
Gallop-Vegas: An Enhanced Slow-Start Mechanism for
TCP Vegas

Cheng-Yuan Ho, Yi-Cheng Chan, and Yaw-Chung Chen

Abstract: In this article, we present a new slow-start variant,
which improves the throughput of transmission control protocol
(TCP) Vegas. We call this new mechanism Gallop-Vegas because
it quickly ramps up to the available bandwidth and reduces the
burstiness during the slow-start phase. TCP is known to send
bursts of packets during its slow-start phase due to the fast window
increase and the ACK-clock based transmission. This phenomenon
causes TCP Vegas to change from slow-start phase to congestion-
avoidance phase too early in the large bandwidth-delay product
(BDP) links. Therefore, in Gallop-Vegas, we increase the conges-
tion window size with a rate between exponential growth and linear
growth during slow-start phase. Our analysis, simulation results,
and measurements on the Internet show that Gallop-Vegas signifi-
cantly improves the performance of a connection, especially during
the slow-start phase. Furthermore, it is implementation feasible
because only sending part needs to be modified.

Index Terms: Slow-start, transmission control protocol (TCP),
TCP-Vegas.

I. INTRODUCTION

With the rapid growth of Internet population and the inten-
sive usage of TCP/IP protocol suite, the transmission control
protocol (TCP) congestion control algorithm has become a key
factor influencing the performance and behavior of the Internet.
Several studies have reported that TCP Vegas [1], [2] provides
better performance than TCP Reno with respect to overall net-
work utilization, stability, fairness, throughput, packet loss, and
burstiness. Since TCP Vegas uses the difference between the
expected and actual flow rates to infer the congestion window
adjustment policy from throughput measurements, it usually re-
duces the sending rate before the connection actually experi-
ences a packet loss.

TCP Vegas successfully detects network congestion in the
early stage; however, the burstiness during slow-start phase
causes Vegas to change from slow-start phase to congestion-
avoidance phase too early, especially in a large-bandwidthlink
with long-delay. Since the sender has no prior knowledge re-
garding the available bandwidth on the networks, this leads
to the abrupt transition of congestion window with exponen-
tial growth and transmission of highly bursty traffic from the
source, and it in turn would cause buffer overflow at the bot-
tleneck link during the slow-start phase [3]–[8]. To solve this

Manuscript received December 28, 2004; approved for publication by Song
Chong, Division III Editor, July 26, 2006.

C.-Y. Ho and Y.-C. Chen are with the Department of Computer Science,
National Chiao Tung University, Hsinchu City, Taiwan, email: {cyho, yc-
chen}@csie.nctu.edu.tw.

Y.-C. Chan is with the Department of Computer Science and Information En-
gineering, National Changhua University of Education, Changhua City, Taiwan,
email: ycchan@cc.ncue.edu.tw.

problem, certain new techniques, schemes, or refinements of
slow-start phase of TCP Vegas have been proposed. In these
earlier works, there are three ways to smooth out the burstiness
or postpone the time instant of changing from slow-start phase
to congestion-avoidance phase. The first approach is selecting
γ dynamically to suit various kinds of bandwidth-delay product
(BDP) networks [3]; however, it needs to estimate the available
bandwidth of the network at the steady state. In addition, toes-
timate the available bandwidth based on end-to-end congestion
avoidance mechanism on a global internet is difficult. Another
way is to set the maximum slow-start threshold to avoid buffer
overflow and limit the sending rate [4], [5], but this not only
reduces the throughput of a sender but also sets the maximum
slow-start threshold to a fixed value, 64 kbytes. In a large BDP
network, this value may be so small that causes Vegas switch-
ing to congestion-avoidance phase early. On the other hand,this
fixed slow-start threshold may be of no use in a small BDP net-
work. The last method uses a smooth slow-start algorithm to re-
duce burst data transfer [6]. However, it uses 200 msec timerin-
terrupt to control data transfer and only fits some network topol-
ogy. Furthermore, using timer interrupt increases the overhead
of the operating system. Besides, some authors consider sev-
eral network models and mathematically prove the exponential
increase during slow-start causing the burstiness in the commu-
nication networks [7], [8]. Overall, these works just describe
the problems and try to characterize them into models, but the
burstiness problem is still not solved.

In this paper, we propose a modification of TCP Vegas,
called Gallop-Vegas. During the slow-start phase, Gallop-Vegas
changes the increase manner of congestion window with a
growth, whose increase speed is between exponential increase
and linear increase; therefore, a smooth transmission for a
sender can be achieved and no burstiness problem may happen.
In addition, Gallop-Vegas tries to detect incipient congestion by
comparing the measured throughput to the notion of expected
throughput. This congestion detection mechanism is same as
that in TCP Vegas, except that it calculates every round-trip time
(RTT) instead of every other RTT. The congestion window is
increased only if these two values are close enough, and the in-
crement of congestion window varies according to the current
status of the network.

When TCP Vegas changes from slow-start phase to
congestion-avoidance phase, it decreases the congestion win-
dow by one-eighth. This may be suitable for small-bandwidth
links, but in large-bandwidth links it will be slow in reaching
the available bandwidth. We make a little modification for slow-
start phase while similar congestion detection mechanism is still
applied. The implementation of Gallop-Vegas is simple. Only
the sending part requires modifications, thus it facilitates incre-

1229-2370/06/$10.00c© 2006 KICS

mental deployment in today’s Internet. Furthermore, the analy-
sis, extensive simulation results, and measurements on theInter-
net reveal that Gallop-Vegas is more efficient than TCP Vegas.

The remainder of this paper is organized as follows. Sec-
tion II describes the details in slow-start phase of TCP Vegas.
Section III expresses the algorithm and ideas of Gallop-Vegas as
well as the possible probe strategies. The mathematical analysis
of Gallop-Vegas is presented in Section IV. Section V demon-
strates the simulation results and measurements on the Internet.
Finally, Section VI concludes the paper.

II. SLOW-START OF TCP VEGAS

The bandwidth estimation scheme in TCP Vegas [1] is proac-
tive because it tries to avoid rather than react to congestion. Ve-
gas uses the difference in the expected and actual flow rates
to estimate the available bandwidth of the network. When the
network is not congested, the actual rate is close to the ex-
pected flow rate. However, if the actual rate was much smaller
than the expected rate, it indicates that the buffer space inthe
network is filling up and that the network is approaching a
congested state. This difference in flow rates can be calcu-
lated asDiff = Expected − Actual, whereExpected and
Actual are the expected and actual rates, respectively. Ifd de-
notes the minimum-observed round-trip time (also known as
BaseRTT), D denotes the actualRTT of a packet, andW
denotes the congestion window size, thenExpected = W/d
andActual = W/D. The estimated backlog of packets in the
network queues can then be computed as

∆ = (Expected−Actual)×BaseRTT = W× (D − d)

D
. (1)

Similar to Reno, Vegas uses a slow-start mechanism that al-
lows a connection to quickly ramp up to the available band-
width. However, unlike Reno, to ensure that the sending rate
does not increase too fast to congest the network during the
slow start, Vegas doubles the congestion window size onlyev-
ery other RTT. In addition, every other RTT, Vegas calculates
the difference in the flow rates (Diff) and∆ as given in (1).
When∆ > γ (whose default is 1), Vegas leaves the slow-start
phase, decreases its congestion window size by 1/8 and enters
the congestion-avoidance phase.

The fundamental problem in the slow-start algorithm of Ve-
gas is that doubling its sending rate in short interval causes ∆
bias [3]. This characteristic of slow-start may lead to early tran-
sition to congestion-avoidance phase and cause severe perfor-
mance degradation. Under the TCP/IP architecture, it is diffi-
cult to estimate the exact available bandwidth of bottleneck link
along the end-to-end path. Although Vegas has the burst avoid-
ance mechanism that limits the number of segments to be sent
at one time (that is, back-to-back) to three segments [2], itstill
causes burstiness in sending packets. According to the work[6],
in short-delay networks, the optimum window size is small and
there is no significant difference between RTT and actual data
transfer time. Thus, burst data transfer occurs un-apparently in
short-delay networks. But in long-delay networks, slow-start
leads to burst data transfer which causes congestion and leads to

0

64

128

192

256

320

384

448

512

0
 2
 4
 6
 8
 10
 12
 14
 16
 18

Time

cw
nd

 (
pa

ck
et

)

Exponential growth

Stable growth

Linear growth

Fig. 1. The growth of congestion window size.

much lower window size than optimum one. This in turn results
in short slow-start phase and long congestion-avoidance phase.

III. GALLOP-VEGAS

A. Motivation

When a source wants to send a big file as a movie data to
a destination, the fundamental problem of TCP Vegas in the
slow-start phase is that due to exponential growth, the conges-
tion window size increases too quickly. This causes bias of∆
(given in (1)) and performance degradation, as well as leadsto
long congestion-avoidance phase. On the other hand, if the data
whose size is not large is needed to transmit, the TCP Vegas may
not enter the congestion-avoidance phase. However, TCP Vegas
doubles the congestion window size only every other RTT that
may spend more RTTs to finish the communication. Further-
more, in previous works, they either avoid burstiness with some
limiting factors or address the problems in the slow-start phase,
but they did not provide a valid method for various communica-
tion networks. Shortening the duration of raising the transmis-
sion rate to the available bandwidth could improve the sender’s
throughput for different communication networks, especially for
a short life-cycle connection. For these reasons, we propose a
modification to the slow-start phase, called Gallop-Vegas.1

B. The Scheme of Gallop-Vegas

In Gallop-Vegas, we do not increase congestion window size
in the first RTT, which is either the beginning of a connectionor
after a retransmission timeout, because we have no idea about
the available bandwidth for this connection. After the second
RTT, we start to increase the congestion window with a rate be-
tween exponential growth and linear growth. We call itstable
growth2 as shown in Fig. 1.

When a sending source increases (or decreases) its conges-
tion window at then-th RTT, the influence to the network can
be detected at the(n + 2)-th RTT. As a result, Vegas calculates
the∆ and doubles the congestion window (if it is possible) ev-
ery other RTT. However, doubling the congestion window size
may cause the traffic burstiness in the network, and therefore

1Gallop-Vegas is a variant of TCP Vegas, so the detailed description of pa-
rameters such as∆, γ, α, andβ can be found in [1] and [2].

2We will prove or disprove if stable growth is the optimal among many possi-
ble growth rates under different network conditions.

Table 1. Value, state, and corresponding motivation at the last RTT.

Value State CM at the last RTT
0 (1)∆ < γ ‘ incr’ is increased by one.

(2) γ ≤ ∆ < β Do not do any action.
1 γ ≤ ∆ < β ‘ incr’ is decreased by one half
2 β < ∆ The congestion window size is

decreased by the sum of ‘incr’
and surplus of queue (∆ − β).

leads to the congestion-avoidance phase too early. To avoidthis
phenomenon, we calculate the∆ and increase the congestion
window withstable growth (if it is possible) every RTT. This ap-
proach for increasing congestion window is more efficient com-
paring with Vegas, and the effect can be observed by analysis,
simulation results, and measurements on the Internet.

Let ‘maxincr’ be a dynamic value representing the maximum
value of the congestion window increment, and ‘incr’ be the
current window increment, with value 0 at the beginning of a
connection or after a retransmission timeout, and no biggerthan
‘maxincr.’ In order to record the comparison result of∆ with
γ, or with β (if ∆ is not smaller thanγ) at the last RTT, we
create a parameter ‘status,’ whose default value is 0. Table 1
shows three sets of value, state, and corresponding motivation
(CM) at the last RTT of ‘status.’ We chooseβ (whose default
is 3) to compare with∆ because the router is allowed to queue
a number, which is betweenα (whose default is 1) andβ, of
packets in Vegas.

In the slow-start phase, we let ‘maxincr’ be the current con-
gestion window size first, and then compare∆ with γ. When
∆ is smaller thanγ, we add the value of ‘incr’ to the current
congestion window size, then ‘incr’ is increased by one until it
is no smaller than ‘maxincr.’ At last, we set ‘status’ to zero to
represent this state. The parameter ‘incr’ is increased step by
step as long as there is enough bandwidth in the network. The
idea is that if the increment was successful, it might be the case
that there is enough bandwidth and it is worthwhile to move toa
more aggressive increasing strategy. However, to ensure that the
congestion window will not be increased too fast, Gallop-Vegas
can at most double the size of congestion window for every es-
timation of∆ < γ. While ∆ is no smaller thanγ, we compare
∆ with β to adjust those parameters.

While ∆ is smaller thanβ, the addition of congestion window
size is still ‘incr.’ Nevertheless, we modify ‘incr’ according
to the state, which is represented by the parameter ‘status,’ at
the last RTT before increasing the congestion window. Sinceit
exceeds the lower bound of packets queued in the router(s) for
a connection, it should slow down the increment. For another
reason, it may exceed the available bandwidth without slowing
down the increment. If the ‘status’ is zero, we have to do three
steps. First, ‘incr’ is decreased by one half in order to slow down
the growth. Second, if ‘incr’ is no bigger than one, set it to one,
and slow start threshold (ssthresh) to two in order to transit to
the congestion-avoidance phase at the next RTT. Finally, ‘status’
is marked as one to represent entering this state at either the first
time or the odd number of times. On the other hand, if ‘status’
is one, we just change it to zero when continuously getting into

this state at the even number of times. Since we decreased the
‘ incr’ by one half at the last RTT, we do not know the influence
of network yet. If we still decreased the ‘incr’ by one half at this
RTT again, we may get just the opposite. In other words, it may
be too quickly to decrease ‘incr’ by one half while∆ is between
γ andβ.

If ∆ is no smaller thanβ, we cut the congestion window size
down by the sum of the increment at the last RTT and surplus
packets of queue, which is∆ − β. Then we set ‘status’ to two
for avoiding repeatedly decreasing the congestion window size
when changing to the congestion-avoidance phase at the first
time. We call the increasing of congestion window (the incre-
ment of ‘incr’) stable growth here after.

We only change one action of Vegas when it gets into
congestion-avoidance phase at the first time. If ‘status’ is two,
we just set ‘status’ to zero without changing the congestion win-
dow because we don’t know the influence of network at the last
RTT yet. Otherwise, we perform the same action as in Vegas. In
retransmission-timeout phase, we reset these three parameters
to their default values.

In summary, Vegas sends two packets back-to-back when it
receives one acknowledgement (ACK). This may cause bursty
traffic if a lot of ACKs return to the sender consecutively. This
may cause Vegas turning to the congestion-avoidance phase
early and then congestion window grows up slowly. On the
other hand, Gallop-Vegas transmits one packets when receiv-
ing one ACK, and it sends an extra packet to increase the con-
gestion window size after getting two or more ACKs. Through
this method, we smooth out the burstiness without using timer.
Since comparing with congestion window, the increment is al-
ways small, therefore Gallop-Vegas reduces the burstinessin
transmission and achieves a long slow-start phase. Thus, the
throughput of Gallop-Vegas grow up faster and is much larger
than Vegas.

C. Pseudo Code of Gallop-Vegas

The following pseudo code represents the aforementioned
statements regarding thestable growth.

In slow-start phase,
maxincr= cwnd;
if (∆ > γ)

if (∆ >= β)
cwnd− = (last increment of cwnd+∆ − β);
ssthresh= 2;
if (cwnd< 2) cwnd= 2;
status= 2;

else
if (status== 0)

incr = int(incr/2);
if (incr <= 1)

ssthresh= 2;
incr = 1;

status= 1;
elsestatus= 0;
cwnd+ = incr;

else
cwnd+ = incr;
if (incr < maxincr) incr+ = 1;

S
rc.
 D
est.
R
1
 R
2
 R
n
-1

Fig. 2. Network topology for analyses.

status= 0;
where cwnd is the congestion window size, and ssthresh is the
slow-start threshold.

In congestion-avoidance phase,
if (status! = 2)

Do the motion of original Vegas
else

status= 0;

In retransmission-timeout phase,
maxincr= 2; (initial congestion window size)
incr = 0;
status= 0;

IV. ANALYSIS

In this section, we present behavior analyses of both Vegas
and Gallop-Vegas. A simple case is considered when a single
connection tries to fill up an empty network withN links con-
necting the source and the destination. Fig. 2 shows the network
topology for analyses. We denote the transmission rate ofN
links (in packets/s) asXi, i = 1, · · · , N , and the total round-trip
propagation delay of the route path (in seconds) asτ . Similar
to the work in [3], we assume that there is one bottleneck in the
route path andX1 ≤ X2 ≤ · · · ≤ XN . SinceX1 is the smallest
transmission rate (i.e., link 1 behaves as the bottleneck link), we
let µ be equal toX1. The un-congested BDP of this network is
then given byµd where

d = τ + (1 + a)

N
∑

i=1

1

Xi

(2)

with a being the ACK size relative to the data packet size. With-
out loss of generality, we assume thata is much smaller than
the data packet size, so we use 1 to approximate 1+a (i.e.,
d = τ +

∑

N

i=1
1

Xi

).
Throughout our analyses, we assume a fluid model and the

source always has a packet to transmit, and the buffer sizes
in routers are large enough so that packet loss can be ignored.
Moreover, thei-th RTT starts with the transmission ofWi pack-
ets whereWi is the size of congestion window in this RTT. The
i-th RTT ends when the source receives the ACK of the first
packet in this RTT, then the source starts transmitting a new
packet of the next RTT. Suppose that there is no congestion in
ACK path. The congestion window size is named ‘conspicuous
window size’ when∆ is no smaller thanγ at the first time. (i.e.,
Vegas leaves its slow-start phase. Gallop-Vegas changes its way
of increasing the congestion window size.) In the followingtwo
subsections, we derive mathematically the conspicuous window
size for Vegas and Gallop-Vegas. Then, we ascertain the better
transient performance for Gallop-Vegas by examples and simu-
lations.

Table 2. The congestion window size and the increase amount for

Vegas at the i-th RTT.

i-th 0 1 2 3 4 5 6 7 8 9 10 · · ·

Wi 2 2 4 4 8 8 16 16 32 32 64 · · ·

zi 0 2 0 4 0 8 0 16 0 32 0 · · ·

Table 3. The congestion window size and the increase amount for

Gallop-Vegas at the i-th RTT.

i-th 0 1 2 3 4 5 6 7 8 9 10 · · ·

Wi 2 2 3 5 8 12 17 23 30 38 47 · · ·

zi 0 1 2 3 4 5 6 7 8 9 10 · · ·

A. TCP Vegas

In this subsection, we derive the conspicuous window size for
Vegas. Table 2 shows the value ofWi andzi at thei-th RTT if
∆ is smaller thanγ, wherezi is the increase amount at thei-th
RTT and

{

Wi = 2
i

2
+1, zi = 0, if i is even or 0

Wi = zi = 2
i+1

2 , if i is odd.

Vegas doubles its congestion window every other RTT. As-
suming thatWl is the conspicuous window size, wherel is an
integer in Table 2. According to the work [3], theBaseRTT ,
newly measuredRTT , and the conspicuous window sizeWl

from which Vegas gets out of the slow-start phase are given by
d,

D = d +
Wl

2µ
(3)

and

Wl ≥
1 +

√
1 + 8µd

2
(4)

respectively. In an actual Vegas implementation,D is the
smoothed RTT [2] rather than the RTT of a specific packet.
Thus,D for the last packet is the average of the actual RTTs
of all packets in the same round, i.e.,D = d + Wl/4µ, rather
thanD = d + Wl/2µ, as given above. By using the smoothed
RTT, we have

Wl ≥
1 +

√
1 + 16µd

2
(5)

and then Vegas changes to the congestion-avoidance phase in
the l-th RTT, wherel ≥ 2 lg(1 +

√
1 + 16µd) − 3 becausel

is odd. Then, it will take⌈µd − 7Wl/8⌉ RTTs to the available
bandwidth. In other words, at the

(l + ⌈µd − 7Wl/8⌉)-th (6)

RTT, TCP Vegas attains the available bandwidth.

B. Gallop-Vegas

In this subsection, we derive the conspicuous window size for
Gallop-Vegas. Table 3 shows the value ofWi andzi at thei-th
RTT when∆ is smaller thanγ, where

Wi =
i2 − i + 4

2
, zi = i, i ∈ N or 0. (7)

Gallop-Vegas increases its congestion window withstable
growth every RTT. Moreover, withstable growth, the extra
packet3 will be transmitted to the network when two or more
ACKs of the previous round are received. For example, at the
fifth RTT in Table 3, Gallop-Vegas sends an extra packet when
it receives the third ACK, then it transmits another extra packet
after two ACKs (i.e., the fifth ACK is received). Since in this
RTT, Gallop-Vegas increases5

12
packet to the congestion win-

dow size whenever an ACK of the previous round is received,
and sends an extra packet to the network when the additional
value is no smaller than one (as5

12
× 3 = 15

12
> 1). In the light

of the work [3], the spacing between each ACK of the previ-
ous round is1/µ seconds becauseµ is the smallest transmission
rate (and we assume that there is no congestion along the ACK
path). Assuming thatWk is the conspicuous window size, then
in thek-th RTT, the last packet will seezk − 1 (= k − 1) pack-
ets waiting ahead of it in the sender queue. However, for the
queues at other nodes along the connection, the last packet will
see no packet from the same connection in the queues because
1/X1 ≥ 1/X2 ≥ · · · ≥ 1/XN . Therefore, this last packet ex-
periences the highest RTT. TheBaseRTT and newly measured
RTT are given byd and

D = d +
zk − 1

µ
(8)

respectively. By combining (8) and (1), Gallop-Vegas will
change its way of increase if

Wk

(zk − 1)/µ

(zk − 1)/µ + d
> γ (9)

whereγ = 1. Then, we could get the following formula

Wk >
µ

zk − 1
d + γ =

µ

zk − 1
d + 1. (10)

By combining (10) and (7), we could get the following equa-
tion:

(k − 1)(k2 − k + 2) > 2µd. (11)

We could getk by Cardan’s formula [9], [10] because (11) is a
cubic equation, which is the closed-form solution for the roots
of a cubic polynomial.

k ≥
⌈

3

√

µd +

√

125

729
+ µ2d2

+
3

√

µd −
√

125

729
+ µ2d2 +

2

3

⌉

. (12)

Then, the conspicuous window size that Gallop-Vegas changes
its way of increase is given by using the value ofk to (7).

In an actual Gallop-Vegas implementation,D is the smoothed
RTT [2] rather than the RTT of a packet. ThisD for the last

3When a source host receives an ACK of the previous round, it transmits two
packets to the network. The difference between two packets and one packet
is called the extra packet. For example, in Table 3, the sourcetransmits two
packets when it receives the second ACK at the fourth RTT.

packet is the average of the actual RTTs of all packets in the
same round, i.e.,D = (d + zk − 1)/2µ, rather thanD = (d +
zk−1)/µ, as given above. By using the smoothed RTT, we have

k ≥
⌈

3

√

2µd +

√

125

729
+ 4µ2d2

+
3

√

2µd −
√

125

729
+ 4µ2d2 +

2

3

⌉

. (13)

Then, as mentioned before, the addition ofz is decreased by
a half as long as∆ is bigger thanγ. Finally, Gallop-Vegas will
leave the slow-start phase when∆ is no smaller thanβ. In other
words, in this time, the congestion windowW is close to the
maximum window size and three packets will be queued in the
router. Thus, we will get

D = d +
β

µ
. (14)

By combining (1) and (14), Gallop-Vegas will stop its slow-
start phase if

W
β/µ

β/µ + d
≥ β = 3. (15)

By solving (15) forW , the congestion window sizeW at
which Gallop-Vegas stops its slow-start phase is given by

W ≥ µd + 3. (16)

Furthermore, the following is the behavior of Gallop-Vegas
from thek-th RTT to the increment being equal to 1 at the first
time. At thek-th RTT, the increment of congestion window is
k/2. Then, Gallop-Vegas adds the increment by 1 every other
RTT until the value of the increment isk. In addition, it will take
k RTTs. Therefore, the congestion window size isWk+(3/4)k2

at the(2k)-th RTT sincek/2 + k/2 + (k/2 + 1) + (k/2 + 1) +
(k/2 + 2) + · · · + k + k ≈ (3/4)k2 [11]. Afterward, Gallop-
Vegas repeats above steps to adjust the increment value with
k/4, k/8, · · · , 1 because when∆ is bigger thanγ, the increment
will be halved. Therefore, the total amount of this time period
and the total increment of the congestion window size are

2

(

k

2
+

k

4
+

k

8
+ · · · + 1

)

= k

⌊lg k⌋
∑

n=1

1

2n−1
(17)

and

3

4
k2 +

3

8
k2 + · · · + 3

2⌊lg k⌋+1
k2 =

3

4
k2

⌊lg k⌋
∑

n=1

1

2n−1
(18)

respectively. Then, Gallop-Vegas increases the congestion win-
dow by one every RTT before it reachesW given in (16). In
conclusion, Gallop-Vegas attains the available bandwidthat

(⌈k+k

⌊lg k⌋
∑

n=1

1

2n−1
+⌈W −(Wk +

3

4
k2

⌊lg k⌋
∑

n=1

1

2n−1
)⌉⌉)-th (19)

RTT according to (13) and (16)–(18).

C. Analysis with Two Examples

We use two examples to quantify our analyses, show that the
throughput of Gallop-Vegas is more efficient than TCP Vegas,
and Gallop-Vegas uses less time than TCP Vegas to reach the
available bandwidth.

Example 1:µ = 6250, d = 0.1, and available window size is
626(625 + α) ∼ 628(625 + β).

In Gallop-Vegas, we will getk ≥ ⌈16.242⌉ = 17 by (13) and
conspicuous window sizeWk = 138 by (7). According to (19),
at 108th RTT (= 10.8 second), Gallop-Vegas will achieve the
available bandwidth. On the other hand, in Vegas, we will get
conspicuous window sizeWl ≥ 50.502 by (5). Wl ≥ 50.502
holds whenWl = 64 at the10th RTT, becauseWl should be
to the powers of 2. Then Vegas changes to the congestion-
avoidance phase and increases the congestion window size lin-
early. Based on (6), TCP Vegas will attain the available band-
width at579th RTT (= 57.9 second). We could see that Gallop-
Vegas only need to spend 10.8 seconds, which is about one sixth
of 57.9 seconds that TCP Vegas spends, to arrive the available
window size. In addition, the time 10.8 seconds for Gallop-
Vegas and 57.9 seconds for TCP Vegas are near to the first sim-
ulation result with same parameters in the Figs. 4 and 5.

Example 2:µ = 3125, d = 0.05, and available window size
is 157(156 + α) ∼ 159(156 + β).

Similar to Example 1, we will get conspicuous window size
Wk = 38 at the9th RTT in Gallop-Vegas, and conspicuous
window sizeWl = 32 at the8th RTT in Vegas. Then Vegas
changes to the congestion-avoidance phase and adds the conges-
tion window linearly. The time for Gallop-Vegas and TCP Vegas
to achieve the available bandwidth are 26 RTTs (= 1.3 seconds)
and 136 RTTs (= 6.8 seconds), by (6) and (19), respectively.
We could see that Gallop-Vegas only need to spend 1.3 seconds,
which is about one fifth of 6.8 seconds that TCP Vegas spends,
to arrive the available window size. Moreover, the convergence
time4 of Gallop-Vegas (26) and TCP Vegas (136) are near to the
third simulation result with same parameters in the Fig. 8.

From the above two examples, we could see that the conges-
tion window size of Gallop-Vegas is no smaller than Vegas when
∆ > γ holds at the first time. Then Gallop-Vegas keeps in the
slow-start phase and increases its congestion window size with
stable growth. However, Vegas stops its slow-start phase and
changes into the congestion-avoidance phase. So, Gallop-Vegas
will spend less time than TCP Vegas to reach the available band-
width and the throughput of Gallop-Vegas will be no smaller
than Vegas. Therefore, the utilization of bandwidth in Gallop-
Vegas is more efficient than that in TCP Vegas.

V. PERFORMANCE EVALUATION

A. The Simulation Setup

The simulation experiments are conducted usingns2 [12],
version 2.26, developed at Lawrence Berkeley National Labo-

4The convergence time can be interpreted as the effective number of window
transmissions in the transient period since it indicates howmany BaseRTTs are
required to reach equilibrium. The detail description of theconvergence time
can be found in [3].

S1
 D1
R1
 R2
1 Gbps

1 ms

1 Gbps

1 ms

X Mbps

Y ms

Buffer 100
 Buffer 100

Fig. 3. Simulation topology used for Vegas or Gallop-Vegas experiments.

ratories (LBNL). Suppose that there is no packet loss in the sim-
ulation. The simulation network topology of one single linkis
shown in Fig. 3, where S1 represents a sender host, whose algo-
rithm is either Vegas or Gallop-Vegas. The type of service used
in our simulation is FTP. The receiver sends an ACK for every
data packet received. For the convenience of presentation,we
assume that all window sizes are measured in number of fixed-
size packets, which are 1000 bytes. R1 and R2 represent two
finite-buffer gateways. The buffer size at each gateway is set to
100 packets. For the constant-load experiment, drop-tail gate-
ways with FIFO service are assumed. The bandwidth of access
links are 1Gbps, and propagation delays are 1ms.

The bandwidth of connection link is X Mbps, where X is 1.5,
5, 10, 25, or 50, and propagation delay is Y ms, where Y is
3, 8, 23, 28, or 48. The combinations of X and Y generate
25 networks. Although we have used different bandwidths and
propagation delays of connection links, only the simulation re-
sults of X = 50 and Y= 48 are presented here. Other values
of X and Y will be shown in the figure of convergence time.
We choose these values of communication network to represent
small-bandwidth, large-bandwidth, short-delay, and long-delay,
respectively. The sender uses the slow-start at the start ofa con-
nection, and/or after a retransmission timeout, and hence it fea-
tures similar behavior during slow-start phase.

In following sections, we will show the simulation result, con-
vergence time with different BDPs of communication networks,
and ten senders with the same algorithm sharing a common bot-
tleneck of 100 Mbps bandwidth and 48 ms propagation delay.

B. Simulation Results

We compare Gallop-Vegas with Vegas which uses two dif-
ferent parameter values, one withγ one, and the other withγ
three (asβ). It is because Gallop-Vegas changes from slow-start
phase to congestion-avoidance phase when∆ is no smaller than
β. In Fig. 3, X is 50 and Y is 48, it means that the bandwidth of
bottleneck link is 50 Mbps (6250 packets/s), and the end-to-end
propagation delay is 50 ms (1+48+1 = 50). Figs. 4 and 5 show
the congestion window size and throughput between Vegas and
Gallop-Vegas, respectively.

We can observe that the performance of Gallop-Vegas is bet-
ter than Vegas. Both varieties of Vegas turn to the congestion-
avoidance phase early, one is at 1.2 seconds and the other is
at 1.5 seconds, and they increase congestion window through
linear growth. They spend more than 50 seconds (which al-
most equals 500 RTTs) to reach the available bandwidth. On
the other hand, Gallop-Vegas switches to congestion-avoidance
when it reaches the available bandwidth at 11.4 seconds, and
only spends 0.4 seconds (which approximately equals to 4
RTTs) to reach the real available bandwidth. The maximum
number of queuing packets in these algorithms are almost the
same.

0

100

200

300

400

500

600

0
 10
 20
 30
 40
 50
 60

Time (s)

cw
nd

 (
pa

ck
et

s)

Gallop-Vegas

Vegas (= 1)

Vegas (= 3)

γ

γ

Fig. 4. Congestion window size comparison between Vegas and Gallop-
Vegas with 50 Mbps bottleneck bandwidth, and 48 ms link propaga-
tion delay.

0

10000

20000

30000

40000

50000

0
 10
 20
 30
 40
 50
 60
 70

Time (s)

T
hr

ou
gh

pu
t (

kb
ps

)

Gallop-Vegas

Vegas (= 1)

Vegas (= 3)

γ

γ

Fig. 5. Throughput comparison between Vegas and Gallop-Vegas with
50 Mbps bottleneck bandwidth, and 48 ms link propagation delay.

An interesting phenomenon in the simulation was observed.
Both of Vegas lose packets but Gallop-Vegas does not when
the buffer size of the router is decreased. There is an exam-
ple with the router buffer size 30. The congestion window size
and throughput between Vegas and Gallop-Vegas are described
in Figs. 6 and 7, respectively. In this environment, the router
R1 drops three packets of Vegas at 1.1 seconds because both of
Vegas double the congestion window size from 32 to 64. This
causes a bursty traffic to a router, which could not handle these
packets in time. The same situation happens at 1.6 seconds,
where router R1 drops sixteen packets. Since Vegas starts the
fast retransmits procedure to redeem the lost packets at 1.1sec-
onds, after redeeming the lost packets, Vegas doubles the cur-
rent window size continuously, this action causes the packet loss
because of burstiness again. Since there are too many pack-
ets losses at this time, Vegas has to wait a retransmission time-
out for a long time. On the other hand, Gallop-Vegas increases
the congestion window size withstable growth, so it does not
cause a large burstiness. It could increase congestion window
size steadily during the slow-start phase.

Now, we use the convergence time [3] with different BDPs
of communication networks to compare Gallop-Vegas with two
varieties of Vegas. The result is shown in Fig. 8. We can see that
the convergence time of Gallop-Vegas grows slowly (or linearly)
while BDP increases quickly. However, the convergence time
of both Vegas varieties climb very fast. The convergence time

0

100

200

300

400

500

600

0
 10
 20
 30
 40
 50
 60
 70

Time (s)

cw
nd

(
pa

ck
et

s)

Gallop-Vegas

Vegas (= 1)

Vegas (= 3)

γ

γ

Fig. 6. Congestion window size of Vegas and Gallop-Vegas. There are
packet lost in both of Vegas (buffer size = 30).

0

10000

20000

30000

40000

50000

0
 10
 20
 30
 40
 50
 60
 70
 80

Time (s)

T

hr
ou

gh
pu

t (
kb

ps
)

Gallop-Vegas

Vegas (= 1)

Vegas (= 3)

γ

γ

Fig. 7. Throughput of Vegas and Gallop-Vegas. There are packet lost in
both of Vegas (buffer size = 30).

0

100

200

300

400

500

600

0
 1000
 2000
 3000
 4000
 5000

BDP (kb)

C
on

ve
rg

en
ce

 ti
m

e

Gallop-Vegas

Vegas (= 1)

Vegas (= 3)

γ

γ

Fig. 8. The convergence time with different BDPs of communication
networks.

of Vegas is more than five times of Gallop-Vegas at 5000 kb.
We could conclude that Gallop-Vegas is as good as Vegas in
the small BDP and much better than Vegas in the large BDP
with the demonstration in Fig. 8. In addition, the difference in
convergence time between Gallop-Vegas and TCP Vegas may be
very large in high-speed and long-delay networks.

C. Multiple Senders in One Network

After comparing one sender in the same network topology,
we compare the cases of multiple senders with the same algo-

S1
 D1

R1
 R2

1 Gbps

1 ms

1 Gbps

1 ms

100 Mbps

48 ms

Buffer 1000
 Buffer 1000

S10

1 Gbps

1 ms

1 Gbps

1 ms

D10

Fig. 9. Simulation topology with multiple sender used for Vegas or
Gallop-Vegas experiments.

0

20000

40000

60000

80000

100000

0
 3
 6
 9
 12
 15

Time (s)

U
til

iz
at

io
n

(k
bp

s)

Gallop-Vegas

Vegas (= 1)

Vegas (= 3)

γ

γ

Fig. 10. The utilization of bottleneck link between Vegas and Gallop-
Vegas.

rithm of Gallop-Vegas and Vegas. The used simulation network
topology is shown in Fig. 9, and the whole skeleton is same as
that in Fig. 3. The difference between Figs. 3 and 9 is that there
are more senders, bigger buffer size, and larger bottleneckband-
width in Fig. 9.

The utilization of the bottleneck link is shown in Fig. 10. As
seen in this figure, Gallop-Vegas utilizes the bandwidth of bot-
tleneck link more efficiently than Vegas. One interesting obser-
vation is that doubling congestion window causes bursty traffic
and makes all senders turn into congestion-avoidance phaseat
the same time when Vegas’γ is three. This phenomenon is fair
to all senders when using TCP Vegas algorithm; however, the
utilization of the available bandwidth is not efficient.

D. Internet Results

Now, we present measurements of TCP Vegas and Gallop-
Vegas over the Internet. Specifically, we measured TCP Vegas
and Gallop-Vegas transfers between the National Chiao Tung
University (NCTU) and NCTU, and between NCTU and the Na-
tional Cheng Chi University (NCCU). Fig. 11 shows the test-bed
network. There are three computers in this test: Computer A,B,
and C. Computer A, whose IP address is 140.113.215.211, is
a sender with TCP Vegas or Gallop-Vegas algorithm in NCTU.
Computer B with IP 140.113.191.114 in NCTU and Computer
C with IP 140.119.41.147 in NCCU are receivers. In addition,
the operating systems of three computers are all Linux with ker-
nel 2.6.11 and all computers are equipped with a 450 MHz Pen-
tium III processor, 256 MB RAM, and 100/10 M Ethernet card.
Moreover, we only installed Gallop-Vegas scheme in Computer
A and did not modify any mechanism running in Computer B

Fig. 11. The real test-bed network.

Table 4. The information of connections.

Computer A – Computer B Computer A – Computer C
Hop IP address Delay (ms) IP address Delay (ms)
1 140.113.215.211 0 140.113.215.211 0
2 140.113.215.254 0.345 140.113.0.165 0.43
3 140.113.0.166 0.31 140.113.0.97 0.6
4 140.113.0.169 0.33 211.79.59.146 2.33
5 140.113.191.114 0.35 211.79.59.153 2.48
6 X X 211.79.59.101 2.39
7 X X 140.119.243.5 2.42
8 X X 140.119.41.147 2.5

and C since in Gallop-Vegas, only sending part needs to be mod-
ified.

The information of connections such as the number of hops
between Computer A and Computer B, and between Computer
A and Computer C is as shown in Table 4. The results are de-
rived from a set of runs over a seven day period from Novem-
ber 21–28, 2005. Each run consists of a set of fourteen trans-
fers from Computer A to Computer B (from NCTU to NCTU)
and fourteen transfers from Computer A to Computer C (from
NCTU to NCCU)—TCP Vegas sends 480 kB, 1 MB, 2 MB,
5 MB, 50 MB, 100 MB, and 400 MB, and Gallop-Vegas also
sends 480 kB, 1 MB, 2 MB, 5 MB, 50 MB, 100 MB, and 400
MB. We inserted a 1 minute delay between each transfer in a
run to give the network a chance to settle down, a run started
approximately once every hour, and we shuffled the order of the
transfers within each run.

Table 5 shows the results for all transfers, where TT and
AT mean transmission time (second) andaverage throughput
(Mb/s), respectively. We could see that Gallop-Vegas spends
less time to complete the data transmission than TCP Vegas does
whether the data size is large or small, and the RTT is long or
short. For example, the average throughput of Gallop-Vegas
(35.65 Mbps) to transmit 400 MB data from NCTU to NCCU
is about 1.99 times higher than that of Vegas (17.92 Mbps). Our
proposed mechanism spends 0.12 second, which is four fifths
of the time TCP Vegas used, to finish 1 MB data transmission
from NCTU to NCCU. Similarly, compared with TCP Vegas,
the throughput improvement of Gallop-Vegas is kept between
3% and 44% when sending data from Computer A to Computer
B.

Table 5. Internet results for all transfers.

TCP Vegas Gallop-Vegas
NCTU – NCTU NCTU – NCCU NCTU – NCTU NCTU – NCCU

data size TT AT TT AT TT AT TT AT
480 kB 0.05 73.85 0.17 22.15 0.048 78.33 0.16 24.00

1 MB 0.11 76.67 0.15 54.91 0.10 78.90 0.12 67.73
2 MB 0.23 78.25 0.22 81.46 0.18 100.79 0.19 93.40
5 MB 0.51 75.14 0.58 69.65 0.35 108.85 0.37 103.24

50 MB 7.02 56.69 6.99 56.94 5.60 71.07 5.67 70.19
100 MB 15.70 53.48 15.00 55.98 12.40 67.71 12.70 66.11
400 MB 59.10 55.49 183.00 17.92 45.10 72.71 92.00 35.65

VI. CONCLUSION

We propose and evaluate a new variant of the slow-start algo-
rithm in TCP Vegas, called Gallop-Vegas, to reduce the bursti-
ness, to raise the rate to the available bandwidth in shorter
time, and to improve the start-up performance. In this work,
we achieve more efficient throughput in the slow-start phase
comparing with original TCP Vegas from analysis, simulation
results, and measurements on the Internet. Although Gallop-
Vegas is more suitable for large bandwidth or long-delay net-
works, it still increases transmit performance in small bandwidth
or short-delay networks. Furthermore, the design of Gallop-
Vegas is simple and implementation feasible on existing oper-
ating systems. Further work involves studying the performance
and spatial characteristics analysis of this algorithm under a
wider range of parameters, network topologies and real traffic
traces, obtaining more accurate theoretical models and insights,
and considering hardware implementation issues. Also, we will
combine the improvement of congestion-avoidance phase and
show the fairness in the future.

REFERENCES
[1] L. Brakmo and L. Peterson, “TCP Vegas: End-to-end congestion avoid-

ance on a global Internet,”IEEE J. Select. Areas Commun., vol. 13, no. 8,
pp. 1465–1480, Oct. 1995.

[2] U. Hengartner, J. Bolliger, and Th. Gross, “TCP Vegas revisited,” in Proc.
IEEE INFOCOM 2000, Mar. 2000, pp. 1546–1555.

[3] S. Vanichpun and W. Feng, “On the trransient behavior of TCP Vegas,” in
Proc. IEEE ICCCN 2002, Miami, Florida, Oct. 2002, pp. 504–508.

[4] H. Wang, H. Xin, D. S. Reeves, and K. G. Shin, “A simple refinement of
slow-start of TCP congestion control,” inProc. ISCC 2000, 3–6 July 2000,
pp. 98–105.

[5] H. Wang and C. Williamson, “A New Scheme for TCP congestion control:
Smooth-start and dynamic recovery,” inProc. MASCOTS’98, Montreal,
Canada, July 1998, pp. 69–75.

[6] Y. Nishida, “Smooth slow-start: Refining TCP slow-start for large-
bandwidth with long-delay networks,” inProc. LCN’98, Boston, Mas-
sachusetts, 11–14 Oct. 1998, pp. 52–60.

[7] D. Starobinski and M. Sidi, “Stochastically bounded burstiness for com-
munication networks,”IEEE Trans. Inform. Theory, vol. 46, pp. 206–212,
Jan. 2000.

[8] T. Konstantopoulos and V. Anantharam, “Optimal flow control schemes
that regulate the burstiness of traffic,”IEEE/ACM Trans. Networking,
vol. 3, pp. 423–432, Aug. 1995.

[9] R. Calinger,Classics of Mathematics, Moore Publishing, Oak Park, Illi-
nois, pp. 235–237, 1982.

[10] J. Stillwell, Mathematics and Its History, Springer-Verlag, New York,
p. 55, 1989.

[11] G. Chatranon, M. A. Labrador, and S. Banerjee, “A surveyof TCP-friendly
router-based AQM schemes,”ELSEVIER Computer Commun., vol. 27,
no. 15, pp. 1424–1440, Sept. 2004.

[12] The network simulator, available at http://www.isi.edu/nsnam/ns/.

Cheng-Yuan Ho is currently a Ph.D. candidate in
computer science at National Chiao Tung University,
Hsinchu City, Taiwan. He also works with the Wire-
less and Networking Group of Microsoft Research
Asia, Beijing, China since December 2005. His re-
search interests include the design, analysis, and mod-
elling of the congestion control algorithms, high speed
networking, QoS, and mobile and wireless networks.

Yi-Cheng Chan received his Ph.D. degree in com-
puter science and information engineering from Na-
tional Chiao Tung University, Taiwan in 2004. During
1994–2002, he worked at Accton Technology Corpo-
ration as a software engineer. He is currently an assis-
tant professor in the department of computer science
and information engineering of National Changhua
University of Education, Changhua City, Taiwan.
His research interests include design and analysis of
network protocols, switch architecture, wireless net-
works, and active queue management.

Yaw-Chung Chen received his Ph.D. degree in
computer science from Northwestern University,
Evanston, Illionis, USA in 1987. During 1987–1990,
he worked at AT&T Bell Laboratories. He joined de-
partment of computer science, National Chiao Tung
University, Hsinchu, Taiwan in 1990 as an associate
professor. Currently he is a professor and director
of computer and network center. His research inter-
ests include multimedia communications, high speed
networking, P2P network security, and wireless net-
works. He is an IEEE senior member.

