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Abstract Today peer-to-peer (P2P) systems have been
deployed for various Internet multimedia applications such
as live video streaming service. However, both peer churmn
and upload capacity insufficiency are inherent problems
causing long start-up delay and unstable playback quality.
Therefore, we introduce a scalable application-layer
multicast algorithm, ABCD-P2P, which inherits the short
end-to-end delay and low control overhead due to the
push delivery scheme. The logical overlay is close to the
physical topology (i.e., geographic proximity) in ABCD-P2P,
so a short streaming multicast delivery path reduces the num-
ber of hops and avoids the network bottleneck or far routing.
Both an advanced bootstrap mechanism and an adjusted
bandwidth mechanism are suitable for the asymmetric band-
width network. The mathematical analysis and simulation
results demonstrate that our proposed scheme can achieve
the goals of high playback smoothness, short start-up delay,
short end-to-end delay, low control overhead, and short re-
covery time.

J.-L. Kuo ()

NSD 1, CNSBG, Foxconn, Hsinchu, Taiwan, No. 5, Hsin Ann Road,
Hsinchu City 300, Taiwan

e-mail: estar.cs95g@nctu.edu.tw

C.-H. Shih
Chung Shan Institute of Science and Technology, Taoyuan, Taiwan
e-mail: shihch@csie.nctu.edu.tw

C.-Y. Ho

Advanced Research Institute, Institute for Information Industry,
Taipei, Taiwan

e-mail: cyho@csie.nctu.edu.tw

Y.-C. Chen

Computer Science, National Chiao Tung University,
Hsinchu, Taiwan

e-mail: ycchen@cs.nctu.edu.tw

@ Springer

Keywords Peer-to-peer network - Application-layer
multicast - Overlay design - Tree push - IPTV - P2P TV

1 Introduction

With the fast growth of broadband access networks, live
media streaming services over Internet have become popu-
lar in recent years. Nowadays, more and more people watch
television through Internet, which is called IPTV (Internet
Protocol TeleVision) [1]. YouTube alone hosted 45
terabytes of videos and attracted 1.73 billion views in
2006, then the number of IPTV subscribers grew to 36.8
million and its revenue increased to $4.6 billion in 2009 [2].
IPTV may be considered as the next killer network
application.

It is effective to deliver live media streams to the users by
content distribution network (CDN) or IP multicast technique,
however, the high cost of CDN deployment and the business
policies problems in IP multicast obstruct the service deploy-
ment. For these reasons, application layer multicast and peer-
to-peer (P2P) technology are employed to support the live
media streaming today [3]. The live streaming multicast
through the P2P network is called P2P IPTV and more studies
are interested in this topic [4].

P2P technology has been successfully applied to file
sharing [5] and video on demand (VoD) [6, 7] for high
scalability and low commercial cost. The major advantage
of P2P solution is to efficiently overcome the bandwidth
limitations of the traditional client—server model. In addi-
tion, P2P solutions could enormously reduce the mainte-
nance cost of entire system due to the peer-paralleling
distributed computing. However, the design of live TV is
more difficult than that of file sharing and VoD due to the
in-time requirement of streaming delivery and the limited
availability of future content.
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Measurement studies [8] of P2P live streaming system point
out that the major limitation is peer churn,' and the annoying
bottleneck of service provisioning is the insufficient upload
bandwidth. Measurement studies [9] also point out that the long
start-up delay, the high control overhead, and the long end-to-
end latency are the shortcomings of all existing P2P IPTV
systems. These inherent shortcomings lead to the low quality
of service (QoS) and the low quality of experience (QoE).

To offer users satisfactory QoE, we propose a novel P2P
streaming scheme, called ABCD-P2P (Advanced Bootstrap
and Adjusted Bandwidth for Content Distribution P2P IPTV).
The adjusted bandwidth mechanism enhances the playback
smoothness, the advanced bootstrap mechanism shortens the
start-up delay, and the proximity of content delivery shortens
the end-to-end delay and shortens recovery time. ABCD-P2P
provides the overlay protocol and integrated scheme for the
efficient delivery in dynamic and asymmetric network. To
guarantee the scalability and stability, the logical overlay is
close to the physical topology for the proximity delivery.

In the next section, we present the related works for a
discussion of P2P live streaming. Section 3 introduces our
proposed scheme and the design of ABCD-P2P. Section 4
presents the mathematical analysis and a discussion of com-
pared algorithms. In Section 5, the simulation results demons-
trate that our proposed scheme works remarkably in large and
dynamic scale P2P network. Section 6 concludes the paper.

2 Related works

Due to the limited deployment of IP multicast, application
layer multicast has attracted more and more research interests
and efforts. Since the overlay live streaming concept was first
introduced in Narada [10], many studies, including
CoolStreaming [11] and ZigZag [12], followed this trade of
live streaming overlay multicast to design the improved P2P
protocol for real-time video service in large scale.
CoolStreaming is on mesh base, and ZigZag is on tree base,
both they are the successful P2P live streaming systems.

2.1 Tree or mesh

The P2P solutions can be divided simply into the mesh-based
overlay and the tree-based overlay. Briefly speaking, the peers
of mesh have unfixed parents and children. All peers can
contribute upload capacity since there are no leaf peers.” The

! Churn means peers arriving and departing at a high rate. The dynamics
of peer churn disrupt content delivery and adversely affect the delivered
quality to participating peers.

% A leaf peer means an end-edge peer without its children like as a leaf of
tree.

most important advantage of mesh is a great churn tolerance
and a high scalability. Because mesh scheme usually adopts
pull algorithm to collect data, mesh scheme is also called as
mesh-pull scheme. On the other hand, tree-based overlay
features some advantages, such as, simple to design, efficient
to deliver, and stable to support streams. Because tree scheme
usually adopts push algorithm to collect data, tree scheme is
also called as free-push scheme.

However, mesh-pull or tree-push is not invariable and
unalterable. For mesh-based overlay as examples,
CoolStreaming [13] was a representative work of mesh-pull
scheme, and the new version of CoolStreaming [14] adopted
hybrid pull-push scheme. AnySee [15] was also a work of
mesh-based overlay, and the new version of AnySee [16]
constructed the hybrid free-mesh overlay. GridMedia [17]
adopted hybrid pull-push scheme to improve mesh-pull
scheme. PRIME [18] presented the mesh-push scheme to
revolutionize the traditional mesh-pull scheme.

On the other hand, typically there are two types of the tree-
based overlay: single-tree algorithms and multiple-tree algo-
rithms. Both NICE [19] and ZigZag [20] were the represen-
tative works of single-tree overlay. Afterward, DHCM [21]
improved the short path length® and the stable data rate from
NICE, and FollowTree [22] improved the short end-to-end
delay from ZigZag. We discover the improvements of single
tree and compare with NICE and ZigZag, which are intro-
duced in Section 2.2 and Section 2.3 respectively.

The overlays of Overcast [23] and SpreadlIt [24] were both
single-tree bases in early periods. On the other hand,
SplitStream [25] was the representative work of multiple-
tree overlay. BACS [26] improved SplitStream and used
cluster tree solve bandwidth instability, unfairness, and
asynchrony.

Generally speaking, tree-based scheme pays much attention
to the construction of overlay, but mesh-based scheme pays
much attention to the data scheduling [27]. How to decide
mesh or tree is a tradeoff about design limitations. In summary:

» Single-tree structure is simple and efficient but vulnerable
to dynamics;

*  Multiple-tree structure is more resilience but more com-
plex than single tree;

*  Mesh structure is more robust but occurs to longer delay
and more control overhead.

Therefore, the mesh-pull mode can work well with the high

churn rate, while the tree-push mode can efficiently reduce the
accumulated latency.

3 The path length means the ratio of logical overlay path to physical
topology path.
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2.2 NICE

NICE (Internet Cooperative Environment) is an application-
layer multicast protocol for low-bandwidth data streaming
with large receivers to improve end-to-end delay and to reduce
control overhead. NICE uses a hierarchical tree-based ar-
rangement to establish the topological clusters and control
the data delivery paths, hence NICE must need a central
algorithm to derive the data delivery paths and cluster leaders
to manage the peers. The cluster leader not only helps to select
an optimal path with the shortest end-to-end delay due to the
latency-based hierarchical structure, but also reduces the con-
trol overhead because of inter-cluster multicast instead of
broadcast. The cluster leader has the minimum distance to
all other peers in the same cluster. Therefore, the choice of
cluster leader is important for a new joining peer to find its
appropriate position quickly.

NICE can improve the end-to-end delay because NICE
uses end-to-end latency as the distance metric between peers.
NICE also improves the quality of data path because NICE
optimizes the latency-based clusters. Moreover, NICE carries
messages hierarchically through cluster leaders to reduce the
control overhead. However, the major shortcoming of NICE is
the high complexity and high overhead of cluster maintenance
and refinement.”

To derive data delivery paths is relative to the maintenance
and refinement of clusters, NICE splits and merges the clus-
ters to guarantee the optimal data multicast. In addition, when
a peer leaves or joins, NICE executes the selection of cluster
leader and ensures that there is no loop in all data paths. As a
result, we can know that peer churn and cluster refinement
lead to the most control overhead. According to the analyses
[19], NICE has a worst-case node degree O(log n) with n
peers, a worst-case control overhead is O(log 7), an average
control overhead is O(k) while £ is the cluster size, a worst-
case join message overhead is O(k log n), and an average join
latency is O(log n).

2.3 ZigZag

ZigZag is a peer-to-peer technique for single-source media
streaming. ZigZag is similar with NICE, ZigZag also uses a
hierarchical tree-based cluster to improve end-to-end delay
and to reduce control overhead. In addition, ZigZag takes
the load balance into account. Each cluster has a head and
an associate head to organize the multicast tree, and they are
responsible for the orphan to find new parent when peer

* Cluster split and merge belong to the NP-hard problem. The cluster
leader must load the complexity of computing and handle many control
messages to initiate split and merge operator.

@ Springer

leaving. Because ZigZag efficiently solves the bottleneck
around the rooter” and cluster leader, ZigZag performs shorter
end-to-end delay and less control overhead than NICE. Al-
though the cluster refinement cost of ZigZag is more than the
cost of NICE, ZigZag has the shorter delivery path and more
balancer structure than NICE.

ZigZag consists of two important entities: administrative
organization and multicast tree. Administrative organization
represents the logical relationships among the peers, and
multicast tree represents the physical relationships to make
peer link together to receive real content. The peers play
different and complex roles to organize the clusters in the
hierarchical arrangement of administrative organization. The
roles include subordinate, head, foreign head, and associate
head. However, the major shortcoming of ZigZag is that the
ratio of leaf peers to intermediate peers is too high to contrib-
ute upload capacity sufficiently.

As above assumption, network size is n (peers) and cluster
size is between k and 3k — 1, according to the analyses [20], the
worst-case node degree is O(k%), the height of the multicast
tree is O(logy n), the worst-case control overhead is O(k logy ),
the join latency is O(log, #), the join overhead is O(k* logy n),
and the worst-case refinement overhead is O(A?).

2.4 Summary of tree-based systems

We take NICE and ZigZag as examples to discuss about the tree-
based overlays. We can discover four shortcomings in the follow
discussion: (1) High refinement overhead. (2) Too many leaf
peers. (3) The traffic bottleneck of leader. (4) Long recovery time.

*  Both NICE’s cluster leader and ZigZag’s cluster header
periodically check the size of their clusters, and cluster is
sometimes split and merged appropriately. When the clus-
ter becomes oversize or undersize due to peer churn, both
NICE and ZigZag execute cluster maintenance to keep the
size in [k, 3k — 1]. In tree-based structure, most control
overhead comes from the refinement operator.

* In experiment analysis of both NICE and ZigZag, there is
a large number of leaf peers which leads to the low upload
capacity. The leaf peer can be seen as the free-rider which
is difficult to provide its upload capacity.

* The leader is an important role in cluster-based overlay
and a leader manages everything of its cluster. A fixed
constant for peer degree may lead to the traffic bottleneck.
Moreover, the overhead of leader is much larger than the
overhead of ordinary peer.

> The rooter is a root node of tree-based P2P network. A rooter is always a
P2P tracker, data server, or content provider.
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* The departure of peer causes the broken delivery path, and
the crash due to departure of cluster leader is more serious
than the crash due to departure of ordinary peer. The
recovery mechanism spends too much time on the arrange-
ment of new path and the reselection of cluster leader.

In this paper, we try to overcome these shortcomings, and
we present our proposed scheme in next Section.

3 Our proposed scheme

The characteristic of overlay proximity assists in the advanced
bootstrap mechanism and adjusted bandwidth mechanism, so
we design five components and a set of protocols to achieve
the high proximity for the efficient delivery and recovery. The
integrated solution works well to get the high QoE in the
large-scale and asymmetric netwotk.

3.1 The components of proposed scheme

In this paper, we propose a novel cooperation scheme for P2P
live streaming. According to the designed issues of P2P IPTV
consisting of (1) delay sensitivity, (2) bandwidth bottleneck,
(3) initiation process, (4) leave legacy, and (5) lifetime expec-
tation, we design five components to take charge of respective
issues as shown in Table 1.

The five components cooperate to maintain P2P overlay.
Delay Estimator has the highest priority among them when a
conflicting contradiction happened, because the time sensitiv-
ity for delay tolerance is the important metric in P2P streaming
service. The conflicting contradiction often happens on the
dynamic and unbalanced overlay, which leads to the low
correlativity of components. For example, peer P has high
upload capability and short lifetime, and peer P' has low
upload capability and long lifetime; peer P is selected because
Bandwidth Estimator has a priority.

3.1.1 Delay sensitivity

P2P live streaming service is a real time application that
cannot tolerate a long latency. We design a Delay Estimator

packet A | packet B

routing delay

source > time

| ackA l__A_d

oY)

packet A packet B

- ->‘ ack A ack B
Ac

Fig. 1 Delay estimator

destination > time

to evaluate the end-to-end delay. The end-to-end delay can
indicate the length of routing path and the available band-
width. Figure 1 illustrates the execution of Delay Estimator.
The source sends two continuous packets to the destination.
When receiving the packet, the destination sends back the
acknowledgement (Ack) to the source. Because of network
routing time and finite bandwidth, the time of two continuous
packets arriving has a delay like a gap denoted as 2d. Because
of finite computing resource for handling packets, there is a
computing delay 2¢ between receiving packet and sending
Ack. If a peer serves many neighbors and is very busy, 4c is
large. From the first packet sending to the last Ack returning,
the total time 2¢ is evaluated for delay. Therefore, 24¢ can be
briefly estimated for routing delay, network dynamics,
available bandwidth, and computing ability between two
peers. We use 4¢ as the end-to-end delay evaluation in
Delay Estimator. Note that the packet size must be big
enough to sense 2¢ and 2d.

3.1.2 Bandwidth bottleneck

In this paper, a peer owns its neighbors depending on its
uploading capacity. In some approaches, such as NICE, Zig-
Zag, DHCM, FollowTree, SplitStream, and BACS, a peer
decides the connections of its neighbors depending on a
constant. Those methods were simple to organize their over-
lay, but they did not consider the bandwidth utilization to
support the continuous stream. Hence, a bandwidth bottleneck
was usually revealed in the cluster leader or the intermediate
node in those above methods. In our proposed scheme, how
many neighbors a peer connects depends on its upload band-
width. The Bandwidth Estimator can measure the upload
bandwidth capability via the system call of operating system

Table 1 The components of our

proposed scheme Components Issues Responsibility Priority
Delay estimator Delay sensitivity To evaluate the end-to-end delay 1
Bandwidth estimator Bandwidth bottleneck To measure the upload capability 2
Joining helper Initiation process To shorten the start-up delay 3
Leaving helper Leave legacy To recover the broken path 4
Lifetime looker Lifetime expectation To measure the lifetime 5

) Springer
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or the network protocol. Unlike download best effort in pull
scheme, we adopt the push scheme, so we take account of
upload bandwidth due to most asymmetric digital subscriber
lines. The bandwidth capability of upstream node influences
the performance of entire overlay. In our proposed scheme,
Bandwidth Estimator is used to avoid bandwidth bottleneck in
upstream. Therefore, ABCD-P2P can locate the peers with
low upload capacity in the leaves.

3.1.3 Initiation process

A successful live streaming service should shorten the start-up
delay. Focus on P2P overlay, an initiation process of each peer
implies a new joining process. The new joining peer visits the
rooter at first, and then the rooter gives the candidates to the peer
to connect. We design a Joining Helper to help the new joining
process, and the major task is to evaluate the network ability of
candidates. It uses neither the complex cluster merge/split algo-
rithm nor the complex stream merge/split algorithm. New join-
ing process only considers the minimum start-up delay.

3.1.4 Leave legacy

A leave legacy means that a leaving peer can depart gracefully
and share its resource before disconnecting to help to recover
P2P overlay. We design a Leaving Helper to let peer leave
gracefully to recover the broken path. When a peer closes our
P2P application, it connects its upstream and downstream
actively. So, the downstream peer does not become an orphan
when its parents leave as Fig. 2 shown. However, this active
connection cannot always work well because the ability of
grandparent is not equal to the ability of parent. The refined
algorithm helps to solve the problem.

3.1.5 Lifetime expectation

GridMedia [28] pointed out “there was a statistically positive
correlation between the elapsed online duration and the expected
remaining online time.” PRIME [29] pointed out “a peer re-
mains longer, and it churns less.” There is a strong correlation
between the lifetime and the probability of leaving. This means a
peer has the longer time remaining, and it has the less probability
of leaving. Therefore, we design a Lifetime Looker to know the

@ Springer

lifetime of each peer, and try to arrange long lifetime peer at the
top, but arrange short lifetime peer at the leaf.

3.2 The protocol of proposed scheme

The logical overlay derives the data paths to be close to the
physical topology, thus the overlay is crucial for scalability and
proximity. Instead of cluster-based approach [20] or depth-
balanced approach [25], we use end-to-end delay as the eval-
uation for proximity to construct a P2P overlay. Integrated with
the advanced bootstrap mechanism and the adjusted bandwidth
mechanism, the proposed protocol can pursue the short start-up
delay and high playback smoothness for the high QoE.

3.2.1 New peer joining
Figure 3 explains how a new peer joins in our proposed system:

(1) When anew peer p,,,, joins the P2P network, it connects the
rooter firstly and sends a New Join Message to the rooter.

(2) When rooter receives the New Join Message, it executes
the Delay Estimator to estimate the delay between itself
and p,,..,, denoted as 7;.21,.6

(3) Rooter executes the Joining Helper to response the can-
didates of parents according to the similar 7.,, and sends
a Join Accept Message to p,.,~ If rooter cannot find the
suitable candidates, rooter can provide video streaming
t0 Ppew temporarily. Algorithm 1 describes how to com-
plete the new-joining process at rooter.

(4) When p,,,, receives the Join Accept Message, it executes
the Delay Estimator to estimate 7,5, (denoted as the latency
between two peers) for all candidates, and then p,,,, exe-
cutes the Joining Helper to select a candidate with mini-
mum 7},,, to become its child as Algorithm 2 described.

(5) After this parent knows the new peer p,,.,, via a Notice
Message, parent sends Update Message to inform rooter
for a new overlay and pushes video streaming to p,,.,.

In summary, to shorten the delay of data delivery and
message routing, a peer selects its parents according with short
delay. The delay estimation not only indicates the logical dis-
tance, but also estimates indirectly available bandwidth. In our
proposed algorithm, rooter gives p,,.,, the candidates of parents
depending on similar 7;5,, then p,, find the parent among
these candidates with the shortest 7,,5,. 7., estimation ensures
the new peer knowing its proximity, and 7,,, estimation en-
sures the new peer finding the suitable parents with the shortest
transmitting delay.

6 T,.5, means time delay between rooter and a peer (from rooter to peer
unidirectionally).
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Algorithm 1: New Peer Joining at Rooter

while a New Join Message is received do
// estimate round-trip time between rooter and new joining peer
T,,, = DelayEstimator.RTT(rooter, pye);
query time = T, + range;7
// select candidates with shorter round-trip time than guery time
candidate list = JoiningHelper.getCandidates(query time);
if candidate list exists then
related info = JoiningHelper.query(p,...);
candidate list.set(related info);
Join Accept Message.set(candidate list),
else
Join Accept Message.set(rooter),
sends Join Accept Message to the new joining peer;

end while

Algorithm 2: New Peer Joining at Peer

while a Join Accept Message is received do

// estimate round-trip time between new joining peer and candidates
// and select the candidate with the shortest round-trip time
min T, = o0;
related info = null,
candidate list = Join Accept Message.get();
for all p; = candidate list

T,,, = DelayEstimator RTT(pyew, pi);

related info.add(JoiningHelper.query(p,));

if min T,,,> T,,, then

min Ty, = T,

end for
// notice parent and inform rooter
sends Notice Message to the candidate for parent;

end while

) Springer
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3.2.2 Data pushing

In pull scheme, a peer always requests to pull a video chunk, so
the control overhead of pull scheme is heavier than that of push
scheme. In addition, GridMedia calculated the formula of pull
delay which was equivalent to 3t/2+30 while T was the

request interval’ and & was the average end-to-end delay, but
push delay is & + ¢ while ¢ was the minor constant [17].
Because of the low traffic overhead and the short waiting delay,
we adopt the push scheme in this paper. Every chunk has a
unique sequence number (SN) to be sequential and identified.
Algorithm 3 describes the data pushing in every peer.

Algorithm 3: Data Pushing at Peer

while a chunk is received do

// check the sequence number of this chunk

SN = chunk.getSN();

// if this chunk is ready, receive it and forward it

if SN < Now or SN > Now + buffer size or buffer.get(SN) == true then

drops chunk;
else
data = chunk.getData();
// send chunk to its children
for all p; € children
sends chunk to p;;
end for

puts data in buffer;

end while

Our proposed scheme permits a peer to have many
parents. Receiver sends a request with attribute (D, R) to
its parents, D means divisor and R means remainder.
When the chunk SN % D is R, the chunk is forwarded
to the receiver. For example, when receiving request with
(2, 0), the sender forwards just even chunks to the
receiver; when receiving request with (1, 0), the sender
forwards all chunks to the receiver.

3.2.3 Peer leaving

The dynamics of peer departure disrupt content delivery and
deprave the delivered quality to participating peers. P2P sys-
tems must suffer recovery overhead to rearrange the overlay
after most peers leaving.

@ Springer

In our proposed scheme, when a user closes the applica-
tion, the peer p;.... executes the Leaving Helper to finish the
following steps:

(1) As Fig. 4 illustrated, p;.... (peer B) sends the Leave
Message to the rooter to start peer leaving.® At the
same time, pj.q.. sends the Connect Help Message to
both its parent (peer A) and child. Later, p;.,,. sets a
timer and waits the Disconnect Message from its
child (peer C).

7 Request interval is between two buffer map packets and two request
packets.

8 Leave Message is sent at first step to let rooter cancel the registration,
this can avoid any candidate message or refine message from rooter.
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(2) When peer A and C receive the Connect Help Message,
peer A establishes a new connection to peer C via ex- ‘ ‘ i@ ig
changing Connect Message. — _— _—
(3) Both peer A and C check meta-information of Connect
Help Message and Connect Message to confirm each ~ TE€W Peer rooter candidate candidate
other. for parent

(4) When the new connection is established successfully,
peer C should receive two upstreams with the same
chunks (i.e. one from peer A, the other from peer B).
Peer C sends Disconnect Message to disconnect the old
connection from peer B.

(5) When peer B receives the Disconnect Message, it
sends the Disconnect Message to peer A. Peer B
disconnects the old connection to finish peer
leaving.

In traditional multicast trees, rooter executes the central
algorithm for recovery to help a peer finding new parents
when its original parents leave. This method cannot react to
peer leaving quickly in large scale or heavy churn, and the
inefficient recovery leads to a bad QoE. In our proposed
scheme, a peer pj..,. executes the graceful departure when it
wants to leave. As Algorithm 4 and 5 describe, the leaver

New Join Message
—’

Algorithm 1
Join Accept Message,
4—

Algorithm 2 round-trip time estimation

<t 2>

\ 4

Notice Message

\ 4

Update Message

video streaming

Fig. 3 Our proposed scheme for new peer joining

Pieave and its child can use the Leaving Helper to recover the
breaking path.

Algorithm 4: Peer Leaving at Leaver

sends Leave Message to rooter;

sends Connect Help Message to parent;
sends Connect Help Message to child;
timer = LeavingHelper.getTimer();
bool isOK = false;

// timer counts down

while timer > 0 do

// wait for Disconnect Message

if a Disconnect Message is received

isOK = true;
break;
timer ——;
end while
if isOK
// recovery is successful
else

sends Disconnect Message to child,

sends Disconnect Message to parent;

end while

) Springer
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Algorithm 5: Peer Leaving at Resident

while a Connect Help Message is received do

// judge whether father or son

if Connect Help Message.getSon() equals this;

sends Connect Message to Connect Help Message.getFather();

else

sends Connect Message to Connect Help Message.getSon();

end while

while a Connect Message is received do

if Connect Message.getSon() equals this;

sends Disconnect Message to parent;

else

LeavingHelper.connect(Connect Message.getSon());

sends Update Message to inform rooter for a new overlay;

end while

If time is up before Disconnect Message comes, pjeqye Still
disconnect all connections. Two reasons leads to this result:
(1) New connection has connected but Disconnect Message is
not back. (2) New connection is not connected. In former case,
the new connection can work after the leaver departing, and
the parent (peer A) also sends Update Message to rooter to

parent Preave child
= —N =
rooter peer A peer B peer C

Leave Message . .
< video streaming

Connect Help Message

Connect Message

A

Algorithm 4
Algorithm 5

new video streaming

Disconnect Message
=

<

Disconnect Messa, S
sconne ge >

Update Message ~

e N

Fig. 4 Our proposed scheme for peer leaving

@ Springer

inform a new overlay. In latter case, the child (peer C) be-
comes an orphan and reconnects via the peer adaptation or
reselects parent through rooter.

3.2.4 Peer adaptation

In general, the Internet service provider (ISP) gives users more
download bandwidth than upload bandwidth [28]. Therefore,
the bottleneck of P2P live streaming system is the outgo-
ing bandwidth of major asymmetric connections. In our
proposed scheme, each peer evaluates its accessible out-
going bandwidth to schedule data delivery, instead of best
effort for download.

Each peer can execute local peer adaptation to replace an
unsuitable parent. As Algorithm 6 and Fig. 5 illustrated, a
child sends Interchange Query Message to its parent while its
incoming bit rate is not enough. When receiving Interchange
Query Message, a parent executes Bandwidth Estimator to
compute its contribution ratio, which equals the amount of
uploads divided by the amount of downloads.

Z uploads

Contribution ratio =
Z downloads

If the contribution ratio is smaller than 1, the parent accepts
this interchange and then sends Interchange Accept Message
to execute the interchange of peers; else, the parent rejects this
interchange and then sends Interchange Reject Message.
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While receiving Interchange Accept Message, the child waits
for the interchange for its parent; on the contrary, the child

gives up its parent and finds other candidates to become a new
parent while receiving Interchange Reject Message.

Algorithm 6: Local Peer Adaptation

while incoming bit rate becomes low or QoS is bad do

sends Interchange Query Message to parent;

// wait for the response

while a message is received do

if message is Interchange Accept Message then

interchange(this, parent);

else message is Interchange Reject Message then

disconnection(this, parent);

end while

end while

3.2.5 Overlay refinement

We design the overlay refinement algorithm to achieve the
following goals:

(1) To refine an optimal overlay: According to the previous
studies [16, 19, 21], we consider that the first factor is
short latency, the second factor is high upload capacity,
and the third factor is low probability of leaving in
priority sequentially. The rooter sends the Refine
Message to the peers on the recommendable path. The
peers can judge whether accept the recommendation or
not depending on their QoS.

(2) To keep the smooth delivery path: This work is similar
with the above method. In addition, the overlay refine-
ment uses Lifetime Looker to arrange the peers with long
lifetime on several backbone paths. This method results
in a stable backbone path supporting its branches to
multicast smoothly.

(3) To balance each peer’s load: This method is like as
cluster splitting in NICE and ZigZag to balance load.
However, the number of members triggers cluster splitting
in NICE and ZigZag. In ABCD-P2P, the peers can judge
whether accept the recommendation or not depending on
their Delay Estimator and Bandwidth Estimator.

In summary, our proposed overlay refinement can bring
three advantages: (1) The rooter only sends the recommenda-
tion to some peers, and each peer judge whether accepts the
recommendation or not by itself. (2) Much load is moved from

the new joining process to the local peer adaptation and the
global overlay refinement in order to speed up the start-up
delay. (3) The overlay refinement is not hierarchical, and the

)= )=

= —

peer A

rooter

peer B

insufficient video streaming

Interchange Query Message

<

bandwidth
estimator

Algorithm 6

(D Interchange AcceptiMessage

(Q Interchange Reject Message
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@
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A
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Fig. 5 Our proposed scheme for local peer adapting
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Fig. 6 Our proposed P2P
network

load of local peer adaptation is more than the load of global
overlay refinement to reduce rooter’s overhead.

3.3 An example

For example, P2P network can be defined as a graph G = (¥, E)
as Fig. 6 shown. Vis the set of nodes {a, b, ¢ ...} and E is the set
ofedges {Z, ¥, X ...}, and an edge can be also defined as a pair of
nodes, e.g. edge X = (d, f). When a new peer p,, joins the P2P
overlay network, rooter sends Join Accept Message with a
candidate list to p,.,» The candidate list should include b, c, e,
g, I, k because their 7,5, is shorter than 7,.,,+range of p,,,. Next,
Drnew estimates 7,5, for all candidates b, c, e, g, i, k. Then, p,,,,,
maybe select node e to become e’s child and sends Notice
Message to e. Finally, the new overlay topology is sent to rooter.

After three messages passing successfully, the bootstrap
process is completed. The new peer always acts the leaf to
speed up the bootstrap process.” For above example, pen

? Other bootstrap processes of multicast trees spend much time and much
cost, for examples, In NICE, the leader is reselected when a new peer
joins; In ZigZag, the cluster is reorganized when a new peer joins; In
SplitStream, the new peer is arranged at an appropriate internode.

@ Springer

becomes e’s child and becomes the leaf of tree as Fig. 7(a)
shown, p,,.,, gets video streaming from node e quickly. How-
ever, node ¢ maybe has a poor upload capability to push
streaming to two children difficultly. Thus, node e can discon-
nect edge Z and forward node d to p,,.,, as Fig. 7(b) shown.
This method for disconnecting and forwarding must be exe-
cuted only when p,,.,, is a leaf without any child initially.

On the other hand, p,., thinks of replacing e with
another parent when quality of streaming bit rate is bad
for several seconds. Then p,.,, can execute peer adapta-
tion to select the suitable parent instead of peer e. Each
peer checks the bit rate of its incoming stream, and the
bit rate should be stable and keep fixed as similar as the
data rate of video quality. If the bit rate of its incoming
stream is much higher than the data rate of video quality,
the data delivery includes the needless duplications, and
partners check sub-stream map again to avoid the dupli-
cation; if the bit rate is lower, the upload bandwidth of
its parents is insufficient to provide the full data, and the
peer adaptation is executed.

For one example, p,., wants to execute local peer
adaptation with peer e, and if peer e accepts this adaptation as
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d

Fig. 7 The overlay of new peer joining

Fig. 7(c) shown. Originally, data path is ¢ — e, € = p,er» € —
d. After peer p,.,, and peer e exchange their roles, data path
becomes ¢ — Preys Prew — €, Prew — d. In another case, after
the local peer adaptation, the new overlay is shown as
Fig. 7(d). After repeating local peer adaptation, a new overlay
may become as Fig. 7(e). For this example, Fig. 7(d) and (e)
both are stable overlays, and the local peer adaptation can
coverage in the stable overlay via the demonstration afterward
of our simulated results.

For another example, peer f, g, / joins in the P2P system in
order. Through new joining steps, the path f — g — & is
established and the P2P overlay is shown in Fig. 6. Maybe,
less overhead and satisfied QoS let peer £, g, & never execute
local peer adaptation. Rooter periodically executes global
overlay refinement to find that edge W’ is batter than edge
W, and then rooter sends Refine Message to peer g. If peer g
agrees the recommendation, it executes local peer adaptation
with peer f'and 4. Finally, any change is updated to rooter via
Update Message.

4 Analysis

For the ease of exposition, we evaluate the performance of
ABCD-P2P via the mathematical analyses.

4.1 Reach

Every peer must be reachable from rooter, or else content
cannot be multicast.

Theorem 1 Every peer must be reachable

Proof
(1) A hypothetical assumption: P2P network can contain
finite k peers, and there is one rooter and zero peers
initially.
(2) When k=1, 1st peer must connect to rooter.
When k=2, 2nd peer may connect to rooter or 1st
peer.
To reason by analogy, when £=3,4,5 ..., KD peer can
be connectable.

DPnew c DPrnew c c C
DPnew Pnew
e e e e
d d d d

(3) By induction on x. Inductive hypothesis is proved when
k= n, it means n™ is connectable to rooter or other 7 — 1
peers, and all n peers are reachable.

(4) When k = n+1, (n+1)" peer may be connectable to
rooter, or connects to other n peers. The hypothesis that
n peers are reachable is given by (3), so (n+1)™ peer
arbitrarily connects some one at random to be reachable.
The (n+1)™ peer is reachable that is true.

(5) Therefore, by the principle of mathematical induction, n
peers in ABCD-P2P can be reachable for all positive
integers n. Every peer must be reachable.

Theorem 2 Every peer must be reachable when other peer
depart

Proof

(1) A hypothetical assumption: there are x peers leaving
from P2P network simultaneously. Without loss of gen-
erality, x peers are i, ancestors of residents.

(2) The Algorithm 4 defines ", and Algorithm 5 lets i, — 1
peer reachable to i, +1 peer.

(3) Let n is the range of i. When n=1, i.c. a left departs, all
residents are reachable.

Table 2 Summary of mathematical analyses about the comparison of
ABCD-P2P, ZigZag, and NICE

ABCD-P2P  ZigZag NICE
- Average query time O(log n) O(log n) O(log n)
% Worst query time O(n) O(log n) O(log n)
o Average join latency O(c) O(klogn) O(log n)
o Average join overhead O(c) O(K* log n) O(k log n)
- Average node degree O(k) O(k) O(k)
A Worst node degree O(n) O(kz) O(log n)
- Average recovery overhead O(k) O(k) O(k)
4 Worst recovery overhead O(ctk) 0@ O(log n)
- Worst control overhead O(log n) O(klogn) O(log n)
x Worst refinement overhead  O(log n+4%)  O(K) o1(3)

n is the number of peers; £ is the number of neighbors per peer; ¢ is a
constant

o Better, — Same, 4 Unknown, x Worse
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Table 3 Peer upload bandwidth distribution in Substream Trading (kbps)

Total upload bandwidth (kbps) 256 320 384
Distribution (%) 10.0 14.3 8.6
Contributed upload bandwidth 150 250 300

512 640 768 1024 1500 > 3000
22 1.1 6.6 28.1 1.4 14.9
400 500 600 800 1000 1000

(4) When n <x <k, all k—x peers are reachable by induction
on n according to Theorem 1.

(5) When i are continuous, i, — 1 peer are reachable to
i, + n peer. Therefore, by the principle of mathe-
matical induction, every peer in ABCD-P2P can be
reachable for all positive integers n. Every peer must
be reachable.

Theorem 3 The average time of every query for any peer
from rooter is O(log n), while n is the network size

Proof Without loss of generality, a peer has m children in
™ layer among all n peers, and query time should equals
approximately to O(j). For the leaf, average query time
increases with the depth of multicast tree O(log,,n).
However, if the structure of overlay is similar with a chain,
the worst query time is O(n).

4.2 Waiting time of new joining

As Fig. 3 illustrates, the waiting time of new joining process is
spent at Algorithm 1 and Algorithm 2. The major task of
Algorithm 1 is to select the candidates, and the major task of
Algorithm 2 is to decide the parents among the candidates.

Theorem 4 The average waiting time of new joining peer is
O(c), while ¢ is a constant"®

Proof

(1) The Algorithm 1 spends O(c) time selecting the candi-
dates according to the proximity via Joining Helper.

(2) The Algorithm 2 spends O(c) time deciding the parents
according to the proximity via Delay Estimator. The RTT
of message is O(1) due to direct proximity.

(3) The waiting time = The execution time of Algorithm 1
and Algorithm 2 + the time of visiting candidates = O(c) +
O(c) + O(1) = O(c)

The overhead means how many messages are produced in
the interval. The overhead of new joining process influences
the traffic load.

10 ¢ can be seen as the range of selecting candidates. ¢ affects the number

of candidates and the proximity of new joining peer.

@ Springer

Theorem 5 The average overhead of new joining peer is O(c)

Proof

(1) The Algorithm 1 sends O(1) message to a new joining peer.

(2) The Algorithm 2 sends O(c) message informing the
candidates.

(3) The overhead = The overhead of Algorithm 1 and
Algorithm 2 + the overhead of visiting candidates = O(1) +
O(c) + O(c) = O(c)

4.3 Node degree

The node degree can indicate the balance, load, and complex-
ity of a peer.

Theorem 6 The average node degree is O(k), k is the number
of neighbors

Proof Every peer via the Bandwidth Estimator can control the
number of incoming streams and outgoing streams, as a result,
the average node degree is O(k).

Theorem 7 The worst node degree is O(n)

Proof The worst case is that all peers are leaves or form a full
mesh, as a result, the worst node degree is O(n).

4.4 Recovery overhead of peer leaving

When the parents leave, a child becomes an orphan and gains
no data suddenly. It needs a recovery mechanism to connect the
new parents. We define the recovery overhead as an overhead
produced in the interval of changing parents. Because of the
leave legacy of Leaving Helper, the recovery overhead includes
Connect Help Messages, Connect Messages, and Disconnect
Messages in Algorithm 4 and Algorithm 5.

Table 4 Peer upload bandwidth distribution in our simulation

Set Upload Download Distribution (%)
bandwidth (kbps) bandwidth (kbps)

A 3000 3000 1

B 900 2100 10

C 300 1500 75

D 50 600 14
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Theorem 8 The average recovery overhead is O(k)

Proof

The overhead
= Sending Connect Help Messages
+ exchanging Connect Messages
+ sending Disconnect Messages
= O(k) +20(k) + O(k)
= O(k)

Theorem 9 The worst recovery overhead is O(c + k)

Proof

The overhead
= The overhead as Theorem 8

+ the rejoin overhead asTheorem 5
= O(k) + O(c)

4.5 Control overhead

During data delivery, the messages between rooter and peers
are transmitted to maintain the P2P overlay. The overhead of
these messages is called as control overhead.

Theorem 10 The worst control overhead is O(log n)

Proof The height of tree structure of ABCD-P2P is O(log ),
the worst control overhead is to control a path per trigger.

301
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Start-up delay (seconds)

B ZigZag
[ NICE
10 GHUtW
- = ~ —
0 X X X . )
0 107 10° 10* 10° 10°

Network size (the number of peers)

Fig. 9 Start-up delay for scalability
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Fig. 10 Root-to-leaf delay for scalability

Hence, the worst control overhead is equivalent to visiting all
peers on the same path, i.e. O(log n).

4.6 Refinement overhead

The algorithm of refinement influences the performance
of all P2P services. In addition, the complexity and
overhead of refinement algorithm influence the efficien-
cy of refinement. The complexity of our proposed re-
finement scheme is difficult to analyze via mathematical
model. The ideal overhead of refinement equals the
overhead of global overlay refinement adds the over-
head of local peer adaptation. Hence, the ideal overhead =
O(log n) + O(k).

Theorem 11 The worst refinement overhead is O(log n + k)

Proof
(1) Rooter executes global overlay refinement and sends
Refine Message, and this method leads to a worst over-
head O(log n).
(2) Peer executes local peer adaptation and sends In-
terchange Query Message, and this method leads to
a worst overhead O(AK%) due to k partners for k
queries.
(3) The worst refinement overhead
= Worst global overlay refinement overhead
—+worst local peer adaptation overhead
= O(logn) + O(k*)
= O(logn + k*)

801 _o— ABCD P2P

Z 60f —=— ZigZag
Q Ve
< NICE A
O 40F
s} Gnutella -
8
o 20 r\/g
2
= o
0 ‘I‘ 1 1 1 1
0 10% 10° 10* 10° 10°
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Fig. 11 Join overhead for scalability
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4.7 Summary

Through the above mathematical analyses, we can demon-
strate that ABCD-P2P is a scalable system because the delay
and overhead increase with the linearity or logarithm of the
number of peers. We compare ABCD-P2P with ZigZag, and
NICE as shown in Table 2. Usually k£ << n, we can induce the
comparison: o represents that ABCD-P2P is better than
Zigzag and NICE; — represents it is same; 4 represents it
is unable to compare; X represents ABCD-P2P is worse
than Zigzag and NICE. We can discover the outstanding
advantage of ABCD-P2P is short start-up delay (join
latency) and little join overhead.

5 Simulation results
5.1 Simulation environment

We use OMNet++ 4.0 and INET module [30] to simulate
the P2P live streaming service on tree-based NICE, Zig-
Zag, and mesh-based Gnutella.'' We refer to the precon-
dition of simulation situation in Substream Trading [31],
and the upload bandwidth distribution is listed in Table 3.
We jointly consider the data from TWNIC [32] and
Table 3 to set the upload bandwidth distribution of our
simulation as shown in Table 4.

In Section 5.2, we discuss the scalability characteristic of
ABCD-P2P. In Section 5.3, we discuss the overlay interrup-
tion and recovery after peer departure.

5.2 Scalability

We use the different numbers of peers to discuss the scalability
problem. The number of peers increases with the growing
exponent: 102, 103, 104, 10°, and 10° in our simulation
experiments.

11959 of peers in the Gnutella system could be reached within 7 hops by
pure flooding. We set 3 hops as the time-to-life of Gnutella message to
avoid infinite flooding.

@ Springer

5.2.1 Continuity

The continuity ratio'? is defined as the number of video
chunks that arrive before playback deadlines over the total
number of video chunks. The continuity ratio can reflect the
playback smoothness and QoE. The higher continuity ratio
represents the smoother playback. As Fig. 8 illustrated, we can
discover that ABCD-P2P gets the best performance among
the compared algorithms, and the continuity ratio increases
with the number of peers increasing. More peers in P2P
network can provide more upload bandwidth to cooperate
each other, this leads to better performance. However,
Gnutella has the worst performance because it adopts the
flooding algorithm to query and pull data, this situation results
in the bad continuity in large scale.

5.2.2 Start-up delay

All users expect to watch video frames as fast as possible
when launching the application. Hence, a start-up delay can
test users’ tolerance and directly reflect the QoE. As Fig. 9
illustrated, ABCD-P2P has the shortest start-up delay among
the compared algorithms. Although the start-up delay in-
creases with the number of peers increasing, the start-up delay
can be tolerated when 10° peers are in the network due to a
logarithmic rise. We can demonstrate that the Joining Helper
can speed the joining process up.

In essence, mesh-based algorithms occur longer start-up
delay than tree-based algorithms do this, because: (1) a new
joining peer locates itself via a long-time and complex process
of exchanging messages in mesh-based algorithm, but rooter
locates a new joining peer in tree-based algorithm; (2) a new
joining peer uses the bigger buffer to execute mesh-pull but
uses the smaller buffer to execute tree-push in two different
algorithms. This reason explains that mesh-based Gnutella
can speed up the start-up delay when the number of peers is
large, because a new joining peer can get more data into buffer
from more peers.

5.2.3 Root-to-leaf delay

As Fig. 10 illustrated, ABCD-P2P has the shortest root-to-leaf
delay'® among the compared algorithms. Through Delay Es-
timator and Joining Helper, the P2P overlay is proximate to
the physical topology. The proximity shortens the routing path
and root-to-leaf delay.

12 Continuity ratio in this paper is equivalent to confinuity index in
CoolStreaming [13] and received chunk ratio in Substream Trading [31].

13 Root-to-leaf delay is the same with source-to-end delay defined in
AnySee [15] and delivery delay defined in OPSS [33].
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5.2.4 Join overhead

We use the total number of messages produced by a new peer
joining to evaluate the join overhead. As Fig. 11 illustrated,
ABCD-P2P produces almost the same number of messages
which is not various with the number of peers, because the
number of messages is irrelative with the number of peers in
the new joining process of our proposed scheme. This is an
outstanding advantage in the large scale. In both NICE and
ZigZag, rooter locates the new joining peer through level by
level, thus their join overhead increases with the number of
peers increasing. With regard to Gnutella, the flooding scheme
produces the excessive join overhead in a large scale. In
essence, there is much joining overhead in mesh-based algo-
rithms because a new peer needs many exchanging messages
to locate itself into P2P overlay and then organize the local
overlay.

5.2.5 Control overhead

We define that the control overhead equals the average of the
number of control messages which is handled by each peer per
second. As Fig. 12 illustrated, the control overhead of tree-
based algorithms is very small, every peer only loads one
minus message per second. However, peers in Gnutella need
much control overhead to maintain overlay and pull data.
Gnutella produces several messages to hundreds messages
with the number of peers increasing.

1.0
0.8}
=
£
5 04f
O
0.2F ABCD P2P
ABCD P2P without Leaver Helper
0.0% s ABCD P2P without Leaver Helper and Bandwidth Estimator
Time ——

Fig. 14 Our proposed scheme for departure

5.3 Departure

In P2P network, a peer leaves possibly in any time. The peer
departure always breaks off the P2P overlay, this departure
leads to the interruption of the original stream. We define that
the departure rate is the probability of peer leaving. The
number of peers is 10,

5.3.1 Continuity failure

A departure of upstream peer must influence downstream
peer, and then downstream peer cannot get data suddenly.
The lack of upstream data leads to the continuity ratio declin-
ing as Fig. 13 illustrated. ABCD-P2P has the highest continu-
ity ratio among the compared algorithms, and the continuity
ratio keeps 95 % plus when departure rate is smaller than 0.3.
This statistics expresses ABCD-P2P can handle the small
churn because our special algorithm of peer leaving (Sec-
tion 3.2.3). In ABCD-P2P, a leaving peer prepares a backup
path for its downstream to recover the breaking stream before
departing (Fig. 2). When departure rate is 0.8 that means the
P2P network is very dynamic, the continuity ratio is still 60 %
approximately in ABCD-P2P Scheme.

5.3.2 Side effect of departure

In this experiment, we try to discover why ABCD-P2P per-
forms well in dynamic P2P network. We compare ABCD-P2P
with whole components to ABCD-P2P with part components.
Three types are compared: ABCD-P2P, ABCD-P2P without
Leaver Helper, and ABCD-P2P without Leaver Helper and
Bandwidth Estimator as Fig. 14 shown. ABCD-P2P has the
best performance in this experiment: (1) the performance of
ABCD-P2P declines lightly when churn happens. (2) ABCD-
P2P fast recovers the broken stream. (3) The small churn leads
to no continuity failure in ABCD-P2P. (4) ABCD-P2P can
keep a good performance when facing big and continuous
chum.

6 Conclusion

This paper discusses the existing problems, challenges and
limitations of P2P live media streaming in a large cooperated
network. We focus on only one single source to look for the
resolutions suitable for P2P live multicast. Because of the
consideration of short start-up delay and short root-to-leaf
delay, we design the advanced bootstrap mechanism and
adjusted bandwidth mechanism. We propose a novel P2P
scheme, ABCD-P2P, adopts the push scheme to deliver
chunks fast, efficiently, and stably. The keys of ABCD-P2P
are five special components which are designed for the char-
acteristics of P2P users’ experience in real world: Delay
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Estimator, Bandwidth Estimator, Joining Helper, Leaving
Helper, and Lifetime Looker. Our proposed algorithms are
developed to meet the motivations and can be demonstrated to
achieve the goals. Via both theoretical analysis and simulation
results, ABCD-P2P can contribute the following desirable per-
formances, such as, high continuity, short start-up delay, short
end-to-end delay, low control overhead, and short recovery time.
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