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Abstract. TCP Vegas detects network congestion in the early stage
and successfully prevents periodic packet loss that usually occurs in
TCP Reno. It has been demonstrated that TCP Vegas achieves much
higher performance than TCP Reno in many aspects. However, TCP
Vegas cannot prevent unnecessary throughput degradation when conges-
tion occurs in the backward path, it passes through multiple congested
links, or it reroutes through a path with longer round-trip time (RTT).
In this paper, we propose an aided congestion avoidance mechanism for
TCP Vegas, called Aid-Vegas, which uses the relative one-way delay of
each packet along the forward path to distinguish whether congestion
occurs or not. Through the results of simulation, we demonstrate that
Aid-Vegas can solve the problems of rerouting and backward congestion,
enhance the fairness among the competitive connections, and improve
the throughput when multiple congested links are encountered.

1 Introduction

With the fast growth of Internet traffic, how to efficiently utilize network re-
sources is essential to a successful congestion control. Transmission Control Pro-
tocol (TCP) is a widely used end-to-end transport protocol on the Internet; it
has several implementation versions (i.e., Tahoe, Reno, Vegas...) which intend
to improve network utilization. Among these TCP versions, Vegas can achieve
much higher throughput than that of others [1].

TCP Vegas uses the difference between the expected and actual throughput
to estimate the available bandwidth in the network, control the throughput,
and avoid congestion. The idea is that when the network is not congested, the
actual throughput will be close to the expected throughput. Otherwise, it will
be much smaller than expected. TCP Vegas uses the congestion window size and
measured RTT to estimate the amount of data in the network pipe, maintains
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extra data with amount between the lower threshold (α) and the upper threshold
(β), gauges the congestion level in the network, and updates the congestion
window size accordingly. As a result, Vegas is able to detect network congestion
in the early stage and successfully prevents periodic packet loss that usually
occurs in Reno. Furthermore, Vegas keeps an appropriate amount of extra data
in the network to avoid congestion as well as to maintain high throughput. Many
studies have demonstrated that Vegas outperforms Reno in the aspects of overall
network utilization, stability, fairness, and throughput [1], [2], [3], [4]. However, it
suffers some problems that inhere in its congestion avoidance scheme, including
those issues of rerouting [3], [5], fairness [4], network asymmetry [5], [6], [7],
[8], [9], and path with multiple congested links [10]. All these problems may be
obstacles for Vegas to achieve a success.

In this work, we propose an aided congestion avoidance mechanism for TCP
Vegas (abbreviated as Aid-Vegas hereafter). By using the relative one-way delay
of each packet along the forward path to distinguish whether congestion occurs
or not, Aid-Vegas may solve the problems of rerouting and backward conges-
tion, enhance the fairness among the competitive connections, and improve the
throughput when passing through multiple congested links. We demonstrate the
effectiveness of Aid-Vegas based on the results of simulation.

The rest of this paper is organized as follows. Section 2 describes Vegas and
its problems. Section 3 outlines prior related work. Section 4 discusses the Aid-
Vegas. The simulation results are presented in Section 5. Finally, Section 6 makes
some concluding remarks.

2 TCP Vegas and Its Problems

In this section, we review the congestion avoidance mechanism of TCP Vegas
and describe its problems in detail. The detailed description of Vegas can be
found in [1].

2.1 Congestion Avoidance Mechanism of TCP Vegas

Different from Tahoe and Reno, which detect network congestion based on packet
losses, Vegas estimates a proper amount of extra data, called ∆ for short, to be
kept in the network pipe and controls the congestion window size accordingly
during the congestion avoidance phase. It records the RTT and sets BaseRTT to
the minimum of ever measured RTTs. The ∆ is between two thresholds α and
β, as shown in the following:

α ≤ (Expected − Actual) × BaseRTT ≤ β, (1)

where Expected throughput is the current congestion window size divided by
BaseRTT, and Actual throughput is the current congestion window size divided
by the newly measured RTT. Both throughput and congestion window size are
kept constant when ∆ is between α and β. If ∆ is greater than β, it is taken as
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a sign for incipient congestion, thus the congestion window size will be reduced.
On the other hand, if ∆ is smaller than α, the connection may be underutilizing
the available bandwidth. Hence, the congestion window size will be increased.

2.2 Problems in Vegas

There are several problems in Vegas that may have a serious impact on the per-
formance during the congestion avoidance phase. We summarize these problems
as follows.

Network Asymmetry: By adjusting source congestion window size, Vegas
keeps an estimated extra data on the bottleneck to avoid congestion as well as
to maintain high throughput. However, a roughly measured RTT may lead to
an improper adjustment of congestion window size. If the network congestion
occurs in the direction of ACK packets (backward path), it may underestimate
the actual rate and cause an unnecessary decreasing of the congestion window
size. Ideally, congestion in the backward path should not affect the network
throughput in the forward path, which is the data transfer direction. Obviously,
the control mechanism must be able to distinguish the direction of congestion
and adjust the congestion window size only if necessary.

Rerouting: Vegas estimates the BaseRTT and RTT to compute the expected
and actual throughput respectively and then adjusts its window size accordingly.
This idea works well in usual situations. However, rerouting may cause a change
of the fixed delay, which is the sum of propagation delay and packet processing
time along the round-trip path, and result in substantial throughput degrada-
tion. When the route of a connection is changed, if the new route features shorter
fixed delay, it will not cause any serious problem for Vegas because most likely
some packets will experience shorter RTT, and BaseRTT will be updated even-
tually. On the other hand, if the new route for the connection has a longer fixed
delay, it would be unable to tell whether the increased RTT is due to network
congestion or route change. The source host may misinterpret the increased RTT
as a signal of congestion in the network and decrease its window size. This is
just the opposite of what the source should do.

Unfairness: Different from TCP Reno, Vegas is not biased against the connec-
tions with longer RTT [3], [4]. However, there is still unfairness which comes with
the nature of Vegas. Since Vegas attempts to maintain ∆ between two thresholds
α and β by varying its congestion window size, but the range between α and β
features uncertainty that affects the achievable throughput of connections. Fur-
thermore, Vegas may keep different extra data in the bottleneck for connections
with the same round-trip path. As a result, it prohibits better fairness among
the competing connections.

Multiple Congested Links: In the paper about Vegas [1], it is assumed that
only one bottleneck in the connection so the extra data is just queued in one
router. However, when Vegas passes through multiple congested links, it could
not tell whether the packets are queued in a single or multiple routers because
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Vegas uses the RTT to estimate the backlog in the path. As a result, it tends to
decrease congestion window size and hence degrade the throughput of multi-hop
connections due to reducing the sending rate unnecessarily [10].

3 Related Works

Congestion control for TCP is a very active research area; solutions to TCP
congestion control address the problem either at the intermediate routers in the
network [5], [11] or at the endpoints of the connection [6], [7], [8], [9], [12].

Router-based support for Vegas congestion avoidance mechanism can be pro-
vided as RoVegas [5], a solution which uses a normal TCP packet (data or ACK)
with AQT (accumulate queuing time) option in its IP header as a probing packet
to collect the queuing time along the path. As an alternative to packet drop-
ping, an ECN (Explicit Congestion Notification) [11] bit can be set in the packet
header for prompting the source to slow down. However, current TCP and router
implementations do not support these two methods.

Several end-to-end congestion control approaches have been proposed to im-
prove TCP performance for asymmetric networks. These approaches obtain ei-
ther the forward trip time [7] or the actual flow rate on the forward path [8]
depending on TCP timestamps option. Although solutions such as ACC (ack
congestion control), AF (ack filtering), SA (sender adaptation), and AR (ack
reconstruction) have improved the Reno’s performance under asymmetric net-
works [12], these are not effective for handling asymmetry problems of Vegas
[8]. By using the relative delay estimation along the forward path, TCP Santa
Cruz [9] is able to identify the direction of congestion. However, it is not for
rate-based Vegas. Enhanced Vegas [6] is a mechanism that works under asym-
metric networks and uses TCP timestamps option to estimate queuing delay on
the forward and backward path separately without clock synchronization. Nev-
ertheless, clock skew issue such as the convergence speed of the clock ratio is
still a problem of Enhanced Vegas.

4 Aid-Vegas

Vegas estimates a proper amount of extra data to be kept in the network pipe
and controls the congestion window size accordingly. It works well during the
congestion avoidance phase when no other competing sources exist. However, the
aforementioned problems such as rerouting, unfairness, and multiple congested
links may be encountered. Also it leads to unnecessary throughout degradation
when the congestion occurs on the backward path. In other words, Vegas does a
good job on its increasing part, but it may mistakenly decrease the congestion
window easily when there are some variations in the network. In this work, we
propose Aid-Vegas, which preserves the advantages of TCP Vegas, to deal with
these problems. The detail of the proposed mechanism is explained as follows.
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Fig. 1. The relative one-way delay of packets for Vegas

4.1 Mechanism Description

Suppose that Src (source) transmits packets to Dest (destination), Src times-
tamps each packet i with a timestamp ti prior to its transmission, and ai is
the arrival time of the ith packet at Dest. Dest computes the relative one-way
delay of each packet as Di = ai − ti. As will become clear later, the mea-
surement methodology does not need synchronized clocks, because we are only
interested in the relative magnitude of one-way delays. If a Vegas source keeps
a constant throughput and a stable ∆ between α and β during the congestion
avoidance phase, so the relative one-way delay of each packet is steady as shown
in Fig. 1 (a). We could see two situations when other sources want to compete
the resource with it [13], [14]. One is that while the total flow rates are larger
than the link capacity consistently, the relative one-way delays of Vegas would
experience an increasing trend as shown in Fig. 1 (b). The other is the short-
term relative one-way delays are increasing, as shown in Fig. 1 (c) when transient
traffic of other sources passes by. As a result, Aid-Vegas utilizes one-way delays
relationship to decide whether congestion happens in the forward path. The
detailed mechanism is described as follows.

In the destination side, after computing Di for each packet, Dest tells the
result of Di comparing with Di−1 to Src by using two reserved bits in TCP
header, called ROD bits. In case |Di − Di−1| ≤ τ , where τ is a predefined time
interval, or it is the first packet of a connection (i.e., i = 1), the ROD value is
00binary. If (Di −Di−1) > τ , the ROD value is 10binary. On the other hand, the
ROD value is 01binary when (Di−1 − Di) > τ . In the source host, we set the
trend Dt, whose default value is 0 in every RTT, to represent a congestion in
the forward path. Whenever Src receives an ACK, it sums ROD value to Dt,
and the values for 00binary, 01binary and 10binary of ROD are set to 0, 1, and -1
respectively. The detailed description of Src and Dest’s behaviors with variations
of one-way delays is shown in Table 1.

Table 1. Src and Dest’s behaviors with variations of one-way delays

variation Dest Src

|Di − Di−1| ≤ τ or i = 1 ROD = 00binary Dt = Dt + 0
(Di−1 − Di) > τ ROD = 01binary Dt = Dt + 1
(Di − Di−1) > τ ROD = 10binary Dt = Dt − 1
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Table 2. 9 situations and congestion window size adjustment

9 situations

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Src + + + � � � – – –
Dest + � – + � – + � –

Adjustment

CWD +1 +1 +1 +1 ±0 ±0 +1 ±0 –1

When this calculation is performed once per RTT, Src adjusts the congestion
window size according to both values of ∆ and Dt. If Dt is positive, it indicates
that there is no congestion in the network, so Src increases the congestion win-
dow. Congestion may occur in the forward path and the throughput may be
reduced when Dt is negative. The flow rates in the network are balanced while
Dt equals 0, so Src doesn’t adjust anything. Accordingly, the combinations of
Src and Dest’s notifications for adjusting the congestion window size results in 9
situations. Table 2 shows these 9 situations and how Src adjusts the congestion
window size, where +, �, and - represent ∆ < α, α ≤ ∆ ≤ β, and β < ∆ in Src
column, and Dt > 0, Dt = 0, and Dt < 0 in Dest column respectively, and the
signification of CWD is the congestion window size. We reserve the increasing
part (i.e., (1)∼(3) notifications in Table 2) of Vegas and modifies both the steady
and decreasing parts (i.e., the others in Table 2).

Since the idea is simple, we omit the pseudo codes in this section. The pro-
posed scheme can improve the performance of TCP Vegas according to the sim-
ulation results in the following section.

5 Simulation Results

In this section, we compare the performance of Aid-Vegas with Vegas by using
the network simulator ns2 [16], version 2.26. We show the simulation results
for backward congestion, rerouting, fairness among the competing connections,
and multiple congested links. The FIFO service discipline is assumed. Several
VBR sources construct both forward and backward traffic, these are distributed
ON-OFF sources with the Pareto model. During ON periods, some VBR sources
generate backward traffic and send data at 3.0 Mb/s, while the others send data
at 0.8 Mb/s or 1.0 Mb/s. Unless otherwise stated, the size of each FIFO queue
used in routers is 50 packets, the size of data packet is 1 Kbytes, and the size
of ACK is 40 bytes for both Vegas and Aid-Vegas. To ease the comparison, we
assume that the sources are back logged.

5.1 Rerouting

From Section 2, we could see that there is no serious problem for Vegas when
it reroutes with a shorter RTT, so does Aid-Vegas because it is based on Vegas.



An Aided Congestion Avoidance Mechanism for TCP Vegas 967

However, if packets are rerouted with a longer RTT, Vegas may suffer throughput
degradation, but not for Aid-Vegas. The reason is that Vegas could not differen-
tiate whether the increased RTT is due to route change or network congestion.
On the other hand, Aid-Vegas uses the relative one-way delay to distinguish
the congestion, so rerouting to a longer RTT doesn’t affect the throughput. In
the following, we show the simulation result of both Vegas and Aid-Vegas when
packets are rerouted to a longer path with larger RTT.
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(a) A single network topology for the (b) Throughput comparison between
simulation of Vegas and Aid-Vegas. Vegas and Aid-Vegas with rerouting.

Fig. 2. The simulation topology and results of rerouting

Figure 2 (a) shows the first network topology. A source S1 of either Vegas or
Aid-Vegas sends data packet to its destination D1. The bandwidth and propa-
gation delay are 10 Mb/s and 1 ms for each full-duplex access link, 1.5 Mb/s
and 3 ms for the full-duplex trunk link from R1 to R2, from R2 to R3 and from
R3 to R7, and 1.5 Mb/s and 4 ms for the full-duplex trunk link from R1 to
R4, from R4 to R5, from R5 to R6 and from R6 to R7. At the beginning, the
packets are routed through S1, R1, R2, R3, R7, and D1 in order. At 15th sec-
ond, the connection link from R2 to R3 is broken and then recovered at 35th

second. Therefore, the packets pass through the other path from 15th till 35th

second. As shown in Fig. 2 (b), when the packets are routed through the path
with shorter RTT, Vegas achieves high throughput and stabilizes at 1.5 Mb/s.
However, the performance of Vegas degrades dramatically when the packets are
rerouted through the other path. On the other hand, Aid-Vegas always maintains
a steady throughput regardless of the route change.

5.2 Network Asymmetry

In this subsection, we are interested in the throughput of different mechanisms
when the congestion is caused by additional backward traffic. Since TCP RoVe-
gas [5] and Enhanced Vegas [6] improve the performance of Vegas when the
congestion occurs in the backward path, we also compare Aid-Vegas with them.
Therefore, we will see the performance of four mechanisms in this part.
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Fig. 3. A single bottleneck network topology for investigating throughput of different
mechanisms when the congestion occurs in the backward path
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Fig. 4. The simulation results of network asymmetry

The second network topology for the simulations is shown in Fig. 3. Sources,
destinations, and routers are represented as Si, Di, and Ri respectively. A source
and destination with the same suffix value represent a traffic pair. The bandwidth
and propagation delay are 10 Mb/s and 1 ms for each full-duplex access link,
1.5 Mb/s and 23 ms for the full-duplex trunk link. A source of Vegas, RoVegas,
Enhanced Vegas, or Aid-Vegas is attached to S1 and a VBR source is attached
to S2. The S1 starts sending data at 0 second, while S2 starts at 25th second.

From the results shown in Fig. 4 (a), we can observe that when different back-
ward VBR traffic loads varies from 0 to 1, the average throughput of Aid-Vegas
is higher than those of other mechanisms. For example, as the backward traffic
load is 1, Aid-Vegas achieves a 3.2 times higher average throughput in compari-
son with that of Vegas. In addition, Fig. 4 (b) depicts the throughput comparison
between Vegas and Aid-Vegas with a VBR source which has 1.35 Mb/s averaged
sending rate. Obviously, we have demonstrated that Aid-Vegas significantly im-
proves the connection throughput when the backward path is congested.

5.3 Fairness Improvement

Vegas experiences unfairness because it attempts to maintain ∆ between two
thresholds α and β by adjusting its congestion window size, but the range bet-
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ween α and β includes uncertainty to the achievable throughput of connections.
Here, we show the comparison between Vegas and Aid-Vegas with multiple users
competing network resources.

First, we are interested in those sources with same RTT. The network topol-
ogy for simulations is shown in Fig. 5 (a), where the bandwidth and propagation
delay are 1 Gb/s and 1 ms for full-duplex access link, and 10 Mb/s and 23 ms for
full-duplex trunk link respectively. The sources are either Vegas or Aid-Vegas.
We consider two cases here. One is that ten sources start at the same time, and
the other is that ten connections from S1 to S10 successively join the network
one by one every 30 seconds. In addition, we don’t change the default value
of α and β. We use the fairness index [15] to represent the result of these two
cases, as shown in Table 3, from which we observe that the fairness index of
Aid-Vegas is higher than that of Vegas, especially when the sources start at the
same time.

Table 3. The fairness index for Vegas and Aid-Vegas

Vegas Aid-Vegas

start at the same time 0.967 0.999
start at the different time 0.932 0.985

Fig. 5. The network topology for ten sources

Table 4. The fairness index for Vegas and Aid-Vegas

Vegas Aid-Vegas

i = 2 0.973 1.000
i = 3 0.943 0.998

Second, we simulate the source with different RTTs, and the network topol-
ogy is shown in Fig. 5 (b). The bandwidth and propagation delay are 1 Gb/s
and 1 ms for full-duplex access link, and 5 Mb/s and 8 ms for full-duplex trunk
link respectively. The sources are either Vegas or Aid-Vegas. Table 4 depicts the
fairness index for Vegas and Aid-Vegas with i = 2 and 3. We observe that the
fairness index of Aid-Vegas is bigger than that of Vegas from Table 4.
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From these simulation results, we can observe that the Aid-Vegas is more
suitable than Vegas for multiple sources with same mechanism.

5.4 Multiple Congested Links

Vegas adjusts the congestion window size according to the comparison result of
∆ with α and β. However, packet routing though multiple congested links causes
the RTT increased. As a result, Vegas mistakenly judges that congestion occurs
and decreases the congestion window size. On the other hand, Aid-Vegas uses
the relative one-way delay of each packet to distinguish congestion. If the traffic
of all flows is steady, the curve of relative one-way delays will be short-term
intervals. Figure 6 (a) shows the general network topology, where the bandwidth
and propagation delay are 1 Gb/s and 1 ms for the full-duplex access link, and 5
Mb/s and 8 ms for the full-duplex trunk link respectively . The S1 is either Vegas
or Aid-Vegas source, and the other sources are VBR sources with 0.8 Mb/s or
1.0 Mb/s during ON periods. Figure 6 (b) depicts the throughput of Vegas and
Aid-Vegas when there are two VBR sources (i.e., n = 2) in the network. The
throughput is 0.8 Mb/s and 1.0 Mb/s for S2 and S3 respectively. S2 is ON from
7th to 16th second, S3 is ON from 21th to 30th second, and both are ON from
37th to 45th second. From Fig. 6 (b), we can observe that the performance of
Aid-Vegas is higher than Vegas.

Fig. 6. The simulation with multiple congested links

6 Conclusions

In this research, we propose Aid-Vegas for TCP Vegas. Comparing with other
previous studies, Aid-Vegas provides a more effective way to solve the prob-
lems of rerouting and backward congestion, to enhance the fairness among the
competing connections, and to improve the throughput when passing through
multiple congested links. Through simulation, we demonstrate the effectiveness
of Aid-Vegas. We will focus on its coexistence with other TCP implementations
as well as its performance over wireless networks in our future work.
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