

1

CTCP-TUBE: Improving TCP-Friendliness Over

Low-Buffered Network Links

Kun Tan Jingmin Song

Microsoft Research Asia

Beijing, China

{kuntan,jingmins}@microsoft.com

Murari Sridharan

Microsoft Corporation

Redmond, WA, USA

muraris@microsoft.com

Cheng-Yuan Ho
1

DCS, National Chiao Tung University

Taiwan

cyho@csie.nctu.edu.tw

Abstract—Compound TCP (CTCP) is a synergy of delay and

loss-based congestion control, which achieves good efficiency,

RTT fairness and TCP-friendliness. However, CTCP requires

detecting incipient congestion effectively by estimating the back-

logged packets and comparing it to a pre-defined parameter 𝛄.

Choosing the appropriate value for 𝛄 could be a problem because

this parameter depends on both network configuration and the

number of concurrent flows, which are generally unknown to the

end-systems. As a consequence, when operating over under-

buffered links, CTCP may demonstrate poor fairness to regular

TCP flows that may be comparable to HSTCP.

 In this paper, we present a novel technique that automatically

tunes CTCP parameters so that it greatly improves the TCP-

friendliness of CTCP over under-buffered links. This new tech-

nique, called Tuning-By-Emulation (TUBE), dynamically esti-

mates the average queue size for a regular TCP flow, and based

on which sets the parameter γ. This way CTCP can effectively

lower γ on under-buffered links to keep good TCP-friendliness,

and alternatively increases γ if the link buffer is sufficient to en-

sure high throughput. Our extensive packet-level simulations and

test-bed experiments on a Windows implementation confirm the

effectiveness of CTCP-TUBE.

Index Terms— high-speed network, congestion control, com-

pound TCP

I. INTRODUCTION

Transmission Control Protocol (TCP) provides reliable data

transmission with embedded congestion control algorithm,

which effectively removes congestion collapses in the Internet

by adjusting the sending rate according to the available band-

width of the network. However, it has been reported that TCP

substantially underutilizes network bandwidth over high-speed

and long distance networks [2]. In last decade, researchers have

been actively seeking new approaches to improve TCP perfor-

mance over fast and long distance networks. However, new

high-speed congestion control protocols must satisfy the fol-

lowing three requirements before they can be successfully dep-

loyed into the Internet:

[Efficiency] It must improve the throughput of the connec-

tion to efficiently use the high-speed network link.

[RTT fairness] It must also have good intra-protocol fairness,

especially when the competing flows have different RTTs.

[TCP fairness] It must not reduce the performance of other

regular TCP flows competing on the same path. This means that

the high-speed protocols should only make better use of resi-

dual bandwidth, but not steal bandwidth from other flows.

In our previous work, we proposed Compound TCP (CTCP),

a promising approach that satisfies all aforementioned require-

ments [4]. CTCP is a synergy of both delay-based and loss-

based congestion avoidance approaches, in which a scalable

delay-based component is added to the standard TCP. This de-

lay-based component can efficiently use the link capacity, and

also can react early to congestion by sensing the changes in

RTT. This way, CTCP achieves high link utilization, good RTT

fairness and TCP friendliness.

To effectively detect early congestions, CTCP requires esti-

mating the backlogged packets at bottleneck queue and com-

pares this estimate to a pre-defined threshold γ. However, set-

ting this threshold γ is particular difficult to CTCP (and to many

other similar delay-based approaches), because γ largely de-

pends on the network configuration and the number of concur-

rent flows that compete for the same bottleneck link, which are,

unfortunately, unknown to end-systems. As a consequence, the

original proposed CTCP with a fixed γ may still demonstrate

poor TCP-friendliness over under-buffered network links. In the

worst case, TCP-unfairness of CTCP may even be comparable

to that of HSTCP [6]. One naïve solution to that problem is to

configure γ to a very low value, but a very small γ may falsely

detect congestion and adversely affect the throughput.

In this paper, we propose a novel technique that greatly im-

proves the TCP-friendliness of CTCP over such under-buffered

network links without degrading the protocol efficiency to util-

ize the link capacity. Instead of using a pre-defined threshold,

our approach, TUBE (Tuning-By-Emulation) dynamically ad-

justs threshold γ based on the network setting in which the flow

is operating. The basic idea of our proposal is to estimate the

backlogged packets of a regular TCP along the same path by

emulating the behavior of a regular TCP flow in runtime. Based

on this, γ is set so as to ensure good TCP-friendliness. CTCP-

TUBE can automatically adapt to different network configura-

tions (i.e. buffer provisioning) and also concurrent competing

flows. Our extensive simulations on NS2 simulator reveal the

effectiveness of CTCP-TUBE. Although TUBE is proposed to

improve the TCP-friendliness of CTCP, we believe it can shed

the light on parameter tuning for general delay-based approach-

es as well.
1 This work is done when Cheng-Yuan Ho is an intern in Microsoft

Research Asia.

2

II. BACKGROUND AND MOTIVATION

CTCP [4] is a synergy of both delay- and loss-based ap-

proaches. It contains two components that jointly control the

sending rate of a TCP sender. A new state variable is intro-

duced in current TCP Control Block, namely, dwnd (Delay

Window), which controls this delay-based component in CTCP.

And the conventional cwnd (congestion window) controls the

loss-based component. Then, the TCP sending window (called

window hereafter) is now calculated as follows:

),min(awnddwndcwndwin , (1)

where awnd is the advertised window from the receiver.

Cwnd is updated in the same way as in the regular TCP in

the congestion avoidance phase, i.e., cwnd is increased by one

MSS every RTT and halved upon a packet loss event. Specifi-

cally, cwnd is updated as follows:

cwnd t + 1 =
cwnd t +

1

win t
, on receiving an ACK

cwnd t

2
, if loss detected

 (2)

Dwnd is updated based on the delay information. It uses an

approach similar to TCP Vegas [7] to detect early congestion in

the network path. More specifically, CTCP estimates the num-

ber of backlogged packets of the connection by following algo-

rithm:

baseRTTActualExpectedDiff

RTTwinActual

baseRTTwinExpected

)(

/

/
. (3)

The baseRTT is an estimation of the transmission delay of a

packet. The Expected gives the estimation of throughput we get

if we do not overrun the network path. The Actual stands for

the throughput we really get. Then, Diff stands for the amount

of data that injected into the network in last round but does not

pass through the network in this round, i.e. the amount of data

backlogged in the bottleneck queue. An early congestion is

detected if the number of packets in the queue is larger than a

threshold , i.e. if diff < , the network path is determined as

under-utilized; otherwise, the network path is considered as

congested. CTCP updates its dwnd based on the following rules:

dwnd t + 1 =

 dwnd t + α ⋅ win t k − 1
+

, if diff < 𝛾

 dwnd t − ξ ⋅ diff +, if diff ≥ γ

 win t ⋅ 1 − β −
cwnd

2

+
, if loss detected

 . (4)

Parameters of α, β and k are tuned to have comparable scalabil-

ity to HSTCP when there is absence of congestion.

From the control laws stated in (4), it essential requires the

connection to have at least γ packets backlogged in the bottle-

neck queue to detect early congestion. In [4], we use a fixed

value γ = 30 packets, after a number of empirical experiments.

Although this setting achieves pretty good tradeoff between

TCP fairness and throughput in our testing environment, it fails

to maintain good TCP-friendliness over links which are either

poorly buffered, or have many competing flows [6]. To dem-

onstrate this, we perform simulation using a dumb-bell topolo-

gy as shown in Figure 1. The bottleneck buffer size is 110

packets which is less than 10% of BDP (or sustaining only

14ms transmission) of the network path.

We run one regular TCP flow against increasing number of

CTCP and HSTCP flows and we draw the bandwidth stolen in

Figure 2. The bandwidth stolen is a metric that quantifies the

impact on throughput of new high-speed protocols on regular

TCP flows [4]. It is defined as the ratio between the throughput

of regular TCP when they compete with high-speed flows and

when they compete with same number of regular TCP flows.

For a high-speed protocol to be fair the value of bandwidth sto-

len should be low so as to not reduce the throughput for regular

TCP flows.

Figure 1. The dumb-bell topology for simulation.

Figure 2. The bandwidth stolen when the number of high-speed

flows increases.

Figure 2 clearly shows that when there is only one CTCP

flow competing with one regular TCP flows, CTCP can retain

pretty good TCP friendliness. However, with increase of the

CTCP flows, CTCP becomes increasing unfair to regular TCP.

When there are 5 CTCP flows compete with one regular TCP,

the regular TCP flow loses over 80% of throughput compared

to that if it is competing with 5 regular TCP flows. This is com-

parable to HSTCP.

The reason behind this phenomenon can be explained as fol-

lows. When there are only two flows in the network, the buffer

is sufficient for each flow, i.e. each flow can get around 60

packets queued in the network buffer, and therefore, the delay-

based component of CTCP can robustly detect congestion and

retreat gracefully by decreasing dwnd. However, with the in-

crease of the flow number, each flow gets fewer shares in the

network buffer. As a consequence, the delay-based component

in CTCP is less effective in detecting early congestion. When

the flow number reaches four, the average buffer allocated for

each flow is less than γ = 30, thus the delay-based component

loses the ability to detect early congestion and it behaves as

aggressively as HSTCP.

A naïve approach to fix this might choose a very small γ, e.g.

100mbps, 73ms

10G
bps, 1m

s 10G
bps,

 1
m

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

Number of CTCP/HSTCP flows

B
a
n
d
w

id
th

 s
to

le
n
 (

%
)

CTCP HSTCP

3

1 or 2 packet(s), which should be sufficiently small for most of

practical network links. However, such small γ will make de-

lay-based component too sensitive to delay jitter in the network

path and generate a lot of false alarms, which in turn hurts the

throughput.

In summary, a mechanism that can automatically adjust the

parameter γ is critical for CTCP to work well in a general net-

work setting: over under-buffered links, γ should be set to

small to ensure TCP-friendliness; over sufficiently buffered

links, γ should be adjusted to a high value to achieve better

throughput.

III. CTCP-TUBE

Setting γ is very challenging in practice, because it is af-

fected by the router buffer size and the number of concurrent

competing flows. Our previous model on CTCP shows that γ

should at least be less than
B

m+l
 to ensure the effectiveness of

early congestion detection, where m and l present the flow

number of concurrent regular TCP flows and CTCP flows that

are competing for the same bottleneck link [4]. Generally, both

B and (m+l) are unknown to end-systems. It is even very diffi-

cult to estimate them from end-systems in real-time, especially

the number of flows, which can vary significantly over time.

Fortunately there is a way to directly estimate the ratio
B

m+l
,

even though the individual variables B or (m+l) are hard to

estimate.

Let’s first assume there are (m+l) regular TCP flows in the

network. These (m+l) flows should be able to fairly share the

bottleneck capacity in steady state. Therefore, they should also

get roughly equal share of the buffers at the bottleneck, which

should equal to
B

m+l
. For such a regular TCP flow, although it

does not know either B or (m+l), it can still infer
B

m+l
 easily by

estimating its backlogged packets, which is a rather mature

technique widely used in many delay-based protocols!

This brings us to the core idea of our approach, which we

call Tuning-by-Emulation, or TUBE. We let the sender emulate

the congestion window of a regular TCP. With this emulated

regular TCP window, we can estimate the queue size of a regu-

lar TCP, Qr , that competes with the high-speed flow in the

same network path. Qr can be regarded as a conservative esti-

mate of
B

m+l
, assuming the high-speed flow is more aggressive

than regular TCP. Therefore, if we choose CTCP γ ≤ Qr , we

can pretty well ensure its TCP-friendliness.

A. TUBE Algorithm

Although we flatter ourselves that the design of TUBE is

subtle, the implementation is actually trivial. It is because in

CTCP, there is already an emulation of regular TCP as the loss-

based component. We can simply estimate the buffer occupan-

cy of a competing regular TCP flow from state which CTCP

already maintains. The details of TUBE algorithm is elaborated

as follows.

We choose an initial γ. After every round, we calculate diff

using Equation (3). At the same time, we estimate the back-

logged packets of a regular TCP with

baseRTTrenoActualrenoExpectedrenoDiff

RTTcwinrenoActual

baseRTTcwinrenoExpected

)__(_

/_

/_
 . (5)

However, since regular TCP reaches its maximum buffer oc-

cupancy just before a loss, we may only use the diff_reno calcu-

lated in the last round before a loss happens to update γ. We

choose a γ∗ < 𝑑𝑖𝑓𝑓_𝑟𝑒𝑛𝑜, and every time CTCP gets a loss, it

updates γ with an exponentially moving average,

γ = 1 − λ γ + λ ⋅ γ∗. (6)

Figure 3 shows the pseudo-code of the TUBE algorithm. A

new state variable, diff_reno, is added. Although diff_reno is

updated every round, only the value before a packet loss is used

to update . We further bound within a range [γlow , γhigh].

Note that in line 17, diff_reno is set to invalid after updating.

This is to prevent using stale diff_reno data when there are con-

secutive losses between which no diff_reno sample is taken.

1 Initialization:

2 Diff_reno = invalid;

3 Gamma = 30;

4

5 On-The-End-of-Round:

6 Expected_reno = cwnd / baseRTT;

7 Actual_reno = cwnd / RTT;

8 Diff_reno=(Expected_reno–Actual_reno)

9 *baseRTT;

10

11 On-Packet-Loss:

12 If Diff_reno is valid then

13 g_star = 3/4*Diff_reno;

14 gamma=gamma*(1-lamda)+ lamda*g_star;

15 if (gamma < g_low) gamma=g_low;

16 elsif (gamma > g_high) gamma=g_high;

17 fi

18 Diff_reno = invalid;

19 fi

Figure 3. Pseudo-code for the TUBE algorithm.

We show the TUBE algorithm has following properties.

Property 1: CTCP-TUBE will not steal bandwidth from

competing regular TCP flows.

Property 2: CTCP flows with TUBE will have same γ at the

steady state, if they have same base RTT.

Due to the space limitation, we omit the proof of these two

properties in this paper.

IV. PERFORMANCE EVALUATION

A. Methodology

We evaluate TUBE using NS2 simulations and lab experi-

ments with our CTCP implementation on the Windows plat-

form. Due to space limitation, we only present the NS2 simula-

tions. All experiments are conducted under a dumbbell topology

4

as shown in Figure 1.

We mainly compare CTCP-TUBE with original CTCP with

fixed gamma in very poorly buffered scenarios, in which our

original CTCP fails to maintain good TCP-friendliness. Im-

proving TCP-friendliness in such scenarios makes sense in

practice, because during our tests on CTCP over production

networks, we found a number of network links that are signifi-

cantly under-provisioned [6]. In all TCP implementations,

SACK is enabled by default.

 Unless otherwise stated, the parameters of CTCP-TUBE in

tests are γlow = 5 , γhigh = 30 , λ = 0.25 . For our original

CTCP implementation, we keep γ = 30.

B. Results

1) TCP-friendliness

 In the first experiment, we try to see how CTCP–TUBE be-

haves under the situation mentioned in Section II, in which one

regular TCP flow is competing with varying number of CTCP

flows. Figure 4 shows the bandwidth stolen of CTCP-TUBE. It

is clearly evident that CTCP-TUBE greatly improves the TCP-

friendliness. In our original CTCP design, when there are four

flows (1 regular TCP and 3 CTCP), the average buffer allo-

cated for each flow is less than 30 packets, so that the delay-

based component of CTCP fails to detect congestion and it

behaves as aggressively as HSTCP. However, TUBE effective-

ly tracks the size of buffer that is occupied by the regular TCP

and adjusts γ to a lower value when there are more flows. For

example, when there are four flows in the network, TUBE ef-

fectively sets γ to be 21 packets. As a consequence, CTCP-

TUBE maintains very good TCP-friendliness.

 In the second experiment, we evaluate CTCP-TUBE with

different buffer sizes. We set the bottleneck link speed to be

1Gbps and the round trip delay to be 100ms. We run 15 regular

TCP flows and 15 CTCP flows simultaneously. We vary the

buffer from 50 packets (0.6% of BDP) to 2000 packets (24% of

BDP). Figure 5 shows the bandwidth stolen of original CTCP

as well as CTCP-TUBE. We can see that CTCP steals much

bandwidth from regular TCP flows until the buffer size is large

enough (1000 packets), when the average buffer allocated to

each flow is more than 30 packets. However, TUBE improves

the TCP-friendliness of CTCP greatly in most cases due to its

ability to adjust γ dynamically. Certainly, when the buffer is

really tiny, i.e. 50 packets, even with γ = γlow = 5, the delay-

based component still cannot reliably detect congestion. How-

ever, we believe such tiny buffered links are rare in practice.

In the final experiment in this section, we test TCP-TUBE

with varying number of CTCP flows under a high-speed net-

work link. The bottleneck speed is 1Gbps and the round trip

delay is 100ms. The buffer is set to 250 packets, which equals

to 3% of BDP. We find that many links are actually configured

with similar buffer sizes [6]. This could be because many rou-

ters choose this as the default value and administrators just

keep it when deploying the network. We run 5 regular TCP

flows and we vary the number of CTCP flows.

Figure 6 shows the bandwidth stolen. When there is only one

CTCP flow, it can perfectly maintain the TCP friendliness.

However, with increasing number of CTCP flows, the original

CTCP cannot get the sufficient buffer for detecting congestion.

As a consequence, it just greedily increases its sending rate thus

adversely impacting regular TCP flows. However, TUBE can

maintain TCP-friendliness well with more flows again due to its

ability to adjust γ dynamically.

In summary, we show that TUBE is really able to adapt not

only to changes of buffer size, but also to the number of concur-

rent flows. Although both of these values are unknown, TUBE

is still able to choose a proper γ by emulating a regular TCP and

estimating the buffer occupied by a regular TCP at runtime.

This way, CTCP-TUBE remains TCP-friendly in a wide-range

of scenarios including many under-buffered cases, in which

original CTCP exhibited its worst case behavior.

1) Throughput

In this subsection, we evaluate the impacts of TUBE on

CTCP throughput. Although TUBE may dynamically adjust

to a small value when the link is less provisioned, we expect

CTCP-TUBE is still able to utilize the link capacity efficiently

when the buffer is sufficient.

In the first experiment, we set the link speed to be 1Gbps,

and the round trip delay is 100ms. We set the buffer size is

1500 packets. We varied the loss rate of the link from 10
-2

 to 10
-

6
. We run 4 flows of the same type simultaneously and the ag-

gregated throughput of the four flows are presented in Figure 7.

It clearly shows that CTCP-TUBE has the similar ability to ef-

ficiently use link capacity compared to the original CTCP.

2) Intra-flow fairness and convergence of 𝛾

 Although each CTCP-TUBE flow individually adjusts its γ

value, these values are converged if the flows have similar

round trip delay. In this section, we verify this property. In this

experiment, we set the bottleneck link speed to be 1Gbps and

the round trip delay is 30ms. The bottleneck buffer is 200 pack-

ets. We start 3 CTCP-TUBE flows at time zero. Then after 300s,

we start another 3 CTCP-TUBE flows. After that, we add 3

CTCP-TUBE flows every 900s, until there are 12 flows in the

network.

Figure 8 shows the instantaneous throughput of each CTCP-

TUBE flows. We see they converge to fair share quickly every

time new flows are added. Figure 9 shows the instantaneous γ

value of each CTCP-TUBE flow. At the beginning, there are

only 3 flows in the network, so each of them can occupy

enough buffer and their γ values are set to the maximum, i.e. 30

packets. However, when another 3 flows come, the average

buffer size allocated for each flow is around 33 packets, so

TUBE adjusts γ to a value equal to 3/4 of the average buffer

allocation, i.e. 24 packets. And more flows are added, TUBE

reduces γcorrespondingly. Each time, we can see that the γ val-

ue of each flow converges.

3) RTT fairness

 As aforementioned, CTCP-TUBE with different round trip

delays may adjust γ to different values so that RTT fairness

may be slightly affected. To evaluate this, we conduct the fol-

lowing experiment. We use four flows competing for the bot-

5

tleneck links with different round trip delay. Two of them have

shorter delay with 40ms. The other two flows have longer de-

lay which varied between 40ms, 80ms, 120ms and 240ms. The

bottleneck link speed is 1Gbps and the buffer size is set to 1500

packets.

Table 1 summarizes the throughput ratio between the two

sets of flows with different round trip delay. We can see TUBE

has little impact on the RTT fairness and it still keeps the simi-

lar RTT fairness property as original CTCP.

Table 1. Throughput ratio with different round trip delay.
Inverse RTT ratio 1 2 3 6

Regular TCP 1.01 3.38 8.51 21.7

HSTCP 1.04 9.65 85.76 198.7

CTCP 1.1 1.67 3.1 5.5

CTCP-TUBE 1.01 1.55 2.03 5.42

A. Lab test-bed experiments

In this section, we present the results of CTCP-TUBE in a

lab test-bed. The implementation of TUBE is based on our

original implementation of CTCP on Windows platform.

1) TCP friendliness

We repeat a similar experiment to the one described in Sec-

tion IV.B.1) to verify the TCP-friendliness property of CTCP-

TUBE. We configure DummyNet to set the link speed to be

300Mbps and buffer is set to 500 packets. The round trip delay

is 100ms. We run one regular TCP against varying number of

CTCP flows. We plot the results in Figure 10. Similarly, when

there are 17 flows, the average buffer allocated for each flow is

roughly 500/17 < 30. CTCP with a fixed value of γ will steal

bandwidth from regular TCP. However, CTCP-TUBE main-

tains the good TCP friendliness in all cases.

2) Throughput

We also conducted experiments in the test-bed to verify the

efficiency of CTCP-TUBE in utilizing high-speed link capacity.

We set the bottleneck link speed is 700Mbps and buffer size is

1500 packets. The round trip delay is 100ms. We generate

on/off UDP traffic with different peak data rate. The on-period

and off-period are both 10s. In each experiment, we start 4

flows of same type simultaneously. We plot the throughput of

each type of flow in Figure 11. We also plot the throughput of

4 CTCP flows with γ set to a fixed value 5. We can see TUBE

has only modestly impact on CTCP’s throughput (reducing

3%), although it significantly improves the TCP-fairness over

under-provisioned links. However, as we can see, simply set-

ting a low γ value may hurt the TCP throughput. In this case, it

has nearly 10% throughput degradation compared to the origi-

nal CTCP.

V. RELATED WORK

The research community is well aware of the fact that the

conservative TCP congestion control algorithm becomes inef-

ficient in high-speed and long delay networks. In the last dec-

ade, researchers have proposed numerous enhancements for

TCP protocol. Some of them directly modify the in-

crease/decrease parameters of TCP so as to improve the

throughput in high-speed environments. Examples of this sort

of enhancements include STCP [1], HSTCP [2], BIC-TCP [3].

However, these proposals suffer fundamental tradeoffs between

throughput, RTT fairness and TCP-friendliness. Some other

proposals use delay as congestion information, e.g. FAST [5],

and the delay-based approach demonstrates nice properties in a

network in which all flows are delay-based. But delay-based

approaches generally are not competitive to loss-based flows as

they try to remain only a small queue on the bottleneck link.

Moreover, choosing the target queue size is an open question

for delay-based approaches. CTCP [4] is designed to combine

the advantages of both loss- and delay-based approaches. It

incorporates a scalable delay-based component into the standard

TCP congestion avoidance algorithm. The scalable delay-based

component has a rapid window increase rule when it senses the

network to be under-utilized and gracefully reduces the sending

rate once the bottleneck queue is built. Using the delay-based

component as an auto-tuning knob, CTCP achieves good effi-

ciency, pretty RTT fairness and TCP-friendliness. However, as

CTCP uses delay-based approach, it also inherits the fundamen-

tal question of how to set parameter for early congestion detec-

tion. In [4], the authors propose to use a fixed number. And

therefore, in some excessively under-buffered link, CTCP may

fail to maintain its TCP-friendliness and behaves in the worst

case similar to HSTCP.

Tuning parameters for delay-based approaches in the litera-

ture is largely based on TCP Vegas [7], and tries to enhance

TCP Vegas to be competitive to TCP Reno. In [10] and [11],

the authors have developed mathematical models as well as

used simulations to identify that the target queue-size for delay-

based approaches is a function of both bottleneck buffer as well

as the flow number of each type. Unfortunately, none of the

above parameters is easily known to the end-systems. Hasega-

wa, et. al. [8] proposed a heuristic to dynamically switch TCP

Vegas between a moderate and an aggressive mode. However,

the switching decision is based on another parameter Countmax.

This leaves another open question on how to set Countmax. Sri-

jith et. al. [9] proposed TCP Vegas-A that can dynamically tune

α and β. They used the throughput changes in adjacent rounds

as heuristics. The basic idea is if the throughput increases in the

new round, α and β should both increase. Otherwise, α and β

should be both decreased. Although the proposed algorithm

reduced “unfairness” of TCP Vegas to Reno, it is yet still far

from true fairness. Similar to [10] and [11], CTCP-TUBE de-

rives a relation between the parameter γ and the network para-

meters of buffer size and the number of concurrent flows. How-

ever, TUBE does not estimate either network buffer size, or the

flow number. Instead, TUBE exploits an emulator at the sender

side that emulates the behavior of a regular TCP. This way, a

sender can guess a fair share of queue size of a regular TCP,

which actually is the target queue-size for a delay-based flow to

be TCP-friendly. We believe TUBE is not only applicable to

CTCP, but it sheds light on tuning other delay-based approach-

es to be TCP-friendly.

6

VI. CONCLUSIONS

In this paper, we present a technique, called Tuning-by-

Emulation (TUBE), which effectively adjusts the targeting

queue size for delay-based approaches. TUBE greatly improves

the TCP-friendliness of Compound TCP over severely under-

buffered network links. Moreover, TUBE sheds light on tuning

parameters of other delay-based approaches to improve TCP-

friendliness. Our extensive simulations confirm the effective-

ness of TUBE.

REFERENCES

[1] T. Kelly. Scalable TCP: Improving Performance in HighSpeed Wide
Area Networks. First International Workshop on Protocols for Fast Long

Distance Networks, Geneva, February 2003.

[2] S. Floyd, “HighSpeed TCP for Large Congestion Windows”, RFC 3649,
December 2003.

[3] L. Xu, K. Harfoush and I. Rhee. Binary Increase Congestion Control

(BIC) for Fast Long-Distance Networks. In Proc. IEEE InfoCOM 2004.

[4] K. Tan, J. Song, Q. Zhang and M. Sridharan. A Compound TCP Approach

for High-speed and Long Distance Networks. IEEE Infocom 2006.
[5] C. Jin, D. Wei and S. Low, “FAST TCP: Motivation, Architecture, Algo-

rithms, Performance”, In Proc IEEE INFOCOM 2004.

[6] Y. T. Li. Evaluation of TCP Congestion Control Algorithms on the Win-
dows Vista Platform. SLAC-TN-06-005, 2006.

[7] L. Brakmo, S. O'Malley, and L. Peterson, “TCP Vegas: New techniques

for congestion detection and avoidance”, in Proc. ACM SIGCOMM, 1994.
[8] G. Hasegawa, K. Kurata, and M. Murata, “Analysis and improvement of

fairness between TCP Reno and Vegas for deployment of TCP Vegas to

the Internet,” ICNP 2000, pp. 177~186, Nov. 2000.
[9] K. N. Srijith, L. Jacob, and A. L. Ananda, “TCP Vegas-A: solving the

fairness and rerouting issues of TCP Vegas,” IPCCC 2003, pp. 309~316,

Apr. 2003.
[10] E. Weigle and W. Feng, “A Case for TCP Vegas in High-Performance

Computational Grids”, HPDC 2001.

[11] W. Feng and S. Vanichpun, “Enabling compatibility between TCP Reno
and TCP Vegas,” SAINT 2003, pp. 301~308, Jan. 2003.

Figure 4. Bandwidth stolen of CTCP-

TUBE. One regular TCP flow competes

with varying number of high-speed

flows.

Figure 5. Bandwidth stolen under differ-

ent buffer setting.

Figure 6. Bandwidth stolen under vari-

ous CTCP flows.

Figure 7. Throughput under various ran-

dom link loss rate.

Figure 8. The instantaneous throughput

of each CTCP-TUBE flow.

Figure 9. The instantaneous γ value of

each CTCP-TUBE flow.

Figure 10. Bandwidth stolen. One regu-

lar TCP flow competes with different

number of CTCP flows.

Figure 11. Throughput under on/off

background traffic.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

Number of CTCP/HSTCP flows

B
a
n
d
w

id
th

 s
to

le
n
 (

%
)

CTCP HSTCP CTCP-TUBE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50 150 250 500 1000 2000

Buffer size (packets)

B
a
n
d
w

id
th

 s
to

le
n

CTCP CTCP-TUBE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 5 10 15 20 30 45

Flow number

B
a

n
d

w
id

th
 s

to
le

n

CTCP CTCP-TUBE

0

100

200

300

400

500

600

700

800

900

1000

0.01 0.001 0.0001 0.00001 0.000001 0

Link packet loss rate

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Regular TCP HSTCP CTCP-TUBE CTCP

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

Time (s)

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000

First 3 flows enter

Second 3 flows enter

Third 3 flows enter

Last 3 flows enter

Time (s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 8 12 16 20 25

CTCP flow #

B
a
n
d
w

id
th

 S
to

le
n

CTCP-TUBE CTCP

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

200 150 100 50

Background Traffic (Mbps)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

CTCP-TUBE CTCP Regular TCP CTCP-gamma 5

