
Performance Improvement of Congestion Avoidance Mechanism for TCP Vegas

Yi-Cheng Chan, Chia-Tai Chan, Yaw-Chung Chen, and Cheng-Yuan Ho
Department of Computer Science and Information Engineering

National Chiao Tung University, Hsinchu 300, Taiwan
ycchan@csie.nctu.edu.tw, ctchan@cht.com.tw, ycchen@csie.nctu.edu.tw, cyho@csie.nctu.edu.tw

Abstract

In this paper, we propose a router-based congestion
avoidance mechanism (RoVegas) for TCP Vegas. TCP Ve-
gas detects network congestion in the early stage and suc-
cessfully prevents periodic packet loss that usually occurs in
TCP Reno. It has been demonstrated that TCP Vegas out-
performs TCP Reno in many aspects. However, TCP Vegas
suffers several problems that inhere in its congestion avoid-
ance mechanism, these include issues of rerouting, persis-
tent congestion, fairness, and network asymmetry. By per-
forming the proposed scheme in routers along the round-
trip path, RoVegas can solve the problems of rerouting and
persistent congestion, enhance the fairness among the com-
petitive connections, and improve the throughput when con-
gestion occurs on the backward path. Through the results
of both analysis and simulation, we demonstrate the effec-
tiveness of RoVegas.

1. Introduction

With the fast growth of Internet traffic, how to efficiently
utilize network resources is essential to a successful conges-
tion control. Being a widely used end-to-end transport pro-
tocol on the Internet, Transmission Control Protocol (TCP)
has several implementation versions (i.e., Tahoe, Reno, Ve-
gas...) which intend to improve network utilization. Among
these TCP variants, there are two notable approaches. One
is Reno [1] which has been widely deployed on the Inter-
net; the other is Vegas [2] with a claim of 37 to 71 percent
throughput improvement over Reno was achieved.

To estimate the available bandwidth in the network, TCP
Reno uses packet loss as an indicator for congestion. Its
congestion window will be increased until packet loss is de-
tected, at which point the congestion window is halved and
then a linear increase algorithm will take over until further
packet loss is experienced. It is known that the fast retrans-
mit and recovery algorithm of TCP Reno can not recover
multiple packet losses, the TCP may operate at a very low

rate and lose a certain amount of throughput. TCP New
Reno [3] is a modification to the fast retransmit and recov-
ery. In TCP New Reno, a sender can recover from multiple
packet losses without having to time out. TCP with selec-
tive acknowledgement (SACK) options [4] also has been
proposed to efficiently recover from multiple packets loss.
However, the additive increase and multiplicative decrease
approach (AIMD) of Reno leads to periodic oscillations in
the congestion window size, round-trip delay, and queue
length of the bottleneck node. Recent works have shown
that the oscillation may induce chaotic behavior into the
network thus adversely affects overall network performance
[5, 6].

TCP Vegas employs a fundamentally different conges-
tion avoidance mechanism. It uses the difference between
the expected and actual throughput to estimate the available
bandwidth in the network. The idea is that when the net-
work is not congested, the actual throughput will be close to
the expected throughput. Otherwise the actual throughput
will be smaller than the expected throughput. TCP Vegas
uses the difference in throughput to gauge the congestion
level in the network and update the congestion window size
accordingly. As a result, TCP Vegas is able to detect net-
work congestion in the early stage and successfully prevents
periodic packet loss that usually occurs in Reno. Many stud-
ies have demonstrated that Vegas outperforms Reno in the
aspects of overall network utilization [2, 7], stability [8, 9],
fairness [8, 9], and throughput[2, 5, 7].

Although Vegas is superior to Reno in the aforemen-
tioned aspects, it suffers some problems that inhere in
its congestion avoidance scheme, these include issues of
rerouting [8], persistent congestion [8], fairness [9, 10, 11],
and network asymmetry [12, 13, 14]. All these problems
may be obstacles for Vegas to achieve a success.

In this work, we propose a router-based congestion
avoidance mechanism for TCP Vegas (abbreviated as RoVe-
gas hereafter). Through the proposed mechanism per-
formed in routers along the round-trip path, RoVegas may
solve the problems of rerouting and persistent congestion,
enhance the fairness among the competitive connections,

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



and improve the throughput when congestion occurs on the
backward path. Based on the results of analysis and simu-
lation, we demonstrate the effectiveness of RoVegas.

The rest of this paper is organized as follows. Section 2
describes Vegas and its problems. Section 3 discusses the
RoVegas. Section 4 present the simulation results. Lastly,
we conclude this work in Section 5.

2. TCP Vegas and Its Problem Statements

TCP Vegas features three improvements as compared
with TCP Reno: (1) a new retransmission mechanism, (2)
an improved congestion avoidance mechanism, and (3) a
modified slow-start mechanism. The detailed description
of Vegas can be found in [2]. In this section, we first re-
view the congestion avoidance mechanism of TCP Vegas
and then describe its problems in detail.

2.1. Congestion Avoidance of TCP Vegas

Compared with Reno, TCP Vegas adopts a more so-
phisticated bandwidth estimation scheme that tries to avoid
rather than to react to congestion. During the congestion
avoidance phase, TCP Vegas does not continually increase
the congestion window. Instead, it tries to detect incipi-
ent congestion by comparing the actual throughput to the
expected throughput. Vegas estimates a proper amount of
extra data to be kept in the network pipe and controls the
congestion window size accordingly. It records the round-
trip time (RTT) and sets BaseRTT to the minimum of ever
measured RTTs. The amount of extra data is between two
thresholds α and β, as shown in the following:

α ≤ (Expected − Actual) × BaseRTT ≤ β, (1)

where Expected throughput is the current congestion win-
dow size divided by BaseRTT, and Actual throughput rep-
resents the current congestion window size divided by the
newly measured RTT. The congestion window is kept con-
stant when the amount of extra data is between α and β.
If the amount is greater than β, it is taken as a sign for in-
cipient congestion, thus the congestion window size will be
reduced. On the other hand, if the amount is smaller than
α, the connection is under a risk of under utilizing the avail-
able bandwidth. Hence, the congestion window size will be
increased.

2.2. Problem Statements of Vegas

In Vegas, there are several problems inhere in its conges-
tion avoidance mechanism that may have a serious impact
on the performance. The problems are summarized as fol-
lows.

Rerouting: Since Vegas estimates the BaseRTT to com-
pute the expected throughput and adjust its window size ac-
cordingly. Thus it is very important to estimate the quantity
accurately for Vegas connections. Rerouting may cause a
change of the fixed delay1 that could result in substantial
throughput degradation. When the route of a connection is
changed, if the new route has a shorter fixed delay, it will not
cause any serious problem for Vegas because most likely
some packets will experience shorter round-trip time, and
BaseRTT will be updated eventually. On the other hand, if
the new route for the connection has a longer fixed delay,
it would be unable to tell whether the increased round-trip
time is due to network congestion or route change. The
source host may misinterpret the increased round-trip time
as a signal of congestion in the network and decrease its
window size. This is just the opposite of what the source
should do.

Persistent Congestion: Persistent congestion is another
problem caused by the incorrect estimation of BaseRTT [8].
Overestimation of the BaseRTT in Vegas may cause a sub-
stantial influence on the performance. Suppose that a con-
nection starts while many other active connections also ex-
ist, the network is congested and the packets are accumu-
lated in the bottleneck. Then, due to the queuing delay
caused by extra data of other connections, the packets from
the new connection may experience a round-trip time that
are considerably larger than the actual fixed delay along the
path. Hence, the window size of the new connection will
be set to a value such that its expected amount of extra data
lies between α and β; in fact, there may be much more extra
data in the bottleneck queue due to the inaccurate estimation
of the fixed delay. This scenario will repeat for each newly
added connection, and it may cause the bottleneck node to
remain in a persistent congestion. Persistent congestion is
likely to happen in TCP Vegas due to its fine-tuned conges-
tion avoidance mechanism.

Unfairness: Different from TCP Reno, Vegas is not bi-
ased against the connections with longer round-trip time
[8, 9]. However, there is still unfairness comes with the
nature of Vegas. According to the difference between the
expected and actual throughputs, a Vegas source attempts
to maintain an amount of extra data between two thresh-
olds α and β by adjusting its congestion window size. The
range between α and β induces uncertainty to the achiev-
able throughput of connections. Since Vegas may keep dif-
ferent amount of extra data in the bottleneck even for the
connections with the same round-trip path. Thus, it pro-
hibits the better fairness achievement among the competi-
tive connections.

Furthermore, the inaccurate computation of expected

1The fixed delay is the sum of propagation delay and packet processing
time along the round-trip path. In other words, the fixed delay is the round-
trip time without queuing delay.

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



throughput may also lead to unfairness. Recall that the com-
putation of expected throughput is based on the measure-
ment of BaseRTT. If Vegas connections can not estimate
the BaseRTT accurately, it may affect the fairness achieve-
ment. When a new connection starts sending data while
many other connections are also active, it may cause over-
estimation of the fixed delay and result in unfair distribution
of bandwidth among the Vegas connections.

Network Asymmetry: Based on the estimated extra
data kept on the bottleneck, Vegas updates its congestion
window to avoid congestion as well as to maintain high
throughput. However, a roughly measured RTT may lead to
a coarse adjustment of congestion window size. If the net-
work congestion occurs in the direction of ACK (backward
path), it may underestimate the actual throughput and cause
an unnecessary decreasing of the congestion window size.
Ideally, congestion in the backward path should not affect
the network throughput in the forward path, which is the
data transfer direction. Obviously, the control mechanism
must distinguish whether congestion occurs in the forward
path or not and adjust the congestion window size accord-
ingly.

Some prevalent networking technologies with asymme-
try network characteristics, such as asymmetric digital sub-
scriber line (ADSL), cable modem, and satellite-based net-
works, greatly increase the possibilities of backward path
congestion. In these networks, it is very likely that the ca-
pacity of the forward direction is larger than that of back-
ward direction. Both Reno and Vegas may suffer severe
performance degradation in the case of backward path con-
gestion, especially for Vegas [14]. Therefore, how to amend
the deficiency of TCP Vegas in such situation becomes an
important issue.

3. TCP RoVegas

From the above discussion, we can find that the
coarse estimation of fixed delay along the round-trip path,
BaseRTT, results in problems such as issues of rerouting,
persistent congestion, and unfairness. A Vegas source is
unable to distinguish whether congestion occurs in the for-
ward path or not, this further leads to unnecessary through-
put degradation when the congestion occurs on the back-
ward path. In this work, we propose a router-based con-
gestion avoidance mechanism (RoVegas) for TCP Vegas to
deal with these problems. The details of the proposed mech-
anism is described as follows.

3.1. Proposed Mechanism

TCP Vegas estimates a proper amount of extra data to be
kept in the network pipe and controls the congestion win-
dow size accordingly. The amount is between two thresh-

1 Byte

1 Byte

3 Bytes

3 Bytes

AQT
(Accumulated Queuing Time)

Option Length

AQT-Echo

Option Type

Figure 1. Fields of an AQT option.

olds α and β, as shown in Eq. (1). When backward con-
gestion occurs, the increased backward queuing time will
affect the Actual throughput and enlarge the difference be-
tween the Expected throughput and Actual throughput. It
results in decreasing the congestion window size. Since the
network resources in the backward path should not affect
the traffic in the forward path, it is unnecessary to reduce
the congestion window size when only backward conges-
tion occurs.

A measured RTT can be divided into four parts: for-
ward fixed delay (i.e., propagation delay and packet pro-
cessing time), forward queuing time, backward fixed delay,
and backward queuing time. To utilize the network band-
width efficiently, we redefine the Actual throughput as

Actual′ =
CWND

RTT − QTb
, (2)

where RTT is the newly measured round-trip time, QTb

is the backward queuing time, and CWND is the current
congestion window size. Consequently, the Actual′ is a
throughput that can be achieved if there is no backward
queuing delay along the path.

To realize our scheme, we define a new IP option named
AQT (accumulate queuing time) to collect the queuing time
along the path. According to the general format of IP op-
tions described in [15], the fields of an AQT option are cre-
ated as in Figure 1. The option type and length fields indi-
cate the type and length of this IP option. The AQT field
expresses the accumulated queuing time that a packet expe-
rienced along the route path. The AQT-Echo field echoes
the accumulated queuing time value of an AQT option that
was sent by the remote TCP.

A probing packet is a normal TCP packet (data or ACK)
with AQT option in its IP header. When a RoVegas source
sends out a probing packet, it sets the AQT field to zero. An
AQT-enabled router (i.e., a router that is capable of AQT op-
tion processing) adds the queuing delay of a received prob-
ing packet to the AQT field. The queuing time is computed
based on the queuing disciplines. The details regarding
how to compute the queuing time of each received probing
packet in various queuing disciplines is beyond the scope of
this paper.

Whenever a RoVegas destination acknowledges a prob-

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



ing packet, it inserts an AQT option into the ACK. The AQT
field is set to zero, and the AQT-Echo field is set to the value
of the AQT field of the received packet. Through the AQT-
enabled routers along the round-trip path, a RoVegas source
is able to obtain both the forward queuing time (the value
of AQT-Echo field) and backward queuing time (the value
of AQT field) from the received probing packet. Moreover,
for each probing packet received by a RoVegas source, the
BaseRTT can be derived as follows:

BaseRTT = RTT − (AQT + AQT-Echo). (3)

Notice that, the derived BaseRTT of a connection will
be identical for each probing packet received when both the
route and size of the probing packets are fixed. The derived
BaseRTT of RoVegas represents the actual fixed delay along
the round-trip path, if the path of a connection is rerouted
and the fixed delay is changed, the newly derived BaseRTT
may reflect the rerouting information. As a result, the issue
of rerouting can be solved. Furthermore, since each connec-
tion of RoVegas is able to measure the fixed delay without
bias, the problem of persistent congestion can be avoided
and the fairness among the competitive connections can also
be improved.

To avoid the unnecessary reduction of congestion win-
dow size, the proposed router-based congestion avoidance
mechanism is described as follows:

• Derive the Expected throughput that is defined as the
current congestion window size divided by BaseRTT.

• Calculate the Actual′ as the current congestion win-
dow size divided by the difference between the newly
measured RTT and backward queuing time.

• Let Diff = (Expected − Actual′) × BaseRTT .

• Let wcur and wnext be the congestion window sizes for
the current RTT and the next RTT, respectively. The
rule for congestion window adjustment is as follows:

wnext =




wcur + 1, if Diff < α
wcur − 1, if Diff > β
wcur, if α ≤ Diff ≤ β

. (4)

Due to the space limitation, the discussion of imple-
mentation issue and the steady-state performance analysis
of both Vegas and RoVegas please refer to [16]. We now
demonstrate the proposed scheme can improve the perfor-
mance of TCP Vegas using the performance evaluation re-
sults presented in the following section.

4. Performance Evaluation

In this section, we compare the performance of TCP
RoVegas with TCP Vegas by using the network simulator

S1

D2

R1 R2

1.6 Mb/s, 20 ms
D110 Mb/s, 1 ms

S2
Cb, 20 ms

Figure 2. A single bottleneck network topol-
ogy for investigating throughputs of Vegas
and RoVegas when the congestion occurs on
the backward path.

ns-2.1b9a [18]. We show the performance results in back-
ward congestion environments, the bias experiments, the
fairness investigations among the competitive connections,
and the study of gradual deployment.

The FIFO service discipline is assumed. Every packet
of RoVegas is a probing packet. Whenever a through-
put of RoVegas is computed, the overhead induced by the
AQT option will be subtracted from the throughput. Sev-
eral VBR sources are used to generate backward traffic.
These VBR sources are exponentially distributed ON-OFF
sources. During ON periods, the VBR source sends data at
3.2 Mb/s. Unless stated otherwise, the size of each FIFO
queue used in routers is 50 packets, the size of data packet
is 1 Kbytes, and the sizes of ACKs are 40 and 48 bytes for
Vegas and RoVegas respectively. To ease the comparison,
we assume that the sources always have data to send.

4.1. Throughput Improvement

In this subsection, we investigate the throughputs of Ve-
gas and RoVegas in two types of backward congestion. One
is the congestion caused by network asymmetry, the other
is the congestion caused by additional backward traffic.

The first network topology for the simulations is shown
in Figure 2. Sources, destinations, and routers are expressed
as Si, Di, and Ri respectively. A source and a destination
with the same suffix value represent a traffic pair. The band-
width and propagation delay are 10 Mb/s and 1 ms for each
full-duplex access link, 1.6 Mb/s and 20 ms for the connec-
tion link from R1 to R2, and Cb and 20 ms for the connec-
tion link from R2 to R1, respectively. The Cb is set based
on the normalized asymmetric factor k [17]. For example,
if k = 4 and the size of data packet and ACK are 1 Kbytes
and 40 bytes respectively, then the Cb is set to 16 Kb/s.

Asymmetric Networks: To evaluate the throughputs of
Vegas and RoVegas in asymmetric networks, different val-
ues of k are used. A source S1 of either Vegas or RoVegas
sends data packet to its destination D1. The size of each
FIFO queue used in routers is 10 packets. Figures 3 and 4
exhibit the throughput performance of Vegas and RoVegas

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

Time (s)

T
hr

ou
gh

pu
t (

K
b/

s) k=2
k=4
k=8
k=16
k=32

Figure 3. Throughputs of Vegas in asymmet-
ric networks.

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

Time (s)

T
hr

ou
gh

pu
t (

K
b/

s) k=2
k=4
k=8
k=16
k=32

Figure 4. Throughputs of RoVegas in asym-
metric networks.

in asymmetric networks respectively.
By observing the results shown in Figure 3, with the in-

creasing value of k from 2 to 32, the throughput of Vegas de-
grades accordingly. As our analysis results, the throughput
of Vegas in this scenario should be uf/k (uf is the forward
link capacity). Obviously, the simulation results conform to
our previous analysis.

Comparing the results of Figure 4 with that of Figure
3, we can find that the throughputs of RoVegas are much
greater than that of Vegas. With k = 2, RoVegas main-
tains a high throughput at 1587.2 Kb/s in which the back-
ward congestion seems not existing. The throughput ratios
of RoVegas to Vegas in steady state are about 2 and 3 for
k=2, 4 and k=8, 16, 32 respectively. Notably, all the simu-
lation results shown in Figure 3 and Figure 4 are consistent
with our analysis.

Symmetric Network With Backward Traffic: Asym-
metric networks should not be the only reason causing back-
ward congestion. Actually, even in a symmetric network the

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200

Time (s)

T
hr

ou
gh

pu
t (

K
b/

s)

Vegas

RoVegas

Figure 5. Throughput comparison between
Vegas and RoVegas with the backward traffic
load is 0.9 in the single bottleneck network
topology.

backward congestion may still occur. In this simulation, a
VBR source is used to generate backward traffic. The ca-
pacity of the backward bottleneck, Cb, is set to 1.6 Mb/s. A
source of either Vegas or RoVegas is attached to S1 and a
VBR source is attached to S2. The S1 starts sending data at
0 second, while S2 starts at 50 second. Figure 5 depicts the
throughput comparison between Vegas and RoVegas with
the VBR source which has 1.44 Mb/s averaged sending rate.

As shown in Figure 5, when the traffic source is Ve-
gas only (0–50 second), it achieves high throughput and
stabilizes at 1.6 Mb/s. However, the performance of Ve-
gas degrades dramatically as the VBR source starts send-
ing data. Although the overhead induced by AQT option
slightly lower the throughput of RoVegas (0.8 %) during
the preceding 50 seconds, nevertheless, RoVegas maintains
a much higher throughput than that of Vegas while the back-
ward congestion occurs. With the inference of the backward
VBR traffic, the average throughput of Vegas is 521 Kb/s
and RoVegas is 1092 Kb/s. Since we use the same traffic
pattern of the VBR source while the throughput of Vegas
or RoVegas is examined. Thus there appear some synchro-
nized fluctuations of throughputs between Vegas and RoVe-
gas.

To evaluate the average throughput of Vegas and RoVe-
gas with different backward traffic loads, we set the VBR
traffic loads to vary from 0 to 1. The traffic sources are
the same as the above descriptions but the sources of either
Vegas or RoVegas and VBR start at 0 second. The simu-
lation period is 200 seconds for each sample point. From
the simulation results shown in Figure 6, we can find that
when the backward traffic load is not zero, RoVegas always
achieves a higher average throughput than Vegas. For ex-
ample, as the backward traffic load is 1, RoVegas achieves
a 4.1 times higher average throughput in comparison with

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



0

200

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Traffic Load of VBR Source

A
ve

rg
ae

 T
hr

ou
gh

pu
t (

K
b/

s)

Vegas

RoVegas

Figure 6. Average throughput versus different
backward traffic loads for Vegas and RoVegas
in the single bottleneck network topology.

S1

S2

Sn

R1 R2
1.6 Mb/s, 20 ms

D1

D2

Dn

10 Mb/s,
1 ms

.

.

.
.
.
.

10 Mb/s,
1 ms

Figure 7. Network topology for studying the
bias and fairness issues of Vegas and RoVe-
gas.

that of Vegas. Obviously, we have demonstrated that RoVe-
gas significantly improves the connection throughput when
the backward path is congested.

4.2. Persistent Congestion

As a connection starts when there exist many other con-
nections, the new connection may experience round-trip
times that are considerably larger than the actual fixed delay
along the path. Thus the BaseRTT of this new connection
will be larger than it should be. Therefore the new connec-
tion will put a larger amount of extra data than its expected
amount on the network. This bias may possibly drive the
system to a persistent congestion.

In this subsection, we study the bias of Vegas through
simulation. The simulation network topology is illustrated
as in Figure 7 in which the bandwidth and propagation delay
for each full-duplex link are depicted.

Eight connections of Vegas from S1 to S8 successively
enter the network every 20 seconds. The α and β of Vegas
are set to 1 and 3 respectively. Thus, the amount of extra
data for each connection should be kept between 1 and 3

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160 180

Time (s)

Q
ue

ue
 O

cc
up

an
cy

of
 T

he
 F

or
w

ar
d 

B
ot

tle
ne

ck
 (

pa
ck

et
)

Vegas
RoVegas

Figure 8. Queue occupancy of the forward
bottleneck for Vegas and RoVegas.

packets. From the results shown in Figure 8, we can ob-
serve that when the fourth connection of Vegas joins the
network, the queue occupancy of the bottleneck increases
to 15 packets. This amount of extra data is larger than the
expected maximum amount (12 packets). Even worse, as
the eighth connection goes into the network, the queue oc-
cupancy of the bottleneck is 40 packets. That is, averagely
each connection of Vegas contributes 5 packets to the bot-
tleneck. This situation will become worse and worse when
more connections enter the network.

In contrast to the Vegas connections, each RoVegas con-
nection keeps a proper amount of extra data in the bottle-
neck. When the eighth connection of RoVegas joins the
network, the queue occupancy of the bottleneck is 18 pack-
ets. Since each connection of RoVegas is able to derive the
fixed delay along the round-trip path, the bias of Vegas no
longer exists in RoVegas.

4.3. Fairness Enhancement

Fairness is another important issue of Vegas. Although
Vegas is not biased against the connections with longer
round-trip time like Reno does, there is still unfairness oc-
curred in Vegas. In this subsection, we investigate the fair-
ness metric of Vegas and RoVegas.

The network topology for simulations is shown in Figure
7. Five connections of either Vegas or RoVegas from S1 to
S5 successively join the network every 30 seconds. In or-
der to remove the uncertainty induced by the range between
α and β, we set α equal to β in two simulation scenarios.
Figure 9 shows the results of simulations.

From the simulation results of Vegas presented in Figure
9(a) and Figure 9(b) we can see that no matter the values of
α and β are equal or not, connections are unable to share
the bandwidth fairly. According to our previous discussion,
there are two criteria for achieving the fairness among the

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



0

200

400

600

800

1000

1200

1400

1600

1800

0 30 60 90 120 150 180

Time (s)

T
hr

ou
gh

pu
t (

K
b/

s)

Vegas 1
Vegas 2
Vegas 3
Vegas 4
Vegas 5

0

200

400

600

800

1000

1200

1400

1600

1800

0 30 60 90 120 150 180

Time (s)

T
hr

ou
gh

pu
t (

K
b/

s)

Vegas 1
Vegas 2
Vegas 3
Vegas 4
Vegas 5

(a) (b)

0

200

400

600

800

1000

1200

1400

1600

1800

0 30 60 90 120 150 180

Time (s)

T
hr

ou
gh

pu
t (

K
b/

s)

RoVegas 1

RoVegas 2

RoVegas 3

RoVegas 4

RoVegas 5

0

200

400

600

800

1000

1200

1400

1600

1800

0 30 60 90 120 150 180

Time (s)
T

hr
ou

gh
pu

t (
K

b/
s)

RoVegas 1

RoVegas 2

RoVegas 3

RoVegas 4

RoVegas 5

(c) (d)

Figure 9. Fairness investigation of Vegas and RoVegas in which connections with the same propa-
gation delay and successively enter the network every 30 second. (a) Vegas (α = 1, β = 3). (b) Vegas
(α = β = 2). (c) RoVegas (α = 1, β = 3). (d) RoVegas (α = β = 2).

competitive connections of Vegas. One is that the measured
BaseRTT must be precise enough. The other is that the un-
certainty induced by the range between α and β must be
removed. Connections in Figure 9(a) do not meet both cri-
teria. Connections in Figure 9(b) do not conform to the first
criterion. Therefore, both connections in these two figures
are unable to fairly share the bandwidth of the bottleneck.

By observing the results of RoVegas shown in Figure
9(c) and Figure 9(d). Since connections in Figure 9(c) do
not meet the second criterion of fairness, the throughputs
of these connections are not identical. Finally, connections
in Figure 9(d) meet both criteria, hence, all the connections
share the bandwidth fairly.

4.4. Gradual Deployment

It can not be expected that all routers on the Internet are
AQT-enabled while the AQT option is a new defined IP op-
tion. To consider the gradual deployment issue, for each
ACK received by a RoVegas source, the BaseRTT should
be measured as the following pseudo codes:

if (the ACK is a probing packet)
BaseRTTtemp = RTT− (AQT + AQT-Echo)

/* RTT is the newly meausred round-trip time */
if (BaseRTTtemp < BaseRTT )

BaseRTT = BaseRTTtemp

else /* the ACK is not a probing packet) */
if (RTT < BaseRTT )

BaseRTT = RTT

If all bottleneck routers along the round-trip path are
not AQT-enabled, RoVegas may behave like Vegas. Since
RoVegas cannot obtain the backward queuing time (QTb) to
reduce the impacts of backward congestion, and may not es-
timate a precise BaseRTT to enhance the fairness and solve
the persistent congestion. In this subsection, we try to ex-
plore whether a single AQT-enabled router on the end-to-
end path may achieve the benefits from the RoVegas mech-
anism.

A parking lot network as shown in Figure 10 is used to
examine the throughput of Vegas and RoVegas separately,
here only R2 is AQT-enabled. The bandwidth and propa-
gation delay of each full-duplex access link and connection
link are 10 Mb/s, 1 ms and 1.6 Mb/s, 10 ms respectively.
Three VBR sources each with 1.28 Mb/s averaged sending
to generate backward traffic. A connection of either Ve-
gas or RoVegas from S1 to D1 and three VBR flows from

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



S1

D2

1.6 Mb/s,
10 ms

S4

D1

10 Mb/s,
1 ms R2 R3

D3 D4

S2 S3

R4R1

Figure 10. A parking lot network topology
for investigating throughputs of Vegas and
RoVegas in which only R2 is AQT-enabled.

0

50

100

150

200

250

300

350

400

0 50 100 150 200

Time (s)

T
hr

ou
gh

pu
t (

K
b/

s)

Vegas

RoVegas

Figure 11. Throughput comparison between
Vegas and RoVegas for only R2 is AQT-
enabled in the parking lot network.

S2–S4 to D2–D4 respectively. All traffic sources start send-
ing data at 0 second. Despite only one AQT-enabled router
R2 located on the routing path, we can find that RoVegas
still maintains a higher throughput than that of Vegas, as
depicted in Figure 11. The simulation results imply that the
proposed mechanism is amenable to gradual deployment for
reducing the impacts of backward congestion. This feature
may encourage the gradual adoption of RoVegas on the In-
ternet.

5. Conclusion

In this research, we propose a router-based congestion
avoidance mechanism, RoVegas, for TCP Vegas. Compar-
ing with other previous studies, RoVegas provides a more
effective way to solve the problems of rerouting and persis-
tent congestion, to enhance the fairness among the compet-
itive connections, and to improve the throughput when con-
gestion occurs on the backward path. Through both anal-
ysis and simulation, the effectiveness of RoVegas has been
shown. Nevertheless, there is still an issue that needs more
attentions. It is enhancing the throughputs of Vegas when

it performs with Reno head-to-head. Therefore, how to en-
able compatibility between Reno and Vegas would be one
of our future works.

References

[1] V. Jacobson, “Modified TCP congestion avoidance algo-
rithm,” Tech. Rep., Apr. 1990.

[2] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End
to end congestion avoidance on a global Internet,” IEEE
J. Select. Areas Commun., vol. 13 pp. 1465-1480, Oct. 1995.

[3] J. C. Hoe, “Start-up dynamics of TCP’s congestion control
and avoidance schemes,” Master’s thesis, MIT, Jun. 1995.

[4] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
selective acknowledgement options,” Internet Draft, April
1996.

[5] W. Feng and P. Tinnakornsrisuphap, “The failure of TCP
in high-performance computational grids,” SC 2000:
High-performance Networking and Computing Conf., Nov.
2000.

[6] A. Veres and M. Boda, “The chaotic nature of TCP
congestion control,” IEEE INFORCOM’2000, vol. 3, pp.
1715-1723, Mar. 2000.

[7] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan, “Evaluation
of TCP Vegas: Emulation and experiment,” ACM SIG-
COMM’95, vol. 25, pp. 185-195, Aug. 1995.

[8] J. Mo, R. J. La, V. Anantharam, and J. Walrand, “Analysis
and comparison of TCP Reno and Vegas,” IEEE INFOR-
COM’99, vol. 3, pp. 1556-1563, Mar. 1999.

[9] G. Hasegawa, M. Murata, and H. Miyahara, “Fairness
and stability of congestion control mechanism of TCP,”
Telecommunication Systems Journal, pp. 167-184, Nov.
2000.

[10] C. Boutremans and J. L. Boudec, “A note on the fairness
of TCP Vegas,” 2000 International Zurich Seminar on
Broadband Communications, pp. 163-170, Feb. 2000.

[11] D. D. Luong and J.Biro, “On the proportional fairness of
TCP Vegas,” IEEE GLOBECOM’01, vol. 3, pp. 1718-1722,
Nov. 2001.

[12] O. Elloumi, H. Afifi, and M. Hamdi, “Improving congestion
avoidance algorithms for asymmetric networks,” 1997 IEEE
Int. Conf. Communications, pp. 1417-1421, June 1997.

[13] C. P. Fu and S. C. Liew, “A remedy for performance
degradation of TCP Vegas in asymmetric networks,” IEEE
Commun. Lett., vol. 7, pp. 42-44, Jan. 2003.

[14] C. P. Fu, L. C. Chung, and S. C. Liew, “Performance
degradation of TCP Vegas in asymmetric networks and its
remedies,” 2001 IEEE Int. Conf. Communications, vol. 10,
pp. 3229-3236, June 2001.

[15] J. Postel, “Internet Protocol,” RFC791, Sep. 1981.
[16] Y. Chan, C. Chan, and Y. Chen, “RoVegas: Per-

formance improvement of congestion avoidance
mechanism for TCP Vegas,” Tech. Rep., Sept. 2003,
http://w3.nctu.edu.tw/∼u8517810/.

[17] T. V. Lakshman, U. Madhow, and B. Suter, “Window-based
error recovery and flow control with a slow acknowledge-
ment channel: A study of TCP/IP performance,” IEEE
INFOCOM’97, vol. 3, pp. 1199-1209, Apr. 1997.

[18] UCB/LBNL/VINT Network Simulator – ns (version 2),
http://www.isi.edu/nsnam/ns/.

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 


	footer1: 


