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Abstract

In this article, we present a new slow-start variant, which
improves the throughput of TCP Vegas, we call this new
mechanism Gallop-Vegas which quickly ramps up to the
available bandwidth and reduces the burstiness during the
slow-start phase. Since TCP (Transmission Control Pro-
tocol) is known to send bursts of packets during its slow-
start phase due to the fast increase of window size and the
ACK-clock based transmission. This phenomenon causes
TCP Vegas to change from slow-start phase to congestion-
avoidance phase too early in the large BDP (bandwidth-
delay product) links. Therefore, in Gallop-Vegas, we in-
crease the congestion window size with a rate between
exponential growth and linear growth during slow-start
phase. Our extensive simulation results show that Gallop-
Vegas significantly improves the performance during the
slow-start phase. Furthermore, it is implementation feasi-
ble because only sending part needs to be modified.

1 Introduction

With the rapid growth of Internet population and the in-
tensive usage of TCP/IP protocol suite, the TCP congestion
control algorithm has become a key factor influencing the
performance and behavior of the Internet. Several studies
have reported that TCP Vegas [1, 2] provides better per-
formance than TCP Reno with respect to overall network
utilization, stability, fairness, throughput, packet loss, and
burstiness. Since TCP Vegas uses the difference between
the expected and actual flow rates to infer the congestion
window adjustment policy from throughput measurements,
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it usually reduces the sending rate before the connection ac-
tually experiences a packet loss.

Although TCP Vegas successfully detects network con-
gestion in the early stage, however, the burstiness during
slow-start phase causes Vegas to change from slow-start
phase to congestion-avoidance phase too early, especially
in a large-bandwidth link with long-delay. Since the sender
has no prior knowledge regarding the available bandwidth
on the networks, it leads to the abrupt transition of conges-
tion window with exponential growth and transmission of
highly bursty traffic from the source, and it in turn would
cause buffer overflow at the bottleneck link during the slow-
start phase [3, 4, 5, 6, 7, 8]. To solve this problem, certain
new techniques, schemes, or refinements of slow-start phase
of TCP Vegas have been proposed. In these earlier works,
there are three ways to smooth out the burstiness or post-
pone the time instant of changing from slow-start phase to
congestion-avoidance phase. The first approach is select-
ing γ dynamically to suit various kinds of BDP networks
[3], but it needs to estimate the available bandwidth of the
network at the steady state. However, to estimate the avail-
able bandwidth based on end-to-end congestion avoidance
mechanism on a global internet is difficult. Another way
is to set the maximum slow-start threshold to avoid buffer
overflow and limit the sending rate [4, 5], this not only re-
duces the throughput of sender but also sets the maximum
slow-start threshold to 64 Kbytes. In a large BDP network,
this value may be too small and causes Vegas switching to
congestion-avoidance phase early. On the other hand, this
fixed slow-start threshold may be of no use in a small BDP
network. The last method uses a smooth slow-start algo-
rithm to reduce burst data transfer [6]. However, it uses
200 msec timer interrupt to control data transfer and only
fits some network topology. Also, using timer interrupt in-
creases the overhead of the operating system. In addition,
they consider some network models and prove mathemat-
ically to show burstiness in the communication networks
[7, 8]. Overall, these works just describe the problems and
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try to characterize them into models,the burstiness problem
is still not solved.

In this paper, we propose a modification to the slow-start
phase, which changes the increase manner of congestion
window to between exponential growth and linear growth,
so that a smooth transmission during the slow-start phase
can be achieved. We call it Gallop-Vegas. It tries to detect
incipient congestion by comparing the measured through-
put to the notion of expected throughput. This congestion
detection mechanism is same as that in TCP Vegas, except
that it calculates every RTT (Round-Trip Time) instead of
every other RTT. The congestion window is increased only
if these two values are close enough, and the increment of
congestion window varies according to the current status of
the network.

When TCP Vegas changes from slow-start phase to
congestion-avoidance phase, it decreases the congestion
window by one-eighth. This may be suitable for small-
bandwidth links, but in large-bandwidth links it will slowly
reach the available bandwidth. We make a little modifica-
tion for slow-start phase while similar congestion detection
mechanism is still applied.

The implementation of Gallop-Vegas is simple. Only the
sending part requires modifications, thus it facilitates incre-
mental deployment in today’s Internet. Furthermore, the
simulation results reveal that Gallop-Vegas is more efficient
than TCP Vegas.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the details in slow-start phase of TCP Ve-
gas. Section 3 expresses the algorithm and ideas of Gallop-
Vegas as well as the possible probe strategies. Section 4
demonstrates the simulation results. Finally, Section 5 con-
cludes the paper.

2 Slow-Start of TCP Vegas

The bandwidth estimation scheme in TCP Vegas [1] is
proactive because it tries to avoid rather than react to con-
gestion. Vegas uses the difference in the expected and actual
flow rates to estimate the available bandwidth of the net-
work. When the network is not congested, the actual rate
is close to the expected flow rate. However, if the actual
rate was much smaller than the expected rate, it indicates
that the buffer space in the network is going to be filled up
and the network is approaching a congested state. This dif-
ference in flow rates can be calculated as Diff = Expected -
Actual, where Expected and Actual are the expected and ac-
tual rates, respectively. If d denotes the minimum-observed
round-trip time (also known as BaseRTT), D denotes the ac-
tual round-trip time (RTT) of a packet, and W denotes the
congestion window size, then Expected = W/d and Actual
= W/D. The estimated backlog of packets in the network
queues can then be computed as

∆ = (Expected−Actual)×BaseRTT = W× (D − d)

D
. (1)

Similar to Reno, Vegas uses a slow-start mechanism that
allows a connection to quickly ramp up to the available
bandwidth. However, unlike Reno, to ensure that the send-
ing rate does not increase too fast to congest the network
during the slow start, Vegas doubles the congestion window
size only every other RTT. In addition, every other RTT, Ve-
gas calculates the difference in the flow rates (Diff ) and ∆
as given in (1). When ∆ > γ (whose default is 1), Vegas
leaves the slow-start phase, decreases its congestion win-
dow size by 1/8 and enters the congestion-avoidance phase.

The fundamental problem in the slow-start algorithm
of Vegas is that doubling its sending rate in short interval
causes ∆ bias. This characteristic of slow-start may lead to
early transition to congestion-avoidance phase and cause se-
vere performance degradation. Under the TCP/IP architec-
ture, it is difficult to estimate the exact available bandwidth
of bottleneck link along the end-to-end path. Although Ve-
gas has burst avoidance mechanism that limits the number
of segments to be sent at one time (that is, back-to-back) to
three segments [2], it still causes burstiness in sending pack-
ets. According to the work [6], in short-delay networks, the
optimum window size is small and there is no significant
difference between RTT and actual data transfer time. Thus,
burst data transfer occurs un-apparently in short-delay net-
works. But in long-delay networks, slow-start leads to burst
data transfer which causes congestion and leads to much
smaller window size than optimum one. This in turn results
in shorter slow-start phase and longer congestion-avoidance
phase.

3 Gallop-Vegas

3.1 Motivation

The fundamental problem in the slow-start phase is that
the congestion window size increases too quickly. This
causes bias of ∆ (given in (1)) and performance degrada-
tion, as well as leads to long congestion-avoidance phase.
In previous works, it either avoids burstiness with some
limiting factors or addresses the problems in the slow-start
phase, but it did not provide a valid method for various com-
munication networks. Shortening the duration of raising
the transmission rate to the available bandwidth improves
sender’s throughput for different communication network,
especially for a short life-cycle connection. For this reason,
we propose a modification to the slow-start phase, called
Gallop-Vegas.

3.2 The Scheme of Gallop-Vegas

In Gallop-Vegas, we do not increase congestion window
size in the first RTT, which is either the beginning of the
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start or after a retransmission timeout, because we have no
idea about this connection. After the second RTT, we start
to increase the congestion window with a rate between ex-
ponential growth and linear growth, as shown in Fig. 1, we
call it Stable growth.
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Figure 1. The growth of congestion window

When a sending source increases (or decreases) its con-
gestion window at the nth RTT, the influence to the network
can be detected at the (n+2)th RTT. As a result, Vegas cal-
culates the ∆ and doubles the congestion window (if it is
possible) every other RTT. However, doubling the conges-
tion window size may cause the traffic burstiness in the net-
work, and therefore leads to the congestion-avoidance phase
too early. To avoid this phenomenon, we calculate the ∆
and increase the congestion window with Stable growth (if
it is possible). This approach for increasing congestion win-
dow is more efficient comparing with Vegas, and the effect
can be observed by both simulation and analysis.

Let ‘maxincr’ be a dynamic value representing the maxi-
mum value of the congestion window increment, and ‘incr’
be the current window increment, with value 0 at the begin-
ning of the start or after a retransmission timeout, and no
bigger than ‘maxincr’. In order to record the comparison
result of ∆ with γ, or with β (if ∆ is not smaller than γ) at
the last RTT, we create a parameter ‘status’. Table 1 shows
three sets of value, state, and corresponding motivation at
last RTT of ‘status’, whose default value is 0. We choose β
(whose default is 3) to compare with ∆ because the router
is allowed to queue a number, which is between α (whose
default is 1) and β, of ackets in Vegas.

In slow-start phase, we let ‘maxincr’ be the current con-
gestion window size first, and then compare ∆ with γ.
When ∆ is smaller than γ, we add the value of ‘incr’ to
the current congestion window size, then ‘incr’ is increased
by one until it is no smaller than ‘max-incr’. At last we set
‘status’ to zero to represent this state. The parameter ‘incr’
is increased step by step as long as there is enough band-
width in the network. While ∆ is no smaller than γ, we

Table 1. Value, state, and corresponding mo-
tivation at last RTT

value state corresponding motivation at last RTT
0 (1) ∆ < γ ‘incr’ is increased by one.

(2) γ ≤ ∆ < β Do not do any action.
1 γ ≤ ∆ < β ‘incr’ is decreased by one half
2 β < ∆ The congestion window size is

decreased by the sum of ‘incr’
and surplus of queue (∆ - β).

compare ∆ with β to adjust those parameters.
While ∆ is smaller than β, the addition of congestion

window size is ‘incr’. Nevertheless, we modify ‘incr’ ac-
cording to the state, which is represented by the parameter
‘status’, at last RTT before increasing the congestion win-
dow. Since it exceeds the lower bound of packets queued in
the router(s) for a connection, it should slow down the incre-
ment. For another reason, it may exceed the available band-
width without slowing down the increment. If the ‘status’
is zero, we have to do three steps. First, ‘incr’ is decreased
by one half in order to slow down the growth. Second, if
‘incr’ is no bigger than one, set it to one, and ssthresh (slow-
start threshold) to two in order to transit to the congestion-
avoidance phase at next RTT. At last, ‘status’ is marked as
one to represent entering this state at either the first time or
the odd number of times. On the contrary, if ‘status’ is one,
we just change it to zero when continuously getting into this
state at the even number of times. Since we decreased the
‘incr’ by one half at last RTT, we do not know the influence
of network yet. If we still decreased the ‘incr’ by one half
at this RTT again, we may get just the opposite. In other
words, it may be too quickly to decrease ‘incr’ by one half
while ∆ is between γ and β.

If ∆ is no smaller than β, we cut the congestion win-
dow size down by the sum of the increment at last RTT
and surplus packets of queue, which is ∆ - β. Then we
set ‘status’ to two for avoiding repeatedly decreasing the
congestion window size when changing to the congestion-
avoidance phase at the first time. We call the increasing of
congestion window (the increment of ‘incr’) Stable growth
here after.

We only change one action of Vegas when it gets into
congestion-avoidance phase at the first time. If ‘status’ is
two, we just set ‘status’ to zero without changing the con-
gestion window because we don’t know the influence of net-
work at last RTT yet. Otherwise, we perform the same ac-
tion as in Vegas. In retransmission-timeout phase, we reset
these three parameters to their default values.

In summary, Vegas sends two packets back-to-back
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when it receives one ACK (acknowledgement). This may
cause bursty traffic if a lot of ACKs return to the sender
consecutively. This may cause Vegas turning to congestion-
avoidance phase early and then congestion window grows
up slowly. On the other hand, Gallop-Vegas transmits one
packets when receiving one ACK, and it sends an extra
packet to increase the congestion window size after getting
two or more ACKs. Through this method, we smooth out
the burstiness without using timer. Since comparing with
congestion window, the increment is always smaller, there-
fore Gallop-Vegas reduces the burstiness in transmission
and achieves a long slow-start phase. Thus the throughput
of Gallop-Vegas grows up faster and is much larger than
Vegas.

3.3 Pseudo Code of Gallop-Vegas

The following pseudo code represents the aforemen-
tioned statements regarding the Stable growth.

In Slow-Start phase
maxincr = cwnd;
if (∆ > γ)

if (∆ >= β)
cwnd -= (last increment of cwnd + ∆ - β);
ssthresh = 2;
if (cwnd < 2) cwnd = 2;
status = 2;

else
if (status == 0)

incr = int(incr/2);
if (incr <= 1)

ssthresh = 2;
incr = 1;

else status = 0;
cwnd += incr;

else
cwnd += incr;
if (incr < maxincr) incr += 1;
status = 0;

where cwnd is the congestion window size, and ssthresh is
the slow-start threshold.

In Congestion-Avoidance phase
if (status != 2)

Do the motion of original Vegas
else

status = 0;

In Retransmission-Timeout phase
maxincr = 2; (initial congestion window size)
incr = 0;
status = 0;

4 Performance Evaluation

4.1 The Simulation Setup

The simulation experiments are conducted using ns2 [9],
version 2.26, developed at Lawrence Berkeley National
Laboratories (LBNL). Suppose that there is no packet loss
in the simulation. The simulation network topology of one
single link is shown in Fig. 2, where S1 represents a sender
host, whose algorithm is either Vegas or Gallop-Vegas. The
type of service used in our simulation is FTP. The receiver
sends an ACK for every data packet received. For the con-
venience of presentation, we assume that all window sizes
are measured in number of fixed-size packets, which are
1000 bytes. R1 and R2 represent two finite-buffer gate-
ways. The buffer size at each gateway is set to 100 packets.
For the constant-load experiment, drop-tail gateways with
FIFO service are assumed. The bandwidth of access links
are 1Gbps, and propagation delays are 1ms.

The bandwidth of connection link is X-Mbps, where X
is 1.5, 5, 10, 25 or 50, and propagation delay is Y-ms,
where Y is 3, 8, 23, 28 or 48. The combinations of X and
Y generate 25 networks. Although we have used differ-
ent bandwidths and propagation delays of connection links,
only the simulation results of X = 50, and Y = 48 are pre-
sented here. Other values of X and Y will be shown in
the figure of convergence time. We choose these values
of communication network to represent small-bandwidth,
large-bandwidth, short-delay, and long-delay, respectively.
The sender uses the slow-start at the start of a connection,
and/or after a retransmission timeout, and hence it features
similar behavior during slow-start phase.

S1 D1R1 R21Gbps
1ms

1Gbps

1ms

X Mbps

Y ms

Buffer 100 Buffer 100

Figure 2. Simulation topology used for Vegas
or Gallop-Vegas experiments

In following sections, we will show the simulation result,
convergence time with different BDPs of communication
networks, and ten senders with the same algorithm sharing
a common bottleneck of 100 Mbps bandwidth and 48 ms
propagation delay.

4.2 Simulation Result

We compare Gallop-Vegas with Vegas which uses two
different parameter values, one with γ one, and the other
with γ three (as β). Since Gallop-Vegas changes from slow-
start phase to congestion-avoidance phase when ∆ is no
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smaller than β. In Fig. 2, X is 50 and Y is 48, it means
that the bandwidth of bottleneck link is 50 Mbps, and the
end-to-end propagation delay is 48 ms. Fig. 3 and Fig. 4
show the congestion window size and throughput between
Vegas and Gallop-Vegas, respectively. We can observe that
the performance of Gallop-Vegas is better than Vegas. Both
varieties of Vegas turn to congestion-avoidance phase early,
one is at 1.2 seconds and the other is at 1.5 seconds, and
they increase congestion window through linear growth.
They spend more than 50 seconds (which almost equals 500
RTTs) to reach the available bandwidth. However, Gallop-
Vegas switches to congestion-avoidance when it reaches the
available bandwidth at 11.4 seconds, and only spends 0.4
seconds (which approximately equals to 4 RTTs) to reach
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Figure 3. Congestion window size compari-
son between Vegas and Gallop-Vegas with 50
Mbps bottleneck bandwidth, and 48 ms link
propagation delay.
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Figure 4. Throughput comparison between
Vegas and Gallop-Vegas with 50 Mbps bottle-
neck bandwidth, and 48 ms link propagation
delay.

the real available bandwidth. The maximum number of
queueing packets in these algorithms are almost the same.

An interesting phenomenon in the simulation was ob-
served. Both of Vegas lose packets but Gallop-Vegas does
not when the buffer size of the router is decreased. There is
an example with the router buffer size 30. The congestion
window size and throughput between Vegas and Gallop-
Vegas are described in Fig. 5 and Fig. 6, respectively. In
this environment, the router R1 drops three packets of Ve-
gas at 1.1 seconds because both of Vegas double the conges-
tion window size from 32 to 64. This causes a bursty traffic
to a router, which could not handle these packets in time.
The same situation happens at 1.6 seconds, where router R1
drops sixteen packets. Since Vegas starts the fast retrans-
mission procedure to redeem the lost packets at 1.1 seconds,
after that, Vegas doubles the current window size contin-
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Figure 5. Congestion window size of Vegas
and Gallop-Vegas. There are packet lost in
both of Vegas. (Buffer size = 30)
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Vegas. There are packet lost in both of Vegas.
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uously, this action causes the packet loss because of the
burstiness again. Since there are too many packets losses
at this time, Vegas has to wait a retransmission timeout for
a long time. On the other hand, Gallop-Vegas increases the
congestion window size with Stable growth, so it does not
cause a large burstiness. It could increase congestion win-
dow size steadily during the slow-start phase.

Now, we use the convergence time [3] with differ-
ent BDPs of communication networks to compare Gallop-
Vegas with two varieties of Vegas. The result is shown in
Fig. 7. We can see that the convergence time of Gallop-
Vegas grows slowly (or linearly) while BDP increases
quickly. However, the convergence time of both Vegas vari-
eties climbs very fast. The convergence time of Vegas is five
times more than that of Gallop-Vegas at 5000Kb. We could
conclude that Gallop-Vegas is as good as Vegas in the small
BDP and much better than Vegas in the large BDP with the
demonstration in Fig. 7.
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Figure 7. The convergence time with different
BDPs of communication networks.

4.3 Multiple Senders in One Network

After comparing one sender in the same network topol-
ogy, we compare the cases of multiple senders with the
same algorithm of Gallop-Vegas and Vegas. The simulation
network topology used is shown in Fig. 8, and the whole
skeleton is same as that in Fig. 2. The difference between
Fig. 8 and Fig. 2 is that there are more senders, bigger buffer
size, and larger bottleneck bandwidth in Fig. 8.

The utilization of the bottleneck link is shown in Fig. 9.
As seen in this figure, Gallop-Vegas utilizes the bandwidth
of bottleneck link more efficiently than Vegas. One interest-
ing observation is that doubling congestion window causes
bursty traffic and makes all senders turn into congestion-
avoidance phase at the same time when Vegas’s γ is three.

This phenomenon is fair to all senders, however, the utiliza-
tion of the available bandwidth is inefficient.

S1 D1

R1 R2

1Gbps
1ms

1Gbps
1ms

100 Mbps
48 ms

Buffer 1000 Buffer 1000

S10

1Gbps
1ms

1Gbps
1ms

D10

Figure 8. Simulation topology with multiple
sender used for Vegas or Gallop-Vegas ex-
periments.
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Figure 9. The utilization of bottleneck link be-
tween Vegas and Gallop-Vegas.

5 Conclusion

We propose and evaluate a new variant of the slow-start
mechanism in TCP Vegas, called Gallop-Vegas, to reduce
the burstiness, to raise the rate to the available bandwidth
in shorter time, and to improve the start-up performance.
In this work, we achieve more efficient throughput in slow-
start phase comparing with original TCP Vegas. Although
Gallop-Vegas is more suitable for large bandwidth or long-
delay networks, it still increases transmit performance in
small bandwidth or short-delay networks. The design of
Gallop-Vegas is simple and implementation feasible on ex-
isting operating systems. We will combine the improvement
of congestion-avoidance phase and show the fairness in the
future.
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