avoidance phase.
It finally reaches the equilibrium window size (630 packets)
at 59 second.

How to smooth out the transmission of packets in a
fluid-like manner is the key of an unbiased Δ calculation.
Pacing is a common way to solve the burstiness problem.
A straightforward implementation of pacing would have the
TCP sender schedule successive packet transmissions at a
constant time interval, obtained by dividing the congestion
window by the current RTT. In practice, this would require
a timer with a very high resolution when TCP transmit in a
large bandwidth link. Using timer interrupt in such high fre-
quency may greatly increase the overhead of the operating
system.

Two simple changes have been made in the slow-start
mechanism of Quick Vegas. First, a sender sends out a
extra packet whenever it receives two ACKs. Second, the
congestion window is adjusted every RTT instead of every
other RTT. The first modification makes the transmission
less bursty when the congestion window should be increased
and therefore alleviates the bias of Δ calculation. The sec-
ond modification allows a sender quickly ramping up to the
available bandwidth. Table 1 shows the value of congestion
window for Vegas and Quick Vegas at each RTT round if Δ
is not greater than γ.

The simulation results of congestion window evolution
of Vegas and Quick Vegas during slows-tart phase is shown
in Fig. 2. For the identical γ (γ = 1) setting, Quick Vegas
increases half of CWND every RTT while Vegas doubles its
CWND every other RTT. It is obvious that Quick Vegas has
a higher critical window size (the congestion window size
at upon leaving slow-start phase) as compared with that of

Fig. 2 Congestion window evolutions of Vegas and Quick Vegas during
slows-tart phase.

990
IEICE TRANS. COMMUN., VOL.E91–B, NO.4 APRIL 2008

Vegas. The effectiveness of the modified slow-start scheme
will be further examined in Sect. 4.

3.2.2 Congestion Avoidance

TCP Vegas updates its congestion window linearly in the
congestion avoidance phase, it is too sluggish for a high
BDP network. Depending on the information given by the
estimated extra data, it is worth to try a more aggressive
strategy.

For the increment of congestion window, Quick Vegas
has the history to guide the window size changes. Since
there is no direct knowledge of current available bandwidth,
Quick Vegas records the number of consecutive increments
due to Δ < α and refers to this value as succ. Whenever the
congestion window should be increased due to Δ < α, it is
updated as follows:

CWND = CWND + (β − Δ) × succ. (3)

Thus the congestion window size will be increased by (β−Δ)
at the first estimation of Δ < α, and by (β−Δ)×2 at the next
consecutive estimation of Δ < α, and so on. The succ will be
reset whenever Δ ≥ α. The idea is that if the increment was
successful, it might be the case that there is enough band-
width and it is worthwhile to move to a more aggressive
increasing strategy. However, to ensure that the congestion
window will not be increased too fast, Quick Vegas can at
most double the size of congestion window for every esti-
mation of Δ < α.

For the decrement of congestion window, Quick Vegas
uses the difference of Δ and (α+ β)/2 as the guide for every
estimation of Δ > β. The decrement rule can be expressed
as follows:

CWND = CWND −
⎛⎜⎜⎜⎜⎜⎜⎝
Δ −
(
α+β

2

)

2

⎞⎟⎟⎟⎟⎟⎟⎠ . (4)

Since the estimated amount of extra data gives us a
good suggestion of how many extra data are beyond the
ideal value that should be kept in the network pipe. How-
ever, when a TCP source decreases (or increases) its con-
gestion window at the ith round, the influence to the net-
work can be detected at the (i + 2)th round. To prevent over
decrease, Quick Vegas subtracts the half of excess amount
from the congestion window each time.

In order to achieve a higher fairness between the com-
peting connections, Quick Vegas intends every connection
to keep an equal amount, that is (α + β)/2, of extra data
in the network pipe. If the estimated amount of extra data
is between α and β, Quick Vegas will adjust its congestion
window linearly toward the ideal amount. The window ad-
justment algorithm of Quick Vegas can be presented as the
following pseudo codes:

if (Δ > β)

CWND = CWND −
(

(Δ− α+β2)
2

)

incr = 0; succ = 0
else if (Δ < α)

succ = succ + 1
if ((β − Δ) × succ > CWND)

incr = 1
else

incr = β−Δ
CWND × succ

else if
(
Δ > α+β2

)
CWND = CWND − 1; incr = 0; succ = 0

else if
(
Δ < α+β2

)

incr = 1
CWND ; succ = 0

else /* Δ == α+β2 */
incr = 0; succ = 0

To reduce the bursty effect of increment, the incr is
served as the increment amount of congestion window af-
ter each ACK is received by a Quick Vegas source.

4. Numerical Analysis

In this section, we present numerical analysis of TCP Vegas
and Quick Vegas. Throughout our analysis, we assume a
fluid model and the source always has a packet to transmit.
There is no congestion in ACK path and the buffer size at
the router is large enough so that packet loss is negligible.
We try to model the TCP congestion window with respect
to a “round” [9], or equivalently, “window transmission.”
A round starts with the transmission of W packets (back-
to-back) where W is the size of congestion window in that
round. A round ends when the source receives the ACK
of the first packet in that round and then the source starts
sending a new packet of the next round.

4.1 Slow-Start

In this subsection, we want to compare the sizes of con-
gestion window that Vegas and Quick Vegas stop at upon
leaving slow-start (critical window size). In high BDP net-
works, Vegas tends to prematurely stop the exponentially-
increasing slow-start phase and enter the slower congestion
avoidance phase. A larger critical window size means a
shorter time is needed to reach its equilibrium window size.

A simple case is considered when a single connection
tries to fill up an empty network with N links connecting
the source and the destination. Figure 3 shows the network
topology for analysis. We denote the transmission rate of N
links (in packets/s) as Xi, i = 1, 2, ...,N, and the total round-
trip propagation delay of the route path (in seconds) as τ.
Similar to the work in [8], we assume that there is one bot-
tleneck in the route path and X1 ≤ X2 ≤ ... ≤ XN . Since X1

is the smallest transmission rate (i.e., link 1 behaves as the

Fig. 3 Network topology for analysis.

CHAN et al.: QUICK VEGAS: IMPROVING PERFORMANCE OF TCP VEGAS
991

bottleneck link), we let μ be equal to X1. The un-congested
BDP of this network is then given by μd where

d = τ +
1 + a

X1
+ ... +

1 + a
XN
, (5)

with a being the ACK size relative to the data packet size.
Without loss of generality, we assume that a is much smaller
than the data packet size, so we use 1 to approximate 1 + a
(i.e., d = τ +

∑N
i=1

1
Xi

).
The critical window size of Vegas has been derived in

[8], it is given by

Wv =
γ +
√
γ2 + 16γμd

2
. (6)

In the similar manner, we compute the critical window size
of Quick Vegas as follows. Recall that in slow-start, Quick
Vegas increases half of congestion window size every RTT.
More precisely, Quick Vegas adds one extra packet in the
sender queue each time two ACKs of previous round are
received. Since μ is the smallest transmission rate and no
congestion in reverse path, the spacing between each ACK
of the previous round is 1/μ seconds. When the last two
ACKs of the previous round are received, the sender adds
the last one extra packet of the current round in the sender
queue and the last packet will see W/3 packets waiting ahead
of it in the sender queue. Thus, this last packet experiences
the highest RTT of the round and its BaseRTT and RTT are
given by d in (5) and D respectively, where

D = d +
W
3μ
. (7)

By combining (1) and (7), Quick Vegas will stop its slow-
start phase if

W ×
W
3μ

W
3μ + d

> γ. (8)

By solving (8) for W, the window size that Quick Vegas
stops its slow-start phase is given by

Wq =
γ +
√
γ2 + 12γμd

2
. (9)

The same as actual Vegas implementation, D is the average
RTT rather than the actual RTT of a packet. Thus, D should
be the average of the actual RTTs of all packets in the same
round, i.e., D = d + W

6μ , rather than D = d + W
3μ , as given in

(7). By using the average RTT, we have

Wq =
γ +
√
γ2 + 24γμd

2
. (10)

Obviously, the critical window size of Quick Vegas is
larger than that of Vegas in the same network configuration.
For a network path with 100 ms round-trip propagation de-
lay with the default γ setting (i.e., γ = 1), we plot the critical
window sizes of both Vegas and Quick Vegas in Fig. 4. The
theoretical values of Vegas and Quick Vegas are computed

Fig. 4 Critical window sizes for Vegas and Quick Vegas in different
BDPs.

according to (6) and (10) respectively. The experiment val-
ues are derived from ns-2 simulations. Since the burstiness
problem still exists in slow-start phase, the experiment val-
ues do not exact match the fluid-based theoretical values.
However from Fig. 4 we can find that, no matter from the
theoretical or experimental point of view, Quick Vegas al-
ways has larger critical window sizes than that of Vegas in
different BDPs. It means that Quick Vegas needs a shorter
time to reach equilibrium as compared with that of Vegas.

4.2 Congestion Avoidance

In this subsection, we want to analyze the number of rounds
(or RTTs) needed for Vegas and Quick Vegas to reach a new
equilibrium state when more bandwidth becomes available.
Consider a simplified case that the current equilibrium win-
dow size is W and the new equilibrium window size is nW.

According to (2), Vegas linearly updates its congestion
window size every RTT. Obviously, it needs (n − 1)W RTTs
to fully utilize the new available bandwidth. On the other
hand, when the more available bandwidth is detected by
Quick Vegas, the congestion window will be increased ac-
cording to (3). If Quick Vegas needs i rounds to reach its
new equilibrium state and then we have the following equa-
tion:

nW=W+
k∑

i=1

[(β−Δ)×i]=W+(β−Δ)× i(i+1)
2
. (11)

Assume the value of each Δ calculation approximates to
zero during the transient period. Equation (11) can be solved
for i as

i =
−1 +

√
β+8W(n−1)

β

2
. (12)

Figure 5 shows the number of RTTs needed for Vegas
and Quick Vegas to reach its new equilibrium state when the
available bandwidth becomes from 2 to 10 times of original
used bandwidth (10 Mbps). The experiment values are ob-
tained from ns-2 simulations and the theoretical values are
computed according to the equations that are derived in this
subsection.

Since the burstiness phenomenon is smoothed by the

992
IEICE TRANS. COMMUN., VOL.E91–B, NO.4 APRIL 2008

Fig. 5 The number of RTTs needed for Vegas and Quick Vegas reaches
new equilibrium states.

network bottleneck when the connection enters its conges-
tion avoidance phase and Vegas update its window size lin-
early in that phase, so the burstiness problem may be greatly
eliminated. As a result, the theoretical values and the exper-
iment values of Vegas in Fig. 5 are quite matched. On the
other hand, Quick Vegas adopts a more aggressive way than
that of original Vegas to adjust its window size. So it may
create burstiness phenomenon to some extents. Therefore,
the theoretical values and the experiment values of Quick
Vegas are still with some deviations. Again, no matter from
theoretical or experimental point of view, we can find that
the RTTs needed for Quick Vegas to reach a new equilib-
rium state are much less than that of Vegas. The effective-
ness of the enhanced congestion avoidance scheme in Quick
Vegas will be further examined in the next section.

5. Performance Evaluation

We use the network simulator ns-2 [18] to execute the per-
formance evaluation. TCP Vegas and Quick Vegas have the
identical parameter values (i.e., γ = 1, α = 2, and β = 4)
those are the same as the study in [2]. The default parame-
ter setting of FAST is α = 100 that is also adopted in [16].
Unless stated otherwise, the buffer size in routers is large
enough so that packet loss is negligible. The sizes of data
packets and ACKs are 1 kbytes and 40 bytes respectively.
To ease the comparison, we assume that the sources always
have data to send.

The network configuration for the simulations is shown
in Fig. 6. Sources, destinations, and routers are expressed
as Si, Di, and Ri respectively. A source and a destination
with the same subscript value represent a traffic pair. The
bandwidth and propagation delay are 1 Gb/s and 1 ms for
each full-duplex access link, and Cb and 48 ms for the full-
duplex connection link between R1 and R2. The Cb is set
based on the need of simulation scenarios.

5.1 Basic Behavior

In this subsection, we compare the basic behavior between
Vegas, Quick Vegas, and FAST in the aspects of congestion
window size, queue length, and throughput. The bottleneck
capacity Cb is set at 50 Mb/s. A TCP connection from S1

Fig. 6 Network configuration for the connections with the same RTT.

Fig. 7 Basic behavior of Vegas.

Fig. 8 Basic behavior of Quick Vegas.

to D1 starts sending data at 0 second and a constant bit rate
(CBR) traffic flow from S2 to D2 with 25 Mb/s rate starts
at 80 second and stops at 160 second. The objective of the
simulation scenario is to explore how fast for a new connec-
tion can ramp up to equilibrium and how fast a connection
can converge to a steady state as the available bandwidth is
changed. Figures 7, 8, and 9 exhibit the basic behavior of
Vegas, Quick Vegas and FAST respectively.

By observing the congestion window evolution shown
in Fig. 7 we can find that the transient period for a new Ve-
gas connection is quite long. Vegas prematurely stop the
exponentially-increasing slow-start phase at 1.2 second and
enter the linearly-increasing congestion avoidance phase. It

CHAN et al.: QUICK VEGAS: IMPROVING PERFORMANCE OF TCP VEGAS
993

Fig. 9 Basic behavior of FAST.

takes 59 seconds to reach equilibrium. When the available
bandwidth is halved at 80 seconds, Vegas takes 47.9 sec-
onds to converge to a new steady state. As the available
bandwidth is doubled at 160 second, there is a 31.8 seconds
transient period for Vegas.

The queue length at bottleneck shown in Fig. 7 also re-
veals that Vegas can not quickly adapt to the changed band-
width. When the available bandwidth is halved at 80 sec-
onds, the queue is built up quickly. The maximum queue
length is 620 packets and it also takes 47.9 seconds for Ve-
gas to recover the normal queue length.

In comparison with Vegas, Quick Vegas react faster and
better as shown in Fig. 8. The ramp up time of Quick Vegas
is 13 seconds, and it takes 3.3 and 2.0 seconds to converge as
the available bandwidth is halved and doubled respectively.
Note that due to the bursty nature of a new TCP connection,
the estimation of extra data will be disturbed [8]. The con-
secutive increment number (succ) may not be accumulated
to a large number. Therefore, the ramp up time can not be
greatly improved as compared with the convergence period
of the available bandwidth is halved or doubled.

The queue length at bottleneck shown in Fig. 8 also ex-
hibits that Quick Vegas can quickly adapt to the changed
bandwidth. When the available bandwidth is halved at 80
seconds, the built up queue is quickly removed. The max-
imum queue length is 500 packets that is also smaller than
that of Vegas (620 packets).

As for FAST shown in Fig. 9, we can find that the ramp
up time is 2.6 seconds, and it takes 3.0 seconds and 1.6
seconds to converge as the available bandwidth is halved
and doubled respectively. Although FAST takes less time to
reach steady state than Quick Vegas in the ramp up phase,
the queue length at the bottleneck router of FAST is much
longer than that of Quick Vegas.

FAST maintains 100 packets of bottleneck queue
length during the first 80 seconds. In the next 80 seconds,
because of the presence of CBR traffic flow, the bandwidth
is halved and the queue length is doubled to 200 packets as
shown in Fig. 9. According to the design principle of FAST,

Fig. 10 Convergence time of new connections.

each connection tends to keep α packets in the bottleneck
queue. Assume there are 100 FAST connections share the
same bottleneck link, the buffer needed by these connections
will be 10000 packets. If a CBR flow with a half of bottle-
neck transmission rate passes through this bottleneck, the
usage of the buffer would be doubled, that is 20000 packets.
In practical, it will be a serious problem to FAST because the
buffer provided by router may not always be large enough to
deal with FAST connections.

Based on the simulation results of throughput are
shown in Figs. 7, 8, and 9, we can find Quick Vegas and
FAST, especially for FAST, has a superior performance than
that of Vegas. In these simulations, we define a large queue
size at bottleneck so packet losses will not occur. In the later
subsection, we will see more realistic scenarios. When the
buffer size of the router is limited, FAST has a severe packet
loss problem and thus its throughput suffers.

5.2 Convergence Time

With high BDP networks, the transient period of TCP can
greatly affect overall performance. In this subsection, we
use a metric “convergence time” [8] to capture the transient
performance of TCP. Convergence time indicates how many
BaseRTTs are required to reach a new stable state.

The traffic sources are the same as the previous subsec-
tion. The bottleneck capacity Cb is varied for different BDP.
At some point of time, the CBR traffic source starts or stops
sending packets to halve or double the available bandwidth,
respectively.

Figure 10 presents the convergence time for a new con-
nection to reach equilibrium. Theoretically, Quick Vegas
doubles the increment rate in congestion avoidance phase
that results in logarithm convergence time in contrast to Ve-
gas which converges linearly. However, due to the bursty na-
ture of a new TCP connection, the succ may not be consec-
utively accumulated. The convergence time of Quick Vegas
is about half of that of Vegas as the BDP is greater than 500
Kb. On the other hand, due to the multiplicative increase
scheme, FAST features a less convergence time between the
three TCP variants. However, when the BDP is small (i.e.,
100 Kb), FAST becomes hard to be stable. It seems that
FAST may not be suitable for traditional low bandwidth-

994
IEICE TRANS. COMMUN., VOL.E91–B, NO.4 APRIL 2008

Fig. 11 Convergence time of connections when available bandwidth is
halved.

Fig. 12 Convergence time of connections when available bandwidth is
doubled.

delay product networks.
Figures 11 and 12 display the convergence time as the

available bandwidth is halved and doubled respectively. Ob-
viously, both Quick Vegas and FAST greatly improves the
transient performance of connections in both scenarios as
compared to Vegas. Again, FAST seems not be suitable for
small BDP networks.

5.3 Utilization, Queue Length, and Fairness

The simulations presented in this subsection intend to
demonstrate link utilization of the bottleneck, fairness be-
tween the connections, and queue length at the bottleneck
buffer where connections may join and leave the network.
The buffer size of the bottleneck router is 1500 packets.

5.3.1 Connections with the Same RTT

We use the network topology as shown in Fig. 6 to execute
the simulations. The bottleneck capacity Cb is set at 1 Gb/s.
Connections C1–C20, C21–C40, and C41–C60 start at 0, 100,
and 200 second respectively. Each connection with the same
active period is 300 seconds.

Figure 13 shows the bottleneck link utilization in which
connections of Vegas, Quick Vegas, New Reno, and FAST
are evaluated. When Vegas connections enter the empty net-
work, it takes 65 seconds to reach equilibrium, while Quick
Vegas takes 20 seconds. Since severe packet losses occur
in the exponentially increasing slow-start phase, the link

Fig. 13 Bottleneck Link Utilization for the connections with the same
RTT.

Fig. 14 Queue status of the bottleneck for the connections with the same
RTT.

utilization of New Reno during 0–20 second is quite low
(0.316). Fast TCP is limited by the buffer size of the bottle-
neck, it suffers a serious packet losses problem so it never
reach equilibrium and the utilization is only 0.06 in the first
100 seconds.

As the new connections C21–C40 and C41–C60 enter the
network at 100 and 200 second, both Vegas and Quick Ve-
gas can fully utilize the bottleneck link. By observing the
queue status shown in Fig. 14 we can find that Quick Ve-
gas keeps a similar maximum queue length as compared
with that of Vegas. A small maximum queue length implies
that the congestion window update algorithms may prevent
packet losses when the bottleneck buffer is limited. We can
also find that the queue length of FAST oscillates between 0

CHAN et al.: QUICK VEGAS: IMPROVING PERFORMANCE OF TCP VEGAS
995

Table 2 Fairness index for the connections with the same RTT.

Time (s) 0–100 100–200 200–300 300–400 400–500

Active Connections C1–C20 C1–C40 C1–C60 C21–C60 C41–C60

Vegas 0.969 0.941 0.972 0.987 0.999
Quick Vegas 0.994 0.996 0.999 0.999 0.991

FAST 0.998 0.991 0.986 0.997 0.991
New Reno 0.996 0.946 0.993 0.999 0.999

Fig. 15 Network configuration for the connections with different RTTs.

and 1500, and thus cause a poor bottleneck utilization, even
New Reno outperforms FAST.

When the available bandwidth increases substantially
due to connections C1–C20 and C21–C40 leave the network
at 300 and 400 second, the remaining connections of Quick
Vegas can also quickly adapt to the new available band-
width. As a result, the bottleneck link utilization of Quick
Vegas during 300–340 and 400–440 second are higher than
that of the other three TCP variants.

Different from Vegas or Quick Vegas, New Reno and
FAST can not maintain a suitable queue length as shown
in Fig. 14(c) and (d). Since New Reno needs to create
packet losses by itself to probe the available bandwidth
along the path and FAST needs to maintain at least 100
packets (i.e., α = 100) at the bottleneck buffer for each con-
nection. Therefore, packet losses occur periodically and cer-
tain amount of throughput is wasted. It is obvious that New
Reno and FAST can not reach such high link utilization like
that of Vegas or Quick Vegas as depicted in Fig. 13.

To evaluate the fairness among connections, we use the
fairness index proposed in [19]. Given a set of throughput
(x1, x2, . . . , xn), the fairness index of the set is defined as:

f (x) =
(
∑n

i=1 xi)
2

n
∑n

i=1 xi
2
. (13)

The value of fairness index is between 0 and 1. If the
throughput of all connections is the same, the index will take
the value of 1.

Table 2 shows the fairness index of the four TCP vari-
ants for each 100 seconds time period. Although Quick Ve-
gas adopts a more aggressive strategy to adjust the conges-
tion window size, however, Quick Vegas keeps slightly su-
perior fairness index values in comparison with that of Ve-
gas. The simulation result suggests that Quick Vegas has a
good characteristic of fairness when the contending connec-
tions with the same RTT.

Fig. 16 Bottleneck link utilization for the connections with different
RTTs.

Table 3 Fairness index for the connections with different RTTs.

Time (s) 0–50 50–100 100–150 150–200

Vegas 0.605 0.691 0.721 0.721
Quick Vegas 0.626 0.774 0.783 0.784

FAST 0.850 0.871 0.870 0.862
New Reno 0.622 0.431 0.475 0.469

5.3.2 Connections with Different RTTs

In this subsection, the simulations are executed for the three
groups of connections with different RTTs those work in the
network as shown in Fig. 15. Latency and bandwidth of each
access link and connection link are depicted in the figure.
A traffic pair contains a source and a destination with the
same subscript value. All connections have emulated a 200
second FTP transfer between Si and Di and start at the same
time. Routers utilize drop-tail queues with the buffer size
being set to 1500 packets.

Figure 16 shows the link utilization of bottleneck (R3-
R4) in which connections of Vegas, Quick Vegas, New Reno
and FAST are separately evaluated. When Vegas connec-
tions enter the empty network, they take 90 seconds to reach
stable state and full utilize the link while Quick Vegas’ take
only 40 seconds. On the other hand, due to the limitation by
the buffer size, the average link utilization of FAST is about
0.15. Since the New Reno connections with the traditional
congestion window update scheme can not quickly ramp up
to the available bandwidth, the link utilization between 0
and 20 seconds is quite low. In the congestion avoidance
phase, New Reno connections cause packet losses periodi-
cally and thus the bottleneck link cannot be full utilized.

996
IEICE TRANS. COMMUN., VOL.E91–B, NO.4 APRIL 2008

Fig. 17 Queue status of the bottleneck for the connections with different
RTTs.

With different properties, New Reno and FAST can not
maintain a stable queue length as shown in Figs. 17(c) and
(d). It is obvious that, again, New Reno and FAST can
not maintain such high link utilization like that of Vegas or
Quick Vegas.

Table 3 shows the fairness index of the four TCP vari-
ants for each 50 seconds time period. Quick Vegas always
keeps superior fairness index values than that of Vegas and
New Reno. Although FAST has the most higher fairness
index values in this table. However, its bottleneck link uti-
lization is quite low.

6. Conclusions

In this research, we propose an enhanced version of TCP
Vegas named Quick Vegas that improves the slow-start and
congestion avoidance techniques of original Vegas. With the
superior transient behavior, Quick Vegas outperforms Vegas
when the connections work in high bandwidth-delay prod-
uct networks. In comparison with FAST, Quick Vegas fea-
tures a less bottleneck buffer utilization and keeps a better
adaptability to traditional network environments.

To further advance this study, future work is needed.
First, how to model the behavior of a Quick Vegas connec-
tion when it decreases its window size to alleviate the net-
work congestion is still unanswered in this work. In other
words, a more complete mathematical analysis of the new
congestion avoidance scheme should be provided. Second,

the most important one, the slow-start mechanism of Quick
Vegas is needed to be modified. From the simulation results
we are sure that there is still room for further improvement.

References

[1] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” Proc. ACM SIGCOMM’02,
vol.31, no.4, pp.89–102, Aug. 2002.

[2] L.S. Brakmo and L.L. Peterson, “TCP Vegas: End to end conges-
tion avoidance on a global Internet,” IEEE J. Sel. Areas Commun.,
vol.13, no.8, pp.1465–1480, Oct. 1995.

[3] W. Feng and P. Tinnakornsrisuphap, “The failure of TCP in
high-performance computational grids,” Proc. SC 2000: High-
Performance Networking and Computing Conf., Nov. 2000.

[4] A. Veres and M. Boda, “The chaotic nature of TCP congestion con-
trol,” Proc. IEEE INFORCOM’2000, vol.3, pp.1715–1723, March
2000.

[5] J.S. Ahn, P.B. Danzig, Z. Liu, and L. Yan, “Evaluation of TCP
Vegas: Emulation and experiment,” Proc. ACM SIGCOMM’95,
vol.25, pp.185–195, Aug. 1995.

[6] J. Mo, R.J. La, V. Anantharam, and J. Walrand, “Analysis and
comparison of TCP Reno and Vegas,” Proc. IEEE INFORCOM’99,
vol.3, pp.1556–1563, March 1999.

[7] G. Hasegawa, M. Murata, and H. Miyahara, “Fairness and stabil-
ity of congestion control mechanism of TCP,” Telecommunication
Systems Journal, vol.15, no.2, pp.167–184, Nov. 2000.

[8] S. Vanichpun and W. Feng, “On the transient behavior of TCP Ve-
gas,” Proc. IEEE ICCCN’02, pp.504–508, Oct. 2002.

[9] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling
TCP throughput: A simple model and its empirical validation,”
IEEE/ACM Trans. Netw., vol.8, no.2, pp.133–145, 2002.

[10] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson, “On the
self-similar nature of Ethernet traffic,” IEEE/ACM Trans. Netw.,
vol.2, no.1, pp.1–15, Feb. 1994.

[11] S. Bhandarkar, S. Jain, and A.L. Narasimha, “LTCP: Improving the
performance of TCP in highspeed networks,” ACM SIGCOMM,
vol.36, no.1, pp.41–50, Jan. 2006.

[12] R. Wang, K. Yamada, M.Y. Sanadidi, and M. Gerla, “TCP with
sender-side intelligence to handle dynamic, large, leaky pipes,”
IEEE J. Sel. Areas Commun., vol.23, no.2, pp.235–248, Feb. 2005.

[13] I. Rhee and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP-
Variant,” Proc. PFLDnet 2005, 2005.

[14] R. King, R. Riedi, and R. Baraniuk, “TCP-Africa: An adaptive and
fair rapid increase rule for scalable TCP,” Proc. INFOCOM 2005,
2005.

[15] A. Maor and Y. Mansour, “AdaVegas: Adaptive control for TCP
Vegas,” Proc. IEEE GLOBECOM’03, vol.7, pp.3647–3651, Dec.
2003.

[16] C. Jin, D. Wei, and S. Low, “Fast TCP: Motivation, architecture,
algorithm, performance,” Proc. IEEE INFORCOM 2004, vol.4,
pp.2490–2501, March 2004.

[17] A. Jain and S. Floyd, “QuickStart for TCP and IP,” Internet draft
draft-amit-quick-start-02.txt, Oct. 2002.

[18] http://www.isi.edu/nsnam/ns/
[19] R. Jain, The art of computer systems performance analysis: Tech-

niques for experimental design, measurement, simulation and mod-
eling., Wiley, New York, 1991.

CHAN et al.: QUICK VEGAS: IMPROVING PERFORMANCE OF TCP VEGAS
997

Yi-Cheng Chan received his Ph.D. degree
in computer science and Information engineer-
ing from National Chiao Tung University, Tai-
wan in 2004. He is now an assistant professor in
the department of computer science and Infor-
mation engineering of National Changhua Uni-
versity of Education, Taiwan. His research in-
terests include Internet protocols, wireless net-
working, and AQM.

Chia-Liang Lin received his master degree
in computer science and information engineer-
ing from National Changhua University of Edu-
cation, Taiwan in 2007. He is currently a Ph.D.
student in computer science at National Chiao
Tung University, Taiwan. His research interests
include the design and analysis of congestion
control algorithms and wireless protocols.

Cheng-Yuan Ho is currently a Ph.D. student
in computer science at National Chiao Tung
University, Taiwan. He is research interests in-
clude the design, analysis, and modelling of
congestion control algorithms, high speed net-
working, QoS, and mobile and wireless net-
works.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

