
A TCP-Friendly Stateless AQM Scheme for Fair Bandwidth Allocation

Cheng-Yuan Hoa, Yi-Cheng Chanb, and Yaw-Chung Chena

aDepartment of Computer Science and Information Engineering, National Chiao Tung University
bDepartment of Computer Science and Information Engineering, National Changhua University of Education

cyho@csie.nctu.edu.tw, ycchan@cc.ncue.edu.tw, ycchen@csie.nctu.edu.tw

Abstract

Queue management, bandwidth share, and congestion
control are very important to both robustness and fairness
of the Internet. In this article, we investigate the problem
of providing a fair bandwidth allocation to those flows that
share congested link in a router. A new TCP-friendly router-
based AQM (active queue management) scheme, termed
WARD, is proposed to approximate the fair queueing policy.
WARD is a simple packet dropping algorithm with a ran-
dom mechanism, and discriminates against the flows which
transmit more packets than allowed. By doing this, it not
only protects TCP connections from UDP flows, but also
solves the problem of competing bandwidth among different
TCP versions such as TCP Vegas and Reno. In addition,
WARD works quite well for TCP flow isolation even with
different round trip times. In other words, WARD improves
the unfair bandwidth allocation properties. Furthermore, it
is stateless and easy to implement, so WARD controls unre-
sponsive or misbehaving flows with a minimum overhead.

1 Introduction

The Internet provides a connectionless, best effort, end-
to-end packet service using the IP protocol. Its perfor-
mance and stability depend on congestion avoidance algo-
rithm and implemented in the transport layer protocols to
provide good service under heavy load. In practice, TCP
(Transmission Control Protocol) has been widely deployed
to carry the majority of the traffic in the Internet. TCP helps
a traffic source to determine how much bandwidth is avail-
able in the network, adjust its transmission rate accordingly,
keeps the network from being overloaded and has become a
crucial factor in the robustness and stability of the Internet.

However, a lot of TCP implementations do not include
the congestion avoidance mechanism either deliberately or
by accident [1]. Moreover, some applications utilize the
UDP (User Datagram Protocol) instead, which does not em-

ploy end-to-end flow and congestion control. Rather, the
sending rate is set by the application and normally a little or
even no consideration of network congestion is taken into
account during the transmission. As a result, UDP flows
aggressively use up more bandwidth than other TCP com-
patible flows. This could eventually cause “Internet Melt-
down” or result in two major problems already identified
in the Internet:unfairnessandcongestion collapse. There-
fore, it is necessary to have router mechanisms to shield
responsive flows from unresponsive or aggressive flows and
to effectively detect congestion in the network.

Besides, even there is no UDP flow in the network, an
unfairness problem may still occur when the connections
with different TCP versions such as TCP Vegas [2] and
TCP Reno [3] coexist [4]. It is because their slow start,
congestion avoidance, and fast retransmit mechanisms are
different. For example, TCP Vegas uses the difference
between the expected and actual throughput, while TCP
Reno detects the packet loss as an indicator, to estimate the
available bandwidth in the network, to control the through-
put, and to avoid congestion. TCP Vegas achieves much
higher throughput, and has a fairer and stabler bandwidth
share than TCP Reno does. However, TCP Reno is an
aggressive control scheme in which each connection cap-
tures more bandwidth until the transmitted packets are lost.
Meanwhile, TCP Vegas is a conservative scheme in which
each connection obtains a proper bandwidth. Thus, the
TCP Reno connections take bandwidth from the TCP Ve-
gas connections when they coexist. To solve this unfairness
problem, several end-system-based solutions such as TCP
NewVegas, TCP Vegas-A, TCP Vegas+ and so on have been
proposed. Nevertheless, these mechanisms merely solve the
problem in some particular network environments. As a re-
sult, to regulate the flows causing the unfairness problem,
the router-based schemes are more appropriate.

The rest of this paper is organized as follows. In Sec-
tion 2, related work is reviewed. Section 3 briefly explains
the WARD’s goals and describes its algorithm in detail. The
simulation results are presented in Section 4. Finally, a sum-
mary of this work is addressed in Section 5.

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)
0-7695-2450-8/05 $20.00 © 2005 IEEE

2 Related Works

One of the most important objectives of a router-based
scheme is its ability to achieve fairness among competing
flows, particularly in the case where unresponsive high-
bandwidth best-effort flows share the bottleneck link.

Drop Tail: The simplest buffer management scheme for
a FIFO queue is Drop Tail, which just drops an incoming
packet when the queue is already full. However, it was
pointed out that each congestion period introduces global
synchronization in the network. When the queue overflows,
packets are often dropped from several TCP connections,
and these connections decrease their windows at the same
time. This results in a loss of throughput at the gateway.

RED: A router implementing RED (Random Early Detec-
tion) [5] maintains a single FIFO to be shared by all the
flows, and drops an arriving packet randomly during periods
of congestion. The drop probability increases with the level
of congestion. Since RED acts in anticipation of conges-
tion, it does not suffer from the “lock out” and “full queue”
problems inherent in the widely deployed Drop Tail mech-
anism. By keeping the average queue-size small, RED re-
duces the delays experienced by most flows. We would like
to describe the details of RED because the same or alike
schemes are also used in FRED and CHOKe.

The RED gateway calculates the average queue size, us-
ing a low-pass filter with an exponential weighted moving
average. The average queue size is compared to two thresh-
olds, the minimum threshold and the maximum threshold.
When the average queue size is less than the minimum
threshold, no packets are dropped. When the average queue
size is greater than the maximum threshold, every arriving
packet is dropped. When the average queue size is between
the minimum and the maximum threshold, each arriving
packet is dropped with probability, which is a function of
the average queue size.

Although RED successfully solves the “global synchro-
nization” problem, it doesn’t provide fair queuing when
there exist unresponsive UDP flows. It is because UDP
traffic doesn’t adjust its transmission rate according to
congestion in the network. As a result, they aggressively
use up more bandwidth than other TCP compatible flows.

FRED: FRED (Fair Random Early Detection) [6] is a
modified version of RED meant to solve the unfairness
problem and to improve RED’s ability for distinguishing
unresponsive users. Two global parameters,the minimum
and maximum number of packets allowed to be queued
at the router for each flow, are added. Each active flow
needs to maintain the number of packets buffered and the
number of times it was failed to respond to congestion
notification. Lastly, FRED introduces an average per-flow

queue size as a global variable. It protects low-speed flows
by guaranteeing them a minimum buffer space. In order
to manage unresponsive flows, FRED enforces per-flow
queueing limits. Overall, FRED can achieve fairness under
several situations with minimal modifications to RED.
However, the main drawback of FRED is the amount of
per-flow state information that needs to be maintained, this
limits its scalability.

CHOKe: A design goal of CHOKe (CHOose and Keep for
responsive flows) [1] is to keep the mechanism as simple
as possible while controlling unresponsive flows. A small
modification is proposed over a plain FIFO queue with RED
active queue management to achieve this goal. When a
packet arrives at a congested router, CHOKe draws a packet
randomly from the FIFO buffer and compares it with the
arriving packet. If they both belong to the same flow, then
they are both dropped, else the randomly chosen packet is
left intact and the arriving packet is admitted into the buffer
with a probability that depends on the level of congestion.
The reason for doing this is that a FIFO queue is more likely
to have packets that belong to unresponsive flows more than
those of responsive ones, and they are more likely to be
chosen for comparison. Therefore, packets from unrespon-
sive flows are likely to be dropped more often. However,
CHOKe can control unresponsive flows only if there are
more packets from those flows in the buffer at the time of
congestion. This is due to the fact that CHOKe does not
keep track of those unresponsive flows. In addition, some
responsive flows might be punished unnecessarily as a re-
sult of its probabilistic algorithm.

Some mechanisms have rarely been implemented in a
commercial high speed or backbone router because they
still have a high space complexity. Thus, we propose a state-
less and TCP-friendly queue management scheme.

3 Motivation, Goal, and WARD

Our work is motivated by the need for a simple, TCP-
friendly, and stateless algorithm that can achieve fair band-
width allocation and flow isolation. Although RED, FRED,
and CHOKe do not estimate the number of active flows,
they still have their own limits. For example, how to set
the value of minimum and maximum thresholds in these al-
gorithms to suit a topology with variable connections is a
tough problem because RED, FRED, and CHOKe are sen-
sitive to parameter settings. Moreover, improper parameter
settings may lead to unsatisfactory TCP performance. We
are seeking a solution to avoid these problems in the context
of the Internet. In addition, we are motivated to find a solu-
tion that could penalize the “unresponsive” or “unfriendly”
flows, such as UDP-based and bad implementations of TCP.
Further, we hope that our solution could avoid global syn-

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)
0-7695-2450-8/05 $20.00 © 2005 IEEE

chronization, ensure low delays, keep buffer occupancies
small, and bias against bursty traffic. Thus, we propose
a stateless queue management algorithm, called WARD,
which is discussed in the following paragraphs.

3.1 Mechanism Description

Suppose that a router maintains a single FIFO buffer for
queueing the packets of all the flows that share an outgoing
link. We describe an algorithm, WARD, that differentially
penalizes unresponsive and unfriendly flows. In addition,
even though the idea of WARD is similar to CHOKe, the
method of WARD is different from CHOKe. The state,
taken to be the number of active flows and the flow ID of
each parameter packets, is assumed to be unknown to the
algorithm. The only observable for the algorithm is the to-
tal occupancy of the buffer.

Before describing the WARD’s algorithm, we give a
weighted value to every position in the FIFO buffer. First,
the index of every position is divided by the FIFO buffer
size. Second, the weighted value of every position equals
the first number beyond a decimal point of above result.
For example, assuming the FIFO buffer size is 100, then the
weighted values of the1st to 9th position are 0.0, the10th

to 19th are 0.1, ..., the90th to 99th are 0.9, and the last po-
sition is 1.0. Since the packets entering the beginning or the
head of a buffer means that there is no congestion yet. On
the other hand, the congestion may occur when the buffer is
becoming full.

When a packet k, which may be queued into the position
P, arrives at the buffer, we choose a uniformly distributed
random decimal number U, which is no larger than 1. If U
is bigger than the weighted value of position P, this packet
k is queued into the FIFO buffer. Otherwise, the packet k
is compared with two packets i and j which are randomly
selected from the FIFO buffer. First, if these three packets
have the same flow ID, they will be all dropped. Second,
the flow ID of either packet i or packet j is same as that of
the packet k, these two packets with same ID will be both
dropped. Third, if packets i and j have the same flow ID,
which is different from the flow ID of the packet k, both
packets i and j will be dropped too. Otherwise, the ran-
domly selected packets i and j are kept in the buffer (in the
same position as before) and the arriving packet k is queued
in the position P. Besides, in the sensitive case, the buffer is
full when the packet k comes in. WARD will do the above
steps except queueing the packet k in the last step. A flow
chart of the WARD’s algorithm is given in Fig. 1. WARD
is a truly stateless algorithm. It does not require any special
data structure. Compared to a pure FIFO queue, WARD just
needs to perform few simple extra operations. We may say
that WARD is embedded in Drop Tail, which is a commonly
used scheme, so there is no big problem in using WARD.

Arriving packet k

U < weighted value

Or
 Buffer Overflow

Admit new
packet k

End

Draw two packets i, j at random
from queue, and packet i is not
same as packet j (i.e., i = j)

Drop new

packet k

End

Are all packets
from same flow?

Drop these

three packets

End

Drop packet k
and packet i(j)

 Drop packets

 i and j, and

 Admit new
 packet k

End

N
 Y

N

N

Y

Y

Y

N

Does Buffer
Overflow?
N
 Y

Admit new
packet k

End

Are packet k
and packet i (j)

from same flow?

End

Are packet i

and packet j

from same flow?

Figure 1. The WARD Algorithm.

Because the space is limited, the reasons for choosing
two packets randomly, the a deterministic fluid model of
TCP/WARD system and the UDP throughput behavior with
WARD please refer to [7]. In the following Sections, we
demonstrate that the proposed scheme improves the fairness
of bandwidth allocation based on the numerical results.

4 Simulation Results

This section presents simulation results of WARD’s per-
formance in penalizing misbehaving flows and thus ap-
proximating fair bandwidth allocation. We use the RED,
CHOKe, and Drop Tail schemes, whose complexities are
close to that of WARD, for comparison. The simulations
range over a spectrum of network configurations and traffic
mixes. The results are presented in four parts: Single Unre-
sponsive Flow, Multiple Unresponsive Flows, TCP Sources
With Different Versions, and TCP Sources With Different
Round Trip Times. Since the space is limited, we only show
the main simulation results. Other simulation results please
refer to [7].

4.1 Simulation Setup

We use the network simulatorns2[8], version 2.26, and
the dumbbell topology shown in Fig. 2 to assess the perfor-
mance of WARD, which will be compared with Drop Tail,
RED, and CHOKe. The congested link in this network is
between the router R1 and R2. The link, with capacity of 1
Mbps, is shared by m TCP (with one version) and n UDP,
or m TCP Vegas and n TCP Reno flows. An end host is
connected to the routers using a 10 Mbps link, which is ten
times the bottleneck link bandwidth. All links have a small
propagation delay of 1 ms except the last scenario, so that

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)
0-7695-2450-8/05 $20.00 © 2005 IEEE

the delay experienced by a packet is mainly caused by the
buffer delay rather than the transmission delay. The maxi-
mum window size of TCP is set to 500 segment such that
it doesn’t become a limiting factor of a flow’s throughput.
The TCP flows are derived from FTP sessions which trans-
mit large sized files. The UDP hosts send packets at a CBR
(constant bit rate) ofγ Kbps, whereγ is variable. The size
of all packets are set to 1 K Bytes.

S
(1)
 D
(1)

R1 R2

10Mbps
1ms

10Mbps
1ms

1 Mbps
1 ms

S
(m)

10Mbps
1ms

10Mbps
1ms

D
(m)

S
(m+1)

S
(m+n)

D
(m+1)

D
(m+n)

10Mbps
1ms

10Mbps
1ms

Figure 2. Simulation Topology.

4.2 Single Unresponsive Flow

To study how much bandwidth a single nonadaptive
UDP source can obtain when the routers use different
queue management schemes, we set up the simulation with
32 TCP sources (Flow1 to Flow32) and 1 UDP source
(Flow33) in the network. The UDP source sends packets
at a rate of 2 Mbps, twice the bandwidth of the bottleneck
link, such that the link R1–R2 becomes congested.

To observe how WARD achieves fair bandwidth alloca-
tion, the individual throughput of each of the 33 connec-
tions with buffer size 132 (4 packets per flow), along with
their ideal fair shares, are plotted in Fig. 3. Although the
throughput of the UDP flow (Flow33) is still higher than
the rest of the TCP flows, it can be seen that each TCP is
allocated a bandwidth relatively close to its fair share. Fur-
thermore, the dropping probability of UDP flow is about
96%. Since a packet may be dropped because of a match
or buffer overflow in WARD. A misbehaving flow, which
has a high arrival rate and a high buffer occupancy, incurs
packet dropping mostly due to matches. On the other hand,
the packets of a responsive flow are unlikely to be matched,
so they will be dropped mainly because of buffer overflow.

The throughput of the UDP flow under different queue
management algorithms: Drop Tail, RED, CHOKe, and
WARD, is plotted in Fig. 4. The minimum threshold in the
RED and CHOKe is set to 100, allowing on average around
3 packets per flow in the buffer before a router starts drop-
ping packets. Following [5], we set the maximum threshold

82.47

1

10

100

1
 3
 5
 7
 9
 11 13 15 17 19 21 23 25 27 29 31 33

Flow Number

T
h
r
o
u
g
h
p
u
t
(
K
b
p
s
) WARD’s Throughput

Ideal Fair Share

Figure 3. Throughput Per Flow.

0

100

200

300

400

500

600

700

800

900

0
 20 40 60 80 100
 120

Time (s)

T
h
r
o
u
g
h
p
u
t

(
K
b
p
s
)

DropTail: UDP’s Throughput

RED: UDP’s Throughput

CHOKe: UDP’s Throughput

WARD: UDP’s Throughput

Figure 4. UDP Throughput Comparison.

to be twice the minimum threshold. In addition, with no
partiality, the buffer size of Drop Tail and WARD is fixed
at 200 packets due to the maximum threshold mentioned
above. From Fig. 4, we could clearly see that the Drop
Tail and RED gateways do not discriminate against unre-
sponsive flows. The UDP flow takes away more than 85%
of the bottleneck link capacity and the TCP connections
only obtain the remaining 150 Kbps. Although CHOKe im-
proves the throughput of the TCP flows dramatically by lim-
iting the UDP throughput to 250 Kbps, however, the UDP
throughput is still much higher than each of TCP through-
put. WARD boosts the total TCP flows’ throughput from
150 Kbps (in Drop Tail gateway) to at least 850 Kbps and
limits UDP throughput to at most 150 Kbps, which is only
around 15% of the link capacity.

With the fixed buffer size (200), we vary the UDP ar-
rival rateγ to ivestigate WARD’s performance under differ-
ent traffic load conditions. The simulation results are sum-
marized in Fig. 5, where the UDP’s throughput versus the
UDP flow arrival rate is plotted. The drop percentage of the
UDP flow is also shown in the Fig. 5. From the plots, we
can observe some characteristics of WARD comparing with

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)
0-7695-2450-8/05 $20.00 © 2005 IEEE

CHOKe. (1) When UDP arrival rate is lower than fair share
bandwidth, WARD protects the throughput of UDP flow as
best it can. For example, there is no packets dropped from
UDP flow while its arrival rate is 10 Kbps. As the UDP
arrival rate increases, the drop percentage goes up as well.
For instance, WARD drops 21.9% of the UDP packets when
its rate achieves 100 Kbps. Moreover, WARD drops almost
all packets (99.7%) while the arrival rate reaches 10 Mbps.
Since the probability of obtaining a matched UDP packet
increases with the increasing arrival rate of UDP flow. In
other words, the packets of UDP flow have higher probabil-
ity to be matched. (2) The average throughput of TCP flows
with WARD algorithm is higher than that with CHOKe.
Since the drop percentage of UDP flow by using WARD
is bigger than CHOKe when its rate is higher than the fair
share bandwidth. In addition, we don’t compare WARD
with Drop Tail and RED here because the comparisons of
CHOKe, RED, and Drop Tail is already shown in [1].

0

50

100

150

200

250

300

1
 10 100
 1000 10000

UDP Arrival Rate (Kbps)

T
h
r
p
u
g
h
p
u
t

(
K
b
p
s
)

CHOKe:UDP’s throughput with mark

for UDP Dropping Percentage

WARD:UDP’s throughput with mark

for UDP Dropping Percentage

0.0%

0.0% 0.0%

0.0% 3.7%

8.3%
13.5%

15.1%

17.4%

21.9%

38.8%

58.6%

69.2%

77.5%

82.4%

93.4%

98.2%

99.3%

99.6%
4.0% 1.3%
3.7%

6.7%
9.8%
13.8%

15.3%

32.8%

16.9%

50.8%

61.6%

69.1%

74.0%

88.2%

96.0%

98.5%

99.4%

99.7%

Figure 5. Performance versus UDP Rates.

4.3 Multiple Unresponsive Flows

We follow the traffic model mentioned above (i.e., Fig.
2). Recall that the first model includes 32 TCP flows
(Flow1 to Flow32) and 1 UDP flow (Flow33), we don’t
change any variables here except the number of sources
with TCP or UDP flows. The second traffic model includes
31 TCP flows (Flow1 to Flow31) and 2 UDP flows (one
(Flow32) sending rate is 2 Mbps and the other (Flow33) is
1 Mbps), and there are 29 TCP flows (Flow1 to Flow29)
and 4 UDP flows (Flow30 to Flow33) in the third traffic
model. The rates of the UDP flows are 2 Mbps, 1 Mbps,
100 Kbps, and 30 Kbps, which is smaller than the ideal
fair share throughput, respectively. The results of these
two traffic models are shown in Table 1, where Thr is
throughput (Kbps) of a flow, SR is sending rate (Kbps) of a
UDP flow, andPdrop is dropping probability, respectively.
In addition, the ideal fair share throughput is 30.3 Kbps.
From Table 1, we could see that the UDP flow with a low
rate is also treated fairly. In other words, the dropping

probability is bigger when the sending rate becomes higher.
When the number of TCP and UDP flows change, the
WARD algorithm tries to achieve fair queueing. If we
concern the input rates of UDP flows, the performance is
really satisfactory.

Table 1. Average Throughput of TCP and
Throughput of each UDP.

2UDP TCP UDP1 UDP2 UDP3 UDP4
Thr 26.3 65.1 41.2 —– —–

SR —– 2000 1000 —– —–

Pdrop —– 96.75% 95.88% —– —–

4UDP TCP UDP1 UDP2 UDP3 UDP4
Thr 24.8 64.4 62.7 57.6 25.5

SR —– 2000 1000 100 30

Pdrop —– 96.78% 93.73% 42.40% 15.11%

4.4 TCP Sources With Different Versions

When a TCP Vegas user competes with other TCP Reno
users, it does not receive a fair share of bandwidth due to
the conservative congestion avoidance mechanism used by
TCP Vegas [4]. To avoid this situation, how to drop some
packets sent by Reno before buffer overflow is an issue.

Table 2. Fairness Index of Different TCP Ver-
sions and Buffer Sizes.

Fairness Index
B Vegas – Reno flows

20 - 0 15 - 5 10 - 10 5 - 15 0 - 20

60 99.7% 99.6% 99.4% 99.5% 99.5%

70 99.8% 99.6% 99.7% 99.4% 99.4%

80 99.7% 99.7% 99.5% 99.6% 99.6%

90 99.7% 99.8% 99.6% 99.5% 99.3%

100 99.1% 99.6% 99.7% 99.6% 99.5%

110 99.9% 98.7% 99.2% 99.5% 99.8%

120 99.5% 99.5% 99.2% 99.6% 99.6%

In this subsection, we use 20 TCP sources in the dumb-
bell topology, as shown in Fig. 2. Moreover, the ideal fair
share throughput of each flow is 50 Kbps. Among these
20 TCP sources, the source traffic from TCP Vegas are de-
creasing from 20 to 0. We show the simulation results of
using WARD algorithm with different buffer sizes in Table
2, where B is buffer size. In Table 2, we could see the fair-
ness index of each buffer size over 99% regardless of the
number of sources using either TCP Vegas or TCP Reno in

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)
0-7695-2450-8/05 $20.00 © 2005 IEEE

the network. Thus, we think that TCP Vegas could compete
the network resources with TCP Reno when using WARD
algorithm in a router.

We compare the fairness index of WARD with other
algorithms, such as Drop Tail, RED, CHOKe, and FRED.
In addition, the physical buffer size is 120 for each algo-
rithm, and minimum threshold is set to 60 and maximum
threshold is set to 120 for RED, CHOKe, and FRED
algorithms. The result is shown in Table 3. We could see
that the performance of WARD is much better than others,
even the algorithm requires full per-flow state information.

Table 3. Fairness Index of Different Queue
Management Algorithms.

Fairness Index
Algorithm Vegas – Reno flows

20–0 15–5 10–10 5–15 0–20

Drop Tail 96.3% 60.7% 76.9% 95.8% 97.7%

RED 96.3% 74.2% 83.4% 91.3% 98.9%

CHOKe 96.3% 84.3% 92.9% 97.1% 99.3%

FRED 96.3% 62.2% 78.4% 91.5% 99.7%

WARD 99.4% 99.5% 99.2% 99.6% 99.6%

4.5 TCP Sources With Different RTTs

When TCP Reno connections feature different RTTs, the
sources with shorter RTT will get more network resource.
Different from TCP Reno, TCP Vegas is not biased against
the connections with longer RTT. Thus, we show the results
of TCP Reno sources with different RTTs in Fig. 6. There
are three cases in our test. Case 1: There are 20 sources
competing 1 Mbps bottleneck bandwidth. The RTT of
ten sources are 20 ms, and 40 ms for the others. From
simulation result, the average throughput of shorter RTT
is 47.31 Kpbs, and that of longer RTT is 48.04 Kbps. We

0

10

20

30

40

50

Case

T
h
r
o
u
g
h
p
u
t

(
K
b
p
s
)

Ideal Fair Share

RTT = 20 ms

RTT = 40 ms

RTT = 60 ms

RTT = 80 ms

1
 2
 3

Figure 6. TCP Sources with Different RTTs.

add another 10 sources with 60 ms RTT to the network
topology in Case 2. The average throughput of sources
with 20 ms, 40 ms, and 60 ms RTTs are 32.05, 31.65, 31.42
Kbps respectively. Similarly, 10 sources with 80 ms RTT
are added in Case 3, the result is demonstrated in Fig. 6.
Although these 40 sources come with different RTTs, the
average throughput for each RTT is about 24 Kbps.

5 Conclusions

In this article, we introduce router-based approaches and
propose a packet dropping scheme, called WARD. It aims
to approximate fair queueing at a minimal implementation
cost. Simulations demonstrate that it works well in protect-
ing congestion-sensitive flows from congestion-insensitive
or congestion-causing flows. Furthermore, it solves the
problem of competing bandwidth among different TCP
versions, such as TCP Vegas and TCP Reno. Further
work involves studying the performance and spatial char-
acteristics analysis of this algorithm under a wider range
of parameters, network topologies and real traffic traces,
obtaining more accurate theoretical models and insights,
and considering hardware implementation issues.

References

[1] R. Pan, B. Prabhakar, and K. Psounis, ‘CHOKe: A
Stateless Active Queue Management Scheme for Ap-
proximating Fair Bandwidth Allocation’,IEEE INFO-
COM’2000, Vol. 2, pp. 942-951, Mar. 2000.

[2] L. S. Brakmo and L. L. Peterson, ‘TCP Vegas: End
to End Congestion Avoidance on a Global Internet’,
IEEE J. Select. Areas Commun., Vol. 13, pp. 1465-
1480, Oct. 1995.

[3] V. Jacobson, ‘Modified TCP Congestion Avoidance
Algorithm’, end-to-end-interest, Apr. 1990.

[4] J. Mo, R.J. La, V. Anantharam, and J. Walrand, ‘Anal-
ysis and Comparison of TCP Reno and Vegas’,IEEE
INFOCOM’99, Vol. 3, pp. 1556-1563, Mar. 1999.

[5] S. Floyd and V. Jacobson, ‘Random Early Detec-
tion Gateways for Congestion Avoidance’,IEEE/ACM
Transaction on Networking, Vol. 1, Issue 4, pp. 397-
413, Aug. 1993

[6] D. Lin and R. Morris, ‘Dynamics of Random Early
Detection’,ACM SIGCOMM, pp. 127-137, Sep. 1997.

[7] C. Y. Ho, Y. C. Chan, and Y. C. Chen, ‘WARD:
A TCP-Friendly Stateless AQM Scheme’,Sub-
mitted to IEEE/ACM Transactions on Networking,
http://mmlabwww.csie.nctu.edu.tw/cyho/WARD.pdf

[8] http://www.isi.edu/nsnam/ns/

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)
0-7695-2450-8/05 $20.00 © 2005 IEEE

