Reachability Testing :
An Approach to Testing Concurrent Software *

Gwan-Hwan Hwang
Dept. of Computer Science
National Tsing-Hua University
Hsinchu, Taiwan, Rep. of China
e-mail: ghhwang@cs.nthu.edu.tw

Abstract

Concurrent programs are more difficult to test than
sequential programs because of nondeterministic be-
havior. An erecution of a concurrent program non-
deterministically exercises a sequence of synchroniza-
tion events, called a synchronization sequence (or
SYN-sequence). Nondeterministic testing of «
concurrent program P 1s to ezecute P with a given
input many times in order to exercise distinct SYN-
sequences and produce different results. In this paper,
we present a new testing approach, called reachabil-
ity testing. If P with input X contains a finite num-
ber of SYN-sequences, reachability testing of P with
input X can execute all possible SYN-sequences of P
with input X. We show how to perform reachability
testing of concurrent programs using read and write
operations. Also, we present results of empirical stud-
tes comparing reachability and nondeterministic test-
ing. Qur results indicate that reachability testing has
advantages over nondeterministic testing.

1 Introduction

Due to the unpredictable progress of concurrent
processes and the use of nondeterministic statements,
multiple (or repeated) executions of a concurrent pro-
gram with the same input may produce different re-
sults. Therefore, a single execution of a concurrent
program P with input X is insufficient to determine
the correctness of P with input X. It is possible that
some executions of P with input X produce correct
results and other do not. This nondeterministic be-
havior makes concurrent programs more difficult to
test than sequential programs.

*G. H. Hwang and T. L. Huang’s work was supported in part
by the ROC National Science Council under grant NSC81-0408-
E009-08. K. C. Tai’s work was supported in part by the USA
National Science Foundation under grant CCR-8907807.

0-8186-6960-8/94 $04.00 © 1994 IEEE

Kuo-Chung Tai
Dept. of Computer Science
North Carolina State University
Raleigh, NC 27659-8206, USA
e-mail: kct@csc.ncsu.edu

246

Ting-Lu Huang
Dept. of Computer Science & Information
Engineer, National Chiao-Tung University
Hsinchu, Taiwan, Rep. of China
tlhuang@csie.nctu.edu.tw

An execution of a concurrent program nonde-
terministically exercises a sequence of synchroniza-
tion events, called a synchronization sequence (or
SYN-sequence). The format of a SYN-sequence of
a concurrent program depends upon the concurrent
constructs used. A number of definitions of SYN-
sequences for various concurrent constructs and lan-
guages were given in [9, 1, 10]. One testing ap-
proach, called nondeterministic testing, is to ex-
ecute a concurrent program with a given input many
times with the intention to exercise as many distinct
SYN-sequences as possible. Another testing approach,
called deterministic testing, is to force an execu-
tion of a concurrent program with a given input ac-
cording to a given SYN-sequence. In this paper, we
present a new testing approach, called reachability
testing, which combines nondeterministic and deter-
ministic testing and offers advantages over nondeter-
ministic or deterministic testing.

This paper is organized as follows. Section 2 sur-
veys several approaches to testing concurrent pro-
grams. Section 3 introduces the concept of reachabil-
ity testing. Section 4 shows how to solve a major prob-
lem in reachability testing for concurrent programs
using read and write operations. Section 5 describes
details of reachability testing. Section 6 presents the
results of empirical studies. Section 7 concludes this
paper. This paper is based on the first author’s master
thesis [6].

2 Approaches to Testing Concurrent
Software

This section describes nondeterministic and deter-
ministic testing and their combinations. More details
of these testing approaches can be found in [9]. Let P
be a concurrent program. A SYN-sequence S is said
to be feasible (valid) for P with input X if S is allowed

by the implementation (specification) of P with input
X. P is said to have a synchronization fault if a feasi-
ble (valid) SYN-sequence of P with input X is invalid
(infeasible). A prefix of a feasible SYN-sequence of P
with input X is said to be prefix- feasible for P with
input X.

2.1 Nondeterministic Testing

Nondeterministic testing of a concurrent program
P involves the following steps:

(1) Select a set of inputs of P,

(2) For each selected input X, execute P with X

many times and examine the result of each execu-

tion.

Multiple, nondeterministic executions of P with in-
put X may exercise different feasible SYN-sequences
and thus may detect more errors than a single execu-
tion of P with input X. Two methods for increasing
the chance of exercising different SYN-sequences of P
are:

(a) control the scheduling of processes in the ready

queue of the operating system, and

(b) insert delay statements into P with the amount

of delay randomly chosen (2, 3].

Nondeterministic testing of P with input X has two
major problems. First, some feasible SYN-sequence of
P with input X may be executed many times. Second,
some feasible SYN-sequences of P with input X may
never be executed. If P with input X contains a finite
number of SYN-sequences, nondeterministic testing of
P with input X can never guarantee to accomplish
exhaustive testing (i.e. execution of all possible SYN-
sequences of P with input X).

2.2 Deterministic Testing

Deterministic testing of a concurrent program P in-
volves the following steps:

(1) Select a set of tests, each of the form (X,S),

where X and S are an input and a SYN-sequence of

P respectively.

(2) For each selected test (X,S), force a determin-

istic execution of P with input X according to S.

The forced execution determines whether S is fea-

sible for P with input X.

Deterministic testing of P allows the use of SYN-
sequences selected according to the implementation
and specification of P. Also, deterministic testing of
P can repeat previous executions of P; such testing 1s
referred to as replay. However, deterministic testing
has additional problems to solve. One major problem
is the selection of pairs of inputs and SYN-sequences

247

for a concurrent program. A number of methods for
solving this problem were proposed [5, 14, 15, 12]. De-
tails about deterministic testing of concurrent Ada
programs and semaphore- or monitor-based concur-
rent programs were discussed in [1, 10].

2.3 Prefix-Based Testing and Replay

One possible combination of nondeterministic and
deterministic testing, called prefix-based testing
[9], is to execute a concurrent program P with input
X and SYN-sequence S as follows:

(1) perform deterministic testing of P according to

X and S until the end of S is reached,

(2) perform nondeterministic testing of P immedi-

ately after the end of S is reached. (If step (1) fails.

then step (2) is skipped.)

If S is prefix-feasible for P with input X, such prefix-
based testing is referred to as prefix-based replay.
The purpose of prefix-based testing or replay is to start
nondeterministic testing from a specific program state
other than the initial program state.

3 Concept of Reachability Testing

This section explains the concept of our proposed
testing approach, called reachability testing. As-
sume that S is the SYN-sequence of an execution of P
with input X. Reachability testing of P with input X
and SYN-sequence S involves the following steps:

(1) Use S to derive a set of prefixes of other feasible

SYN-sequences of P with input X. Such prefixes.

called race-variants of S, are derived by changing

the outcomes of race conditions in S.

(2) Perform prefix-based replay of P with input X

and each race-variant of S to derive and collect ad-

ditional feasible SYN-sequences for P with input X.

(3) For each new SYN-sequence collected in (2).

repeat (1) and (2).

If P with input X contains a finite number of SYN-
sequences, reachability testing of P with input X can
accomplish ezhaustive testing of P with input X and
thus can reach all possible states of P with mput X
and determine the correciness of P with input X.

In step (2) above, if the number of feasible SYN-
sequences of P with input X is huge or infinite. we
need to set a maximum limit on the length of each
collected SYN-sequence. If we do so, the above pro-
cedure collects the set of feasible and prefix-feasible
SYN-sequences of P with input X such that the length
of each SYN-sequence is less than or equal to the max-
imum limit. For the sake of simplicity, in this paper we

discuss reachability testing in terms of feasible SYN-
sequences only.

The above description of reachability testing is in-
complete. Step (1), the derivation of race-variants for
a SYN-sequence, depends upon the concurrent con-
structs allowed in the SYN-sequence. The next section
shows how to perform step (1) for SYN-sequences of
concurrent programs using read and write operations.
Section 5 provides additional details about reachabil-
ity testing other than step (1).

4 Derivation of Race-Variants for Con-
current Programs using Read and
Write Operations

Section 4.1 defines the format of a SYN-sequence of
a concurrent program using read and write operations.
Such a SYN-sequence is called an RW-sequence.
Also, section 4.1 gives examples of race-variants of an
RW-sequence. Section 4.2 presents an algorithm for
deriving race-variants of an RW-sequence.

4.1 RW-sequences and their

Race-Variants

Let P be a concurrent program using read and write
operations. Each shared variable in P is assigned a
version number, which is initialized to zero and in-
creased by one after each write operation on this vari-
able [7]. An execution of P involves two types of syn-
chronization events: read and write events. A read
event is denoted as R(U,V), which refers to a read
operation on variable U with version number being V.
A write event is denoted as W(U,V), which refers
to a write operation on variable U with the resulting
version number being V. Assume that P contains pro-
cesses Py, Py, -+, and P,, where n > 0. A partially-
ordered RW-sequence of P is denoted as (S[1], S[2], ...,
S[n]). (In the following discussion, unless otherwise
specified, an RW-sequence is assumed to be partially-
ordered.) For 1 < i < n, S[i] is a sequence of read and
write events executed by process P; and is denoted as
(S(3,1), S(4,2), ..., S(i,k;)), where k; > 0 and S(i,j),
1 < j < ki, is a read or write event. The result of an
execution of P with input X can be determined by X,
P, and the RW-sequence of this execution. An RW-
sequence is said to be feasible for P with input X if
this RW-sequence is allowed by the implementation of
P with input X.

Assume that the following RW-sequence S is the
SYN-sequence of an execution of P, which contains
processes P and P, and shared variables A and B.

248

Si[1) = (W(A1), R(B,1), --")

51[2] = (W(Bvl)v R(A)1)> o)

Let ”—” and ”||” denote the "happens before”
and ”concurrent” relations, respectively [8]. In S,
W(A,1)—-R(A,1), W(B,1)—R(B,1), W(A,1)||W(B,1),
and R(B,1)||[R(A,1). From S;, we can determine that
the first read and write operations on A have a race
condition and so do the first read and write operations
on B.

Since the first read and write operations in S; on A
have a race condition. It is possible for P with input
X to have an execution in which the read operation
on A happens before the write operation on A (i.e.,
"R(A,1)” becomes "R(A,0)”). Therefore, there exist
one or more feasible RW- sequences of P with input X
having the following RW-sequence S, as a prefix

Sa1] = ()

$2[2] = (W(B,1), R(A,0))

For each of such feasible RW-sequences of P, process
P begins with a write operation on A, but the version
number of this write operation depends upon the be-
havior of P after R(A,0). Thus, S,[1] is empty. S5 is
called a race-variant of S;. Informally, a race-variant
of 5 is derived from S; by changing the outcome of
a race condition in S; and deleting events in S; that
happen after the modified event. A race-variant of S,
is a prefix of another feasible RW-sequence of P with
input X.

Since the first read and write operations in S; on B
have a race condition, it is possible for P with input
X to have an execution in which the read operation
on B happens before the write operation on B (i.e.,
"R(B,1)” becomes ”R(B,0)”). Thus, there exist one or
more feasible RW-sequences of P with input X having
the following RW-sequence S3 as a prefix

53[1] = (W(AJ)» R(B,O))

S3[2] = ()

S3 is also a race-variant of S;. If S, or S is used
in prefix-based replay of P with input X, the resulting
RW-sequence is different from S;.

4.2 An Algorithm for Deriving Race-
Variants of An RW-sequence

Let P be a concurrent program containing n > 1
concurrent processes Py, Py, --- and P,, and m > 0
shared variables V}, V5, -+, and V,,,. Let S be a fea-
sible RW-sequence of P with input X. To derive race-
variants of S, we construct the race-variant diagram
(or RV diagram) for S, which is a tree with each node
representing a prefix or race-variant of S. The nodes
in the RV diagram for S are generated by considering
possible interleavings of read and write events in S. For

anode in the RV diagram for S, the path from the root
node of the diagram to this node is a totally-ordered
sequence of read and write events.

Each node N in the RV diagram for S contains the
following two vectors:

index vector : (I, Iy, -, I,), where I, 1<j<

n, is the index of the last read or write operation in

S[j] that is executed for generating node N.

version vector : (Ey, Ey, -+, Ey), where E;, 1 <

k < m, is the version number of variable V, when

node N is generated.

For the root node of an RV diagram, its index vector
is (0,0, -,0) and its version vector (0,0,---,0). In the
RV diagram for S, when a node N is generated from
node N’ due to a read or write operation, the index
and version vectors of N are generated from those of
N'. Also, the version number of the variable accessed
by the read or write operation is compared with the
version number of the corresponding event in S. If the
two version numbers are the same, then N represents a
totally-ordered prefix of S and is called a prefix node:;
otherwise, N represents a race-variant of S and is called
a race-variant node. No nodes are generated from
a race-variant node.

Two nodes in the RV diagram for S may have the
same index and version vectors. If so, there are two
possibilities:

e both are prefix nodes. This happens when, due
to the existence of concurrent events, a prefix of S
has two or more totally-ordered sequences. For a set
of prefix nodes having the same index and version
vectors, only one of them is used to generate child
nodes. (To keep the RV diagram as a tree, prefix
nodes having the same index and version vectors
are not merged into one node.)

e one is a prefix node and the other a race-

variant node. To illustrate this, consider the fol-

lowing RW-sequence Sy:
54[1] = (R(A,O),)
S4[2] = (W(A1),..)

From the root node, we can generate a prefix node
Ny according to the sequence of a read on A and then
a write on A, and a race-variant node N, according to
the sequence of a write on A and then a read on A.
For Ny, the read event is R(A,0), and for Ns, the read
event is R(A,1). Although N, is a prefix node and N
a race-variant node, both N; and N5 have same index
vector, which is (1,1), and the same version vector,
which is (1,0,...,0). (Assume that A is the first one in
the list of shared variables.)

It is impossible that two or more race-variant nodes
have the same index and version vectors. The reason

249

is that since no child nodes are generated from race-
variant nodes, each race-variant node in the RV dia-
gram for S is generated by changing the outcome of
just one race condition in S.

Algorithm RV_RW

input: a feasible RW-sequence S of a concurrent

program using read and Write operations.

output: RV(S), a set of race-variants of S.

(1)Initially, the RV diagram for S contains the root
node only. For the root node, set its index vector
to (0,0,---,0) and its version vector to (0,0,---,0)
Also, label the root node "unmarked".

(2)Select an unmarked node, say N, in the RV diagram
for S. Assume that the index vector of N is
(Ii,I,---,In). For each j, 1< j<n, if I, < the
length of S[j], construct a child node N’ of N
according to steps (a)-(f). Then label N "“marked".
(a)Set the index vector of N’ to that of N except

that the jth element is [;+1.
(b)Set the version vector of N’ to that of N.
(c)Let Vi be the variable read or written in
S(j,1;+1) and E the version number of Vj in
S, 1+1).
(d)If S(i,[;+1) is a write operation on Vi,
increase the kth element of the version of
N’ by 1.
(e)Let E’' be the kth element of the version
vector of N'.
(H)1f £ = £/
then /* N and N’ are prefix nodes */
if the RV diagram for S already contains a node
N with the same index and
version vectors as N/,
then label N’ "marked",
else label N’ '"unmarked".
else /* N’ is a race-variant node */
elabel N’ "marked" and "race-variant node'.
econstruct the race-invariant S’ associated
with N’ as follows:
ofor 1 <k <n, S'[k] = (S(k,1),---,5(k,Ix))
ofor S’[j], add element S'(j,I,+1), which is
RV ,E"), if S(j,I;+1) is a read event on Vi,
or W(Vy,E"), if S(j,[;+1) is a write event
on Vj.

(3)Repeat step (2) until all nodes in the RV diagram

for S have marked.

To illustrate algorithm RV_RW, consider the follow-
ing feasible RW-sequence Q of a concurrent program
P with input X, where P contains processes P, and P,
and shared variables A and B.

Q[1] = (R(A.0), R(B,0), W(A,2))

Q[2] = (W(A,1), W(B,1), R(A,2),W(B,2))

Fig. 1 shows the RV diagram for Q. Each node N in
the diagram contains two vectors, the first one being
N’s index vector and the second one N's version vec-
tor. Each prefix node is denoted by a rectangle with
solid lines and each race-variant node by a rectangle
with dotted lines. The RV diagram for Q contains two
pairs of prefix nodes with identical index and version

Ql1)=(R(A,0),R(B,0),W(A,2))
Qf21=(W(A,1),W(B,1),R(A,2),W(B,2))

0,0

ewsseedv jndex vector
""" ® version vector

158

F()
LI
N5

1.1 1)

Figure 1: Parse tree of an array expression

vectors, one pair having (2,1) as the index vector and
(1,0) as the version vector and the other pair having
(3,2) as the index vector and (2,1) as the version vec-
tor.

The RV diagram for Q contains seven race-variant
nodes, which are assigned names N; through N7. The
following RW-sequences ; through ()7 are the RW-
sequences associated with nodes N; through N;, re-

spectively.
Q1[1] = (R(A,0), R(B,0), W(A,1))
Q12} = ()
Q2(1} = (R(A,0), R(B,1))
Q2[2] = (W(A,1), W(B,1))
Q3[1] = (R(A,0))
Q3[2] = (W(A,1), W(B,1), R(A,1))
Q4[1] = (R(A,1))
Q4[2] = (W(A,1))
Q5[1] = (R(A,1))
Qs[2] = (W(A,1), W(B,1))

Q6[1] = ()

Q6[2] = (W(A,1), W(B,1), R(A,1))
Q7[1] = (R(A,0), R(B,0))

Q7[2] = (W(A,1), W(B,1), R(A,1))

Theorem 1. Let S be a feasible RW-sequences of
a concurrent program P with input X, and RV(S) be
the set of race-variants of S produced by algorithm
RV_RW. Assume that P contains processes Py, Po,

-, and P,, where n > 1.
(a)For each element S’ of RV(S),

250

(1)S’ is not a prefix of S.

(2)9’ differs from a prefix of S only in one event,
which is the last event of S'[i] for some i,
1<t <n.

(3)S’ is a prefix of at least one feasible
RW-sequence of P with input X.

(b)For each feasible RW-sequence S of P with
input X, where S” # S, S” has at least one
element of RV(S) as a prefix.

Proof. (a) It follows from the fact that S’ is derived
from S by changing the outcome of one race condition
in S and deleting events in S that happen after the
modified event. (b) Let S* be the longest common
prefix of S and S”. S and S” have different outcomes

of a race condition that occurs immediately after S*.
Thus, S* is in RV(S). Q.E.D.

5 Reachability Testing of Concurrent
Programs

The previous section shows an algorithm for gen-
erating race-variants of an RW-sequence. Similar al-
gorithms can be derived for other types of SYN- se-
quences. The generation of race-variants is only one of
the problems in reachability testing. Earlier, section
3 introduced the concept of reachability testing. This
section provides additional details about reachability
testing other than the generation of race-variants.

Assume that S is a feasible SYN-sequence of a con-
current program P with input X and S’ is a race-
variant of S. Also, assume that prefix-based replay
of P with X and S’ has generated another feasible
SYN-sequence S” of P with input X. To generate race-
variants of S| we consider only the race conditions in
S" that occur after S’. The reason is that the race
conditions in S’ have been considered in the gener-
ation of race-variants of S. To avoid the use of race
conditions in S’, a barrier symbol ”@” is inserted to
the end of S'. When S” is used to derive race-variants,
only the race conditions in S” that occur after the ”@”
symbol are considered. After a race-variant S* of 5"
is generated, the ”@” symbol is inserted to the end of
S*. Note that S* has two ”@” symbols. When S* is
used to derive race-variants, only the race conditions
that occur after the last ”@” symbol are considered.

Below is an algorithm for reachability testing of a
concurrent program P:

(1)Select a set of inputs of P.
(2)For each selected input X, perform the following
steps.

(a)Let FS(P,X) be a set of feasible SYN-sequences
of P with input X and RV(P,X) a set of race-
variants of feasible SYN-sequences of P with
input X. Initially, FS(P,X) and RV(P,X) are
both empty.

(b)Execute P with input X to collect one or more
feasible SYN-sequences. For each collected
SYN-sequence, insert a ”@” symbol at its
beginning and add the resulting sequence to
FS(P,X) as an unmarked sequence.

(¢)For each unmarked sequence S in FS(P,X),
derive its race-variants by modifying the
outcomes of race conditions after the last
”@” symbol in S. For each derived race-
variant, if it is not already in RV(P,X),
insert a ”@” symbol at its end and add the
resulting sequence to RV(P,X) as an unmarked
sequence.

(d)For each unmarked sequence S’ in RV(P,X),
perform prefix-based replay of P with X and
S’ to collect one or more feasible SYN-
sequences. For each collected SYN-sequence,
if it is not already in FS(P,X), add it to
FS(P,X) as an unmarked sequence.

(e)Repeat (c) and (d) until all sequences in
FS(P,X) and RV(P,X) are marked.

The above algorithm for reachability testing is a high-
level description. It needs refinement according to the
concurrent constructs in P. It also needs improvement
for performance consideration. As mentioned in sec-
tion 3, when the sizes of FS(P,X) and RV(P,X) are
huge or infinite, it is necessary to set limits on the
sizes of FS(P,X) and RV(P,S).

Theorem 2: Assume that every execution of a con-
current program P with input X terminates. Accord-
g to the above algorithm, reachability testing of P
with input X derives and executes all feasible SYN-
sequences of P with input X.

Proof. We show that after the completion of reach-
ability testing of P with input X, FS(P,X) is the set
of feasible SYN-sequences of P with input X. It is
obvious that each sequence in FS(P X) is a feasible
SYN-sequences of P with input X. We need to prove
that every feasible SYN-sequence of P with input X
is in FS(P,X). If P with input X has only one feasible
SYN-sequence, then this SYN-sequence is in FS(P X).
Consider the case that P with input X has two or more
feasible SYN-sequences. Assume that S is a feasible
SYN-sequence of P with input X and that S is not in
FS(P,X). Let Q be a sequence in FS(P,X).

There exists a prefix S’ of S such that S’ is a race-

variant of Q. Therefore, S is in RV(P,X). Prefix-based
replay of P with X and S’ executes at least one feasible
SYN-sequence, say @', of P with input X. Q' is in
FS(P,X). Since Q' # S, there exists a prefix S of S
such that S” is a race-variant of @’ and has 5 as a
proper prefix (i.e., S” is longer than S’). Hence. 5" is
in RV(P,X). Prefix-based replay of P with X and 5"
executes at least one feasible SYN-sequence, say Q.
of P with input X. @" is in FS(P,X).

By repeating the above argument, we can conclude
that S is a race-variant of some sequence in FS(P.X)
and that S is in RV(P,X). Prefix-based replay of P
with X and S executes exactly S itself. Then S should
be in FS(P,X). This contradicts our assumption that
S i1s not in FS(P,X). Therefore, every feasible SYN-
sequence of P with input X is in FS(P,X). Q.E.D.

6 Empirical Studies of Testing Concur-
rent Programs

This section describes two empirical studies using

the following concurrent program, called Prod_Cons.
This program implements the producer-consumer
problem and contains processes A and B as produc-
ers and process C as a consumer. Fach of processes
A and B produces two items and deposit them to a
queue. Process C withdraws four items from the queue
and consumes them. A semaphore variable S is used
to ensure mutual exclusion for accessing the queue.
Prod_Cons is incorrect since it does not control the
order in which items are deposited to and withdrawn
from the queue.

process A
doi=1to 2

begin
produce data
WAIT S

push data into the queue

SIGNAL S

end

process B
doi=1to2

begin
produce data
WAIT S

push data into the queue

SIGNAL S

end

process C
doi=1to 4

begin

WAIT $
pop data from the queue

SIGNAL S
consume data

end

Since Prod_-Cons uses P and V operations on a
semaphore, a SYN-sequence of Prod_Cons is a PV-
sequence [1], which contains events of the following
four types:

(a) the start of execution of a P operation by
a process on a semaphore,

(b) the end of execution of a P operation by
a process on a semaphore,

(c) the start of execution of a V operation by
a process on a semaphore,

(d) the end of execution of a V operation by
a process on a semaphore.

For the sake of simplicity, we did not consider
PV-sequences of program Prod_Cons in our empirical
studies. Instead, we considered sequences of events of
type (b) only. Such a SYN-sequence is referred to as
a P-sequence [1]. The reasons for doing so are the fol-
lowing: (1) Program Prod_Cons correctly uses P and
V operations on semaphore S to ensure mutual exclu-
sion for the critical sections in processes A, B and C.
(2) An event of type (b) in Prod_Cons implies enter-
ing a critical section. (3) P-sequences are simpler and
shorter than PV-sequences.

A P-sequence of Prod_Cons is denoted as (C, C,,
--+), where Cj, ¢ > 0, denotes the process execut-
ing the ith completed P operation on semaphore S.
Thus, a P-sequence of Prod_Cons is exactly the se-
quence in which processes A, B and C enter their
critical sections. A P-sequence of Prod_Cons con-
tains two A’s, two B’s, and four C’s. The num-
ber of distinct P-sequences of Prod_Cons is the num-
ber of different sequences of two A’s, two B’s, and
four C’s, and this number is 8!/(21*2!*4!) = 420.
Some of these sequences, such as (C,C,C,C,A,A,B,B)
and (A,C,C,C,C,A,B,B), are feasible, but invalid for
Prod_Cons since they contain executions of withdraw
operations when the queue is empty.

6.1 A Comparison between Nondeter-
ministic and Reachability Testing

An empirical study was conducted to compare non-
deterministic and reachability testing by running pro-
gram Prod_Cons on a Sequent Symmetry machine
with ten identical processors under normal system
load. Since Prod_Cons contains three processes, its ex-
ecution uses three processors, one for each process. As
mentioned in section 2.1, nondeterministic testing can
be done in different ways. The following two versions
of nondeterministic testing were applied to Prod_Cons.

X : Number of executions
Y : repetition number

252

Y™] 10| 100] 200] 300 400 | 500 | 600 | 700 | 800 | 900 | 1000
1st 1| 4] 6] 8] 9| 10|10 0] w] 10] 10
ond | 2| 6] 6] 81 9] 9] 9| 9] 0] 0] 10
ard 1] 5| 7| 71701 7] 7| 8] 9] s o
4th 1 a]l sl 717178l s8] 9] 1w0] 0] 10
sth | 2] s s 7] 8] 9f 9] 9]0 10] 10
6th 11 3| 6| 6| 6f 7] 9] 9] 10] 0] 10
7th | 2| 3| 5| 6| 8] 9| 0| 0] 10| 0] 10
6th | 2| 5| 5| 7| 8] 8| 8] 9| 10| 10 10
oth 11 6] 61 7171 7]l 8l efo] ool o
1othh | 1| 3] 6] 7] 9] a1 w0fw] 0] 10
avg | 1.4 |43 | 56717078 |83 |88)91 98 98] 101
Table 1: Numbers of distinct RW-sequences of

Prod_Cons collected by using NT_1

NT_1: nondeterministic testing without additional
control.

NT_2: nondeterministic testing with inserted delay
statements.

For each of NT_1 and NT_2, Prod_Cons was ex-
ecuted 1,000 times, and the number of distinct P-
sequences collected was determined when the number
of executions of Prod_Cons reached 10, 100, 200, 300,
400, 500, 600, 700, 800, 900, and 1,000, respectively.
Also, the above process was repeated ten times and
the average over the ten repetitions was computed.
Tables 1 and 2 show these results. After 1,000 exe-
cutions of Prod_Cons, the average number of distinct
P-sequences collected by using NT_1 is 10.1, and that
by using NT_2 is 14.9. Since the total number of fea-
sible P-sequences of Prod_Cons is 420, only 2.4% and
3.5% of them were collected by NT_1 and NT_2, re-
spectively. Furthermore, as shown in Tables 1 and
2, the number of distinct P-sequences collected by
nondeterministic testing of Prod_Cons increases very
slowly when the number of executions of Prod_Cons
increases.

Since the Sequent machine has ten processors, the
following two versions of reachability testing were ap-
plied to Prod_Cons:

RT_1: reachability testing with three processors:
One of them was used to generate race-variants of
P-sequences of Prod.Cons, and all three to execute
Prod_Cons.

RT_2: reachability testing with ten processors:
One processor was used to generate race-variants of
P-sequences of Prod_Cons, and the other nine proces-
sors to execute three copies of Prod_Cons.

As expected, all of the 420 feasible P-sequences of
Prod_Cons were generated by using each of RT_1 and
RT_2.

X : Number of executions
Y : repetition number

X

Y 10 | 100] 200/ 300] 400| s00| 600| 700| 800 900| 1000
st | 8 | 15| 15| 15] 15| 15] 15] 5] 15| 15| 15
ond | 6 | 11} 8] 13| 14 14| 14| 14| 14| 1a] 14
ad | 7 | 13 13 14| 14| 4] 14 15[5] 15[15
4th | 7 [13| 13] 3] 14| 1a] 14| 5] 15[15 15
sth | 8 | 11| 12| 12 1a] 15[15} 5] 15| 15| 15
6th | 8 [10 10| 14| 15 5] 16] 16| 15| 15] 15
7th [9 [12| 12] 13| 13| 3] 5] 5] 151 15[15
th | 9 | 1o 11 3] 18] 13[14] 4] 1a| 15 15
oth | 5 T 10 141 14| 14| 14] 14| 14] 14| 15] 15
10th | 6 | 13| 14| 14| 14| 14| 14| 14| 14| 12| 15
avg | 7.3 [11.8] 127| 13.6] 14.0] 14.1] 14.3[14.5] 1a.5] 14.7] 14.9
Table 2: Numbers of distinct RW-sequences of

Prod_Cons collected by using NT_2

One major concern with reachability testing is the
amount of overhead for generating race-variants and
performing prefix-based replay. The following table
provides performance information:

results

1,000 executions of
Prod_Cons with about 10
distinct P-sequences collected
1,000 executions of
Prod_Cons with about 15
distinct P-sequences collected
derivation and execution

420 distinct P-sequences

of Prod_Cons

derivation and execution

420 distinct P-sequences

of Prod_Cons

time (seconds)

NT_1 160

NT_2 240

RT.1 250

RT_2 150

From the above table, in 250 seconds or less, reach-
ability testing derives and executes all 420 distinct fea-
sible P-sequences of Prod_Cons, while nondeterminis-
tic testing executes less than 4% of distinct feasible
P-sequences of Prod_Cons. Therefore, the overhead
required by reachability testing is insignificant in light
of the poor performance of nondeterministic testing.
By comparing the execution time of RT_1 and RT_2,
the speed-up due to the use of 10 processors (versus 3
processors) is 250/150 = 1.67.

6.2 Simulation of Nondeterministic Test-
ing by Using Different Scheduling
Policies

As mentioned in section 2.1, the effectiveness
of nondeterministic testing may depend upon the
scheduling of processes. We conducted an empirical
study to investigate the impact of different schedul-
ing policies on the effectiveness of nondeterministic

253

testing. Since controlling the scheduling policy for an
operating system was not allowed, we implemented a
stmulation of the following two scheduling policies:

¢ round-robin: after a process completes a time
slice, it is kept at the end of the ready queue, and then
the fist process in the ready queue becomes the next
running process.

¢ random selection with time slicing: after a
process completes a time slice, it is kept in the ready
queue, and then one of the processes in the ready
queue is randomly selected to be the next running pro-
cess.

For each of the above two scheduling policies, the
length of a time slice is not a constant. For a given
maximum value T of a time slice, the actual value of
a time slice is one of T/5, 2*T/5, 3*T/5, 4*T/5, and
T, with equal probability.

The above two scheduling policies were applied to
program Prod_Cons with the assumption that the ini-
tialization of a process takes 10,000 time units and
the execution of each critical section 5,000 time unit.
In our empirical study, T was set to 300, 500, 800,
1,000, 1,300, 1,500, 1,800, 2,000, 2,300, 2,500, 2,800,
and 3,000 time units, respectively. For each given
value of T, Prod_Cons was executed 50,000 times by
using the round-robin policy, and the number of dis-
tinct P-sequences collected was determined when the
number of executions of Prod_Cons reached 10, 100,
500, 1000, and so on. These results are shown in Ta-
ble 3. Also, for each given value of T, Prod_Cons was
executed 15,000 times by using the random selection
policy. The results are shown in Table 4.

Our observations from Tables 3 and 4 are the fol-
lowing:

e The results of round-robin are consistent with
those of NT_1 and NT_2 shown in section 6.1. This is
expected since the round-robin policy was used by the
Sequence machine for NT_1 and NT_2.

¢ Random selection with time slicing is more ef-
fective than round-robin in producing distinct P-
sequences of Prod_Cons, and it eventually produces all
420 distinct P-sequences of Prod_Cons. The reason is
that random selection of processes allows all possible
interle[Bavings of events to occur, while round-robin
tends to produce the same patterns of interleavings of
events.

e From Table 4, 15,000 random-selection. nonde-
terministic executions of Prod_Cons are required to
produce all 420 distinct P-sequences of Prod_Cons.
According to the performance information for NT_1.
such nondeterministic testing of Prod_Cons takes
about 2,400 seconds. In contrast, reachability test-

X : Number of executions
Y : Time slice unit

YK

10 | 100} 500 [1000) 5000 10000 | 20000 | 30000 {40000 | 50000
300 [3[4[4 5] 7] 8 9 9 9 9
500 [sf{4l 71719 o [1010 11] 11
800 |3 5] ofof10] 12 1a] 15 16 | 16
1000 3| 6] 8o |12 12] 14 [15 | 16 | 17
1300 §3 | 7J10[11 [12 14 | 14 | 15 | 16 | 16
1500 [4] 8[o Tl 11| 14 15[15 | 15 [15
B0 [3 5] 7 8 10| 12 12] 12] 12| 12
2000 |[2| 6|68 8] 8 9 | 10 [10 | 0
200 [3]a]s]7[71 s 9 | o 9 | 10
2500 |4 7| 9|99 @ [0} 10 |16] 10
2800 [4] 7|99 o o [10 10 |10 | 10
30 [4fs[oafwofwo| 10|10 10010
Table 3: Numbers of distinct RW-sequences of
Prod_Cons collected by using round-robin
X : Number of executions
Y : Time slice unit
Y™X] 10] 100| 200]400600] 800] 1000 [2000] 3000] 5000 [10000 [15000
300 | 91 77] 126]191]237[273] 305 | 383 | 404 | 417 | 420 | 420
500 | 10f 72| 121]197[243]276] 209 | 358 | 3094 | 400 | 418 | 420
800 |10} 77 125J200|247]285] 301 | 366 | 394 | 413 | 419 | 420
1000 [10] 74] 118]184]237|270] 208 1358 [394 | 400 | 419 | 420
1300 [10] 78] 129]189[230[271] 299 | 366 | 399 [416 | 420 | 420
1500 | 7 | 74| 128]200[243|277] 208 | 358 383 400 | 420 | 420
1800 [9177 136]208]249]284] 306 [370 | 389 | 410 | 420 | 420
2000 [10] 84| 134]199]251]288] 304 | 375 398 | 415 | 420 | 420
2300_|10] 75| 134]200[240]282] 311 | 382] 404 | 415 | 420 | 420
2500 [10] 72] 120[187[235[278] 311 [369 398 | 416 | 420 | 420
2800 [10] 72| 120]187|235]278] 311 | 369 398 | 416 | 420 | 420
3000 [10[66 | 115|202[246]272] 300 [370 | 399 | 415 | 420 | 220
Table 4: Numbers of distinct RW-sequences of

Prod_Cons collected by using random selection

ing of Prod_Cons takes only about 250 seconds to
derive and execute all 420 distinct P-sequences of
Prod_Cons. Therefore, reachability testing is about
ten times faster than random- selection, nondetermin-

1stic testing for producing all distinct P-sequences of
Prod_Cons.

7 Conclusions

In this paper we have presented a new approach,
called reachability testing, to testing concurrent pro-
grams. If P with input X contains a finite number
of SYN-sequences, reachability testing of P with in-
put X can accomplish exhaustive testing of P with
input X, and thus can determine the correctness of P
with input X. We have shown how to perform reach-
ability testing of concurrent programs using read and
write operations. Based on the results of our empir-
ical studies, reachability testing is significantly more

254

cost-effective than nondeterministic testing for deriv-
ing distinct SYN-sequences of a concurrent program
with a given input.

Reachability testing has similarities and differences
with reachability analysis. Reachability analysis of
a distributed program P is to derive the reachabil-
ity graph of P, which contains all possible states and
paths of P [13, 4] for all inputs of P. The reachability
graph of P can be used to verify certain properties such
as freedom from deadlock, livelock, or starvation {11];
it can also be used to select paths for testing or sym-
bolic execution {14, 15]. Reachability testing of P with
input X behaves like reachability analysis of P with in-
put X since both derive all feasible SYN-sequences of
P with input X. However, the former executes these
SYN-sequences and produce outputs, while the latter
derives these SYN-sequences and represents them in
a graphical form. If the behavior of P has little or no
dependence on inputs, reachability testing of P can
verify the correctness of P.

Reachability testing is not just for accomplishing
exhaustive testing, which is possible only for programs
containing a finite number of feasible SYN-sequences.
For a concurrent program having a huge or infinite
number of feasible SYN-sequences, reachability test-
ing can be applied to help the selection of a reason-
able subset of SYN-sequences that is effective for fault
detection. Also, the algorithm for reachability testing
in section 5 needs to be improved to reduce time and
space requirements.

Acknowledgements

The authors wish to thank Richard Carver for his
helpful comments.

References

(1] R. H. Carver and K. C. Tai, Replay and testing
for concurrent programs. IEEE Software,” March
1991, 66-74.

[2] J. Gait, A probe effect in concurrent programs.
Software-Practice and Experience, March 1986,
225-233.

[3] D. Helmbold and D. Luckham, Debugging Ada
tasking programs. IEEE Software, Vol. 2, No. 2,
March 1985, 47-57.

(4] G. J. Holzmann, Design and Validation of Com-
puter Protocols. Prentice-Hall, 1991.

[6] S. Y. Hsu and C. G. Chung, A heuristic ap-
proach to path selection problem in concurrent pro-
gram testing. Proc. 3rd IEEE Workshop on Future
Trends of Distributed Computing Systems, 1992,
86-92.

[6] G. H. Hwang, A systematic parallel testing method
for concurrent programs. Master Thesis, Institute
of Computer Science and Information Engineer,
National Chiao-Tung Univ., Taiwan, 1993.

[7] T.J. LeBlanc and J. M. Mellor-Crummey, Debug-
ging parallel programs with instant replay. IEEE
Trans. Computers, Vol. C-36, No. 4, April 1987,
471-482.

(8] L. Lamport, Time, clocks, and the ordering of
events in a distributed systems. Comm. ACM, Vol.
21, No. 7, July 1978, 45-63.

[9] K. C. Tai and R. H. Carver, Deterministic ezecu-
tion testing and debugging of concurrent programs.
Proc. 1989 Pacific Northwest Software Quality
Conference, 170-182. An extended version of this
paper is published as Technical Report TR-93-14,
Dept. of Computer Science, North Carolina State
University, 1993.

[10] K. C. Tai, R. H. Carver, and E. E. Obaid, De-
bugging concurrent Ada programs by deterministic
ezecution. IEEE Trans. Soft. Eng., Vol. 17, No. 1,
Jan., 1991, 45-63.

(11] K. C. Tai, Definitions and detection of deadlock,
liwvelock, and starvation in concurrent programs.
Proc. 1994 Inter. Conf. Parallel Processing, 1994,
Vol. I1, 69-72.

[12] K. C. Tai and R. H. Carver, Use of sequencing
constraints in specification and testing of concur-
rent programs. to appear in Proc. 1994 Int. Conf.
Paralle] and Distributed Systems, Dec. 1994

(13] R. N. Taylor A General-Purpose Algorithm for
Analyzing Concurrent Programs. Communications
of the ACM, Vol.26, No.5, 1983, 362-376.

[14] R. N. Taylor, D. L. Levine, and C. D. Kelly Struc-
tural testing of concurrent programs. IEEE Trans.
on Software Eng., Vol. 18, No. 3, March 1992, 206-
215.

[15] R. D. Yang and C. G. Chung Path Analysis Test-
ing of Concurrent Programs. Information and Soft-
ware Technology, Vol. 34. No. 1, Jan. 1992, 43-56.

255

