
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.12 DECEMBER 2000
2065

PAPER

A Causal Multicast Protocol for Mobile Distributed

Systems

Kuang-Hwei CHI†, Li-Hsing YEN††, Chien-Chao TSENG†,
and Ting-Lu HUANG†, Nonmembers

SUMMARY Causal message ordering in the context of group
communication ensures that all the message receivers observe
consistent ordering of events affecting a group as a whole. This
paper presents a scalable causal multicast protocol for mobile
distributed computing systems. In our protocol, only a part of
the mobility agents in the system is involved in group compu-
tations and the resulting size of control information in messages
can be kept small. Our protocol can outperform qualitatively
the counterparts in terms of communication overhead and hand-
off complexity. An analytical model is also developed to evaluate
our proposal. The performance results show that the proposed
protocol is promising.
key words: causal ordering, multicast, mobile computing

1. Introduction

One of the fundamental problems in distributed com-
puting is to reduce the nondeterminism due to asyn-
chronous process execution speeds and unpredictable
communication delays. To this end, the research com-
munity proposed causal ordering for message delivery.
That is, for any messages addressed to the same des-
tination, if the sending of a message “happened be-
fore” that of another message, then the former message
should be received before the latter is. In the context
of group communication, the paradigm for such mes-
sage ordering — causal multicast, ensures that partic-
ipants observe consistent ordering of events affecting
the group as a whole. This simplifies the development
of distributed programs for reliable and fault-tolerant
systems by providing a built-in message synchroniza-
tion [11].

The prevalence of portable communication devices
and the current trend towards ubiquitous computing
have led to the development of a mobile distributed en-
vironment. In this setting, hosts are allowed to roam
around freely while retaining network connectivity to
the system over wireless links, via points of attach-
ment called mobility agents. Varying location and tight
resource constraints on mobile hosts (MHs), and low

Manuscript received November 5, 1999.
Manuscript revised July 4, 2000.

†The authors are with the Department of Computer Sci-
ence and Information Engineering, National Chiaotung Uni-
versity, Taiwan.

††The author is with the Department of Computer Sci-
ence and Information Engineering, Chunghua University,
Hsinchu, Taiwan.

bandwidth of wireless connections imply that existing
causal ordering algorithms for static hosts are not vi-
able for a mobile environment [1].

The basic idea behind current solutions to causal
ordering is that each message is sent with control infor-
mation about causally preceding messages. A recipient
process can thus determine to defer a message from de-
livery unless all its causally prior messages have been
delivered. Such control information, message space
overhead, is essentially a form of an integered-vector. In
a mobile environment, causal multicast can be achieved
by multiple unicasts, using point-to-point protocols in
[3], [24]. These protocols demand message space over-
head of O(n2

a) to O(n2
h) integers, where na and nh,

respectively, denote the number of mobility agents and
MHs in the system. Prakash et al. proposed an algo-
rithm that allows messages directed to an arbitrary set
of mobile hosts [19]. This algorithm is highly flexible,
but the incurred control information might still amount
to O(n2

h) integers.
To scale up a system, we can organize mobile hosts

and mobility agents into a client-server model, MHs be-
ing clients and agents as servers. Ordered message de-
livery results from serializing messages by hosts within
the administrative realm of each agent and using the
agents to perform a causal ordering protocol. As a
consequence, the amount of control information sent
with messages becomes independent of the size of grow-
ing multicast groups. Here an issue of concern is how
mobility agents are involved in the given protocol so
that the vector structure employed need not adapt upon
host migrations. In words, the problem is whether all
agents, or only those at MHs’ current service, should
be involved in the protocol execution. In the former
case, the vector structure used in the protocol remains
unchanged wherever hosts roam, and the hosts’ loca-
tions need not be tracked. However, each message with
O(na) space overhead will be sent to all na agents,
which is unsuitable for Internet-wide deployment. An
example of such schemes can be found in [16].

In contrast, if only agents that currently serve MHs
are involved, the resulting causal multicast protocol
would be more scalable. An additional mechanism is re-
quired to maintain the serving agents (called host view
in [2]) which may change upon host movements. Also,
the semantics of group membership (the set of destina-

2066
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.12 DECEMBER 2000

tions of a multicast message) must be carefully defined
when multicast messages and host-view update mes-
sages are interlaced, wherein synchronizations need to
apply. If MHs’ local agents are used to maintain causal
ordering, then host view can change frequently as hosts
migrate, at the expense of costly synchronizations.

As a remedy, this paper presents a causal multicast
protocol that updates host view only when some host
joins or leaves a given group, regardless of the partici-
pant whereabouts. Hence the number of host-view up-
dates is minimized. For scalability, our protocol follows
a client-server model. Multicast messages to and from
a mobile host are always relayed through a fixed agent
which maintains host view. In our architecture, each
message tagged with O(na) integers of control informa-
tion is sent to the agents only specified in host view.
A recipient agent then removes the tagged information
from each such deliverable message and forwards the
resultant part to the MHs in its service list. Our pro-
tocol imposes a light load on mobile hosts and wireless
links, and could thus by far outperform the existing
schemes when only few mobility agents act as servers.
Although we may need to redirect messages for a host
that is away from its serving agent, this side effect of
non-optimal routing is shown to be insignificant to our
overall system performance (See Sect. 6.)

The rest of this paper is structured as follows. The
system model is introduced in the next section. Section
3 formally presents our protocol and its correctness is
proved in Sect. 4. Section 5 summarizes the complexity
results of our protocol, in comparison with those of the
related work. Further quantitative analyses among the
subject protocols are conducted in Sect. 6. Lastly we
conclude this paper.

2. Preliminaries

2.1 System Model and Definitions

As illustrated in Fig. 1, we consider a setting that con-
sists of mobile and stationary units interconnected by
a static network. The stationary units refer to fixed
hosts or mobility agents whose locations do not change
over time. A mobility agent, or agent for short, acts as
a point of attachment to the network for mobile hosts
through wireless links. An MH may be disconnected
from the system and reconnected later to reduce power

Fig. 1 The model of a mobile distributed system.

consumptions, or due to movements outside any cover-
age area of wireless media. Along with migration, an
MH alters the attached agent and initiates a handoff
procedure as follows. When an MH h changes from
agent ai to agent aj , h registers at aj with the iden-
tity of the previous agent, namely ai. The new agent
aj then informs ai of h’s switch to aj . In response, ai

will send the state information associated with h to aj ,
upon which the handoff procedure terminates.

The logical channel between any two sites in the
system (static or wireless network part) is assumed to
be reliable and FIFO, i.e., any message sent by a pro-
cess is eventually received by non-faulty destination
processes. This could result from using the underly-
ing communication primitives introduced in [17].

We assume that a single process runs on a single
site. An atomic action that changes the state of a pro-
cess is defined as an event. The execution of a process
is modeled by three types of events, namely message
send, message receive, and internal events. An internal
event, representing a local computation at the process,
is unrelated to causal order of messages and is thus
not considered. Without mechanisms to perfectly syn-
chronize local clocks in hosts, the temporal ordering of
events occurring in hosts can be a partial relation only.
One of such partial relations is the happened-before re-
lation (→) defined by Lamport [15] as follows. For any
two events e and e′, e → e′ is true if

- e and e′ occur in the same process, and e occurred
before e′,
- e is the sending of message m and e′ is the receiving
of m, or
- There exists an event e′′ such that e→e′′ and e′′→e′.

In an asynchronous system, messages usually ar-
rive at a process out of causal order. A causal ordering
protocol is added to regulate the order of message de-
livery to the process. For clarity, the term “receive” is
distinguished from “deliver”: a message is said to be re-
ceived by a process when it arrives at that site, whereas
a message is said to be delivered by a site when it is
formally accepted by the associated application. Let
send(m) and deliv(m) denote the sending event and
the delivering event of message m, respectively. Causal
ordering of message delivery is obeyed if, for any two
messages m and m′ meant for the same destination,
send(m)→send(m′) implies deliv(m)→ deliv(m′).

2.2 Rated Work

There has been substantial research on causal message
ordering. For insightful study and formulation, we re-
fer the reader to [6], [14]. Conventional solutions are
centralized or distributed. In centralized schemes [13],
[21], a dedicated coordinator serializes all messages ex-
changed in the system, essentially resulting in a total

CHI et al.: A MOBILE CAUSAL MULTICAST PROTOCOL
2067

message ordering. These scheme can significantly re-
strict the concurrency in distributed computations, and
create a performance bottleneck at the coordinator. On
the other hand, in distributed approaches [4], [5], [14],
[20], [22], each process can send messages to any others
without the intervention of a coordinator. To realize, a
common technique that exploits vector clocks [10], [18]
or similar variant [9] is deployed: each message is sent
with a vector of integers. Such a vector indicates how
many messages, and from which senders, causally pre-
cede this message. On receipt of the message, a process
can thus determine how many messages it must deliver
beforehand. Given nh mobile hosts in the system, a
vector of O(n2

h) integers is shown to be generally neces-
sary for systemwide causal message ordering [14]. This
overhead will become intolerable when nh grows large,
limiting a system scalability.

3. The Protocol

We develop a causal multicast protocol in a client-server
style. Within the administrative realm of an agent, the
agent operates as the local coordinator to serialize mul-
ticast messages by MHs. Among agents, a mechanism
inspired from the ISIS cbcast algorithm by Birman et
al. [4], [5] applies. Our protocol is hybrid in the sense
that it is a compromise between the centralized scheme
and the distributed approach.

3.1 Protocol Overview

We now explain the basic ideas underlying our proposal
and how causal message ordering is maintained in our
architecture. Consider first a system consisting of one
agent and several mobile hosts, as depicted in Fig. 2 (a).
Under a single agent ai, we specify that messages for
a group are relayed to ai which then forwards them in
sequence to each intended member. Given send(m)→
send(m′) in the system, ai will deliver m and then m′.
Since the communication channel is FIFO, the property
deliv(m)→ deliv(m′) is preserved in each destination
host.

Figure 2 (b) demonstrates a case of multiple
agents. Assume that messages m and m′ are issued by
MHs via two distinct agents. Since we specify mobility
agents to maintain causal message ordering on behalf
of mobile hosts, if send(m)→ send(m′) is present in

Fig. 2 Illustrating the basic ideas of the proposed protocol.

the system, then this relation is respected in agent per-
spectives (see Lemma 1 for formal proof.) Furthermore,
causal message ordering is enforced at agent level, so
each agent will deliver m before delivering m′. Because
an agent maintains a FIFO channel with its MHs, the
same order of message delivery is honored at each des-
tination host. Note that, in our proposal, an MH al-
ways initiates causal multicasts via its serving agent, re-
gardless of its current location. As a consequence, mo-
bile hosts appear stationary, and thus a normal causal
ordering algorithm can apply as if it were in a con-
ventional distributed system. This technique of hiding
host mobility simplifies the development of our proto-
col. Hence deliv(m) → deliv(m′) is preserved every-
where in the system, in the event of host migrations.

3.2 Data Structures

The data structures introduced below are all main-
tained at mobility agents. An MH that applies for a
group computation causes its local agent to join the
group. Such an agent where a local MH first applies
for group computation is called the serving agent for
the MH. The set of serving agents is denoted as H.
The information about H is distributed only among the
members in H (by some means proposed in Appendix).
A serving agent keeps track of each MH h in its service,
using a variable loch to record the identity of h’s cur-
rently attached agent. Notice that loch is defined only
in h’s serving agent. It is important to emphasize here
that a mobile host’s serving agent is not necessarily its
local agent.

Each serving agent ai maintains the following ad-
ditional data structures:

• a set Ag of serving agents in each multicast group
g where ai participates.

• a vector V Tai of integers, where V Tai [aj] denotes
the number of multicast messages known by ai that
agent aj has initiated.

• a vector V Th of integers for each MH h served,
where V Th[aj] counts multicasts by aj to h.

• an integer SEQh per MH h served, indicating the
number of multicast messages that h sent and have
been received by ai.

A serving agent will check whether to deliver incoming
messages for mobile hosts in the service list. A deliver-
able message is copied into a FIFO queue DLV Qh for
each applicable MH h; messages in DLV Qh are trans-
mitted to h in sequence. The transmission is either over
a local wireless link or to a remote agent, depending on
the value of loch.

Our protocol mainly consists of two modules: main
module and handoff module. The main module, acti-
vated by a message-send operation on a host, enforces
causal ordering of multicast message delivery among
agents and eventually among the participant MHs. The

2068
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.12 DECEMBER 2000

handoff module is performed whenever an MH alters its
attached agent.

3.3 Main Module

Each mobile host issues multicast messages by always
sending them (possibly via the local mobility agent) to
its serving agent. Upon receiving a message m from
an MH h for group g, the serving agent ah acknowl-
edges h. MH h can henceforth depart from the sending
process. Meanwhile ah initiates an agent-level causal
multicast as follows. First, increment both SEQh and
V Tah

[ah] by one, and then set V Th[ah] to V Tah
[ah].

Secondly send messages (V Th, g,m) and V Th to all the
agents in Ag and in H − Ag, respectively. This ef-
fectively propagates the delivery information to other
groups so that causal message ordering among multi-
groups is preserved. Thirdly, forward message m to the
MHs served by ah, in the same way as processing a
deliverable message, to be described below.

Note that each multicast message sent by an MH
h is tagged with V Th, rather than V Tah

, since V Th

expresses the correct message delivery information with
respect to h. Essentially V Th counts the number of
messages, on a per-sending-agent basis, that causally
precede m.

An agent ai, on receiving a message (V Tm, g,m)
from some other agent aj , delays m until

V Tm[aj] = V Tai [aj] + 1, and (1)
V Tai [ak] ≥ V Tm[ak], ∀ak ∈ H− {aj} (2)

The first condition ensures that ai has received all the
messages from aj that precedem, while the second con-
dition ensures that ai has received all the messages
received by aj before sending m. If the above two
conditions hold, m is deliverable at ai (because there
has been no causally prior message that should be de-
livered.) Agent ai subsequently updates V Tai [aj] to
V Tm[aj] and proceeds the MH-level delivery: for each
MH h served by ai, enqueue m in DLV Qh. A thread
may be allocated to transmit messages in DLV Qh to
h in FIFO order. After MH h acknowledges the receipt
of m, ai updates V Th[aj] to V Tm[aj].

As noted, a timestamp associated with each mul-
ticast is sent to the agents in H−Ag. A recipient agent
handles such a control message as if it were a normal
message to be delivered, except that the MH-level de-
livery is skipped. The control message is used to notify
these agents of the existence of the multicast message,
which is essential for our protocol to operate in a multi-
group environment.

A formal description of the main module is given
in Fig. 3.

3.4 Handoff Module

A handoff procedure takes place whenever an MH dis-

Let ah be the serving agent of MH h.

1. On receiving a message m from h for group g, agent ah

executes the steps below.

a. SEQh := SEQh + 1.
b. Set both V Th[ah] and V Tah [ah] to V Tah [ah] + 1.
c. Send (V Th, g, m) and V Th to all the agents in Ag and

H− Ag, respectively.
d. Perform Step 2c. /* m is deliverable at ah, so deliver

m to the MHs served by ah */

2. On receipt of a message m, timestamped with V Tm, from
agent aj for group g, agent ai �= aj performs the following.

a. Delay message m until it is deliverable at ai.
b. V Tai [aj] := V Tm[aj].
c. For each MH h served by ai, do the following.

i. Insert m to DLV Qh.
ii. After receiving an ack for m from h, update

V Th[aj] to V Tm[aj].

d. If any delayed message becomes deliverable, goto
Step 2b.

3. On receiving a message m with timestamp only, ai performs
Steps 2a and 2b. /* the message contains null data to be
delivered */

Fig. 3 Main module.

Let an MH h hand off from ai to aj .

1. Steps executed by agent aj .

a. On receiving register(h, ai) from h, if loch is unde-
fined, then relay the message to ai; otherwise perform
Steps 3(a)i and 3(a)ii.

b. On receiving reg ack(h, SEQh, aj) from ah, conduct
the following actions.

i. Send reg ack(SEQh) to h.
ii. Record ah as h’s serving agent.

2. Steps executed by ai. /* the previous agent of h */

a. On receiving register(h, ai) from aj , if loch is unde-
fined, then relay this message to h’s serving agent;
otherwise perform Steps 3(a)i and 3(a)ii.

b. On receiving reg ack(h, aj), delete the relevant data
structures for MH h, if loch is undefined.

3. Steps executed by ah. /* h’s serving agent */

a. On receiving register(h, ai) from aj , do the following.

i. Set loch to aj . /* ai was stored previously */
ii. Send reg ack(h, SEQh, aj) to both ai and aj .

Fig. 4 Handoff module.

covers its movement to a new local agent. Subsequent
interactions follow among the previous agent, the serv-
ing agent, and the new agent of the MH, as described
in Fig. 4. (The serving agent identity will be available
by contacting the previous agent.) An important task
to be performed is that the serving agent updates its
knowledge about the MH’s new location.

CHI et al.: A MOBILE CAUSAL MULTICAST PROTOCOL
2069

Let an MH h move and alter its attached agent
from ai to aj . To begin with the handoff procedure,
MH h issues a registration message register(h, ai) to
the new local agent. If the variable loch is undefined
in aj , then aj is not h’s serving agent, so the regis-
tration message is transacted with ai. The previous
agent ai of h, after receiving the registration message,
also checks whether ai itself is h’s serving agent, and
will pass this message to the intended serving agent
(if necessary.) Suppose that ah is the serving agent of
h. Agent ah updates loch to aj, and then sends mes-
sage reg ack(h, SEQh, aj) to h’s previous agent and
new agent parallely. This acknowledgment causes ai to
revoke the obsolete information for h properly, and aj

to inform h of SEQh, upon which the handoff proce-
dure terminates. From SEQh, MH h can decide which
message should be retransmitted next.

It can be seen that along with an MH migration, its
serving agent identity will be propagated to the MH’s
currently attached agent.

3.5 Handling Disconnections and Reconnections

To reduce the battery power consumption, an MH may
disconnect itself from the system volunteerly. To be-
gin, an MH, say h, sends a disconnect(h) message to
its local agent which then informs h’s serving agent, ah,
of the disconnection. Within ah, all the multicast mes-
sages meant for h are processed as if h were still active
in the group, except that message delivery to the MH is
suppressed. When h is reconnected to the system later
by sending a reconnect(h) message to ah, messages in
DLV Qh is delivered to h. If h changes the attached
agent prior to the reconnection, a handoff procedure
must have been performed before h is able to receive or
send any multicast messages.

To avoid an indefinite disconnection of an MH, a
serving agent runs a timer for each MH served. This
can be used to detect the MHs that were not recon-
nected to the system in time, or that have not re-
sponded to the MH-level message delivery for a long
time. When the timer expires, the MH is treated as
having departed from the system and the serving agent
informs the group administrator of the MH’s departure.
(See Appendix.) Then flushing follows, in the same way
as the MH requests to leave the interested group(s).

3.6 Remarks

The vector timestamped on each message in our proto-
col is |H| integers; only |H| of the na mobility agents
in the system are used to maintain causal message or-
dering for MHs. We conclude that, taking into account
the number of destination agents of a message, totally
our protocol uses |H|2 integers to convey control infor-
mation during a multicast.

In our protocol, the delivery information for differ-

Fig. 5 An example of duplicated message delivery.

ent groups is aggregated within V Tai in each serving
agent ai. This may lead to a situation where two mes-
sages are initiated concurrently for two distinct groups,
but delayed at a recipient agent because one of the
messages is misinterpreted to be causally preceding the
other one. The concurrency within distributed appli-
cations can be thus restricted. Fortunately, Alagar and
Venkatesan showed that such delay is not serious [3];
the disadvantage of unnecessary delay will be cancelled
out by the benefits gained from the reduction in mes-
sage space overhead. Indeed, there is a tradeoff between
message overhead and unnecessary delay.

We use a message redirection technique to fix the
number of participant agents in group communication.
A message redirection takes place when a sending MH
or a destination MH is not attached to its serving agent
locally, resulting in a longer communication latency.
However this does not impose a significant flaw to our
scheme, since, as shown in considerable research like [8],
MHs have locality in their movements, that is, each MH
is likely to remain attached to its serving agent.

In our protocol, duplicated multicast messages can
be sent to some mobility agents, as illustrated in Fig. 5.
Suppose that MHs h1 and h2 in a group are served by
agents a1 and a2, respectively. When there is a multi-
cast message meant for the group, the agent a3 that are
attached by both MHs will receive two identical copies
of the message, each delivered from a1 and a2 sepa-
rately. The duplication of messages does not impair
the correctness of our protocol and can be avoided by
using a scheme presented in [7].

4. Correctness Proof

The correctness of the proposed protocol is proved in
stages. We will show that causality is never violated
(safety property) and then demonstrate that our pro-
tocol never defers a message indefinitely (liveness prop-
erty). The reasoning about the proof here is mainly
adapted from [5].

Let mh send(m) be the sending event of message
m by a mobile host. And, ma send(m) denotes the
event in an agent corresponding to the sending of mes-
sage m (sent by the MH) to another agent.

Lemma 1: Letm andm′ be two messages directed to
a mobile host. If mh send(m) → mh send(m′), then
ma send(m)→ ma send(m′).

Proof: First consider the case in which m and m′ are

2070
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.12 DECEMBER 2000

sent by the same MH. The result is obvious because the
logical channel between the MH and its serving agent
is FIFO (regardless of the MH’s movements); message
m will have been sent by the serving agent before m′

is. Thus ma send(m)→ ma send(m′).
Now assume that messages m and m′ are sent

by two different mobile hosts. Since mh send(m) →
mh send(m′), there exists a sequence of events
such that mh send(m) → ma send(m) → · · · →
mh send(m′). Because mh send(m′) → ma send(m′),
it follows that ma send(m)→ ma send(m′). ✷

Theorem 1 (safety property): Suppose messages m
and m′ such that mh send(m) → mh send(m′) are
destined for an MH h. As far as h is concerned, m′

cannot be delivered unless m has been delivered.

Proof: From Lemma 1, ma send(m)→ ma send(m′).
Consider the actions of an agent ai that receives the two
messages. There are two possible cases to be addressed.

If m and m′ are both initiated by the same agent,
say aj , then V Tm[aj] < V Tm′ [aj]. From Step 2b of our
protocol, if m has not been delivered at ai, it follows
that V Tai [aj] < V Tm[aj]. Hence V Tai [aj] �= V Tm′ [aj]−
1 and m′ is deferred from delivery by condition (1) of
our protocol.

Now consider the case in which m and m′ are ini-
tiated by two different agents. We next show that
m′ cannot be delivered before m by induction on
the messages delivered at ai. From the definition
of the happened-before relation, it can be shown that
send(m) → send(m′) implies V Tm < V Tm′ . In par-
ticular, considering the initiator aj of m, we have the
relation

V Tm[aj] ≤ V Tm′ [aj]. (3)

Base step. The first message delivered at ai cannot
be m′. If no messages have been delivered at ai, then
V Tai [ak] = 0, ∀ak. However, V Tm[aj] > 0 (because m
is initiated by aj), hence V Tm′ [aj] > 0. Message m′

cannot be delivered at ai due to condition (2).
Inductive step. Suppose that n messages have been
delivered at ai and none of them is a message m′′ such
that send(m) → send(m′′). If m has not yet been
delivered, then from Lemma 1, we have the relation

V Tai [aj] < V Tm[aj]. (4)

From relations 3 and 4, it follows that V Tai [aj] <
V Tm′ [aj]. Because m′ does not satisfy condition (2),
it cannot be the (n+1)st message to be delivered at ai.

The above two cases show that m must be deliv-
ered at ai before m′ is. Since the channel between h
and its serving agent is FIFO,m′ cannot be delivered to
h unless m has been delivered. In other words, causal
message ordering among MHs is preserved. ✷

Theorem 2 (liveness property): A message sent by a
mobile host is eventually delivered to its destination.

Proof: Suppose there exists a multicast message m
sent by an MH that can never be delivered. Let ah

be the serving agent of the MH and ai be a recipient
agent that defers m indefinitely. For such an agent ai,
the deferring arises from

V Tm[ah] �= V Tai [ah] + 1, or
∃ak �= ah, V Tm[ak] > V Tai [ak].

In the first case, V Tm[ah] �= V Tai [ah] + 1 indicates
that m is not the next message to be delivered from
ah to ai. Since all messages are sent to all the partic-
ipant agents and the communication channels are re-
liable, thus there must be a message m′ initiated by
ah that ai has received but not yet delivered and m′

is the next message from ah to be delivered. In other
words, V Tm′ [ah] = V Tai [ah] + 1. If m′ is also delayed,
it should be under the case below.

Next consider the case where ∃ak �= ah, V Tm[ak] >
V Tai [ak]. If V Tm[k] = x, the xth message m′ initiated
by ak should have been sent beforem was sent. Message
m′ either has not yet been received or has been received
but deferred by ai. Since the communication channels
provide lossless message transmission, m′ is received
eventually by ai. The reasoning that was applied to m
is also applicable to m′. This leads to a contradiction,
because the number of messages that must be delivered
before m is finite.

The above shows that a message is never deferred
at any agent indefinitely. Each deliverable message is
transmitted to the destination MHs from their respec-
tive serving agents, although some of the MHs may be
executing handoff procedures. The handoff procedures
eventually terminate and these MHs will be delivered
messages subsequently. Hence the proof. ✷

5. Complexity Results

Table 1 shows the complexity results of the existing
causal ordering protocols for mobile hosts, where k is
the number of logical agents per agent [3]. For ab-
breviation we denote the Li-Huang algorithm [16], the
Prakash-Raynal-Singhal algorithm [19], and the Yen-
Huang-Hwang algorithm [24] by LH, PRS, and YHH,
respectively. In [3], Alagar and Venkatesan proposed
three algorithms which in sequence are denoted by AV-
1, AV-2 and AV-3, respectively. Note that YHH and
the algorithms by Alagar and Venkatesan are mainly
designed for point-to-point communication paradigm.

Communication overhead denotes the number of
integers of a vector timestamp when sending a message
in a causal ordering protocol. This dimension, reflect-
ing the additional bandwidth used by the control in-
formation per message, is determined by two factors:
the vector size on each message and the number of des-
tination sites of such a timestamped message. These
two factors are used to label the second and the third

CHI et al.: A MOBILE CAUSAL MULTICAST PROTOCOL
2071

Table 1 Complexity results. (Assume nh � na [2], where nh and na, respectively,
denote the number of MHs and mobility agents in the system.)

Protocol Communication overhead Storage overhead Handoff complexity

Message space overhead No. of destination sites No. of messages Message size

AV-1 O(nh
2) O(1) O(nh

2) O(1) O(nh
2)

AV-2 O(na
2) O(1) O(1) O(na) O(1)

AV-3 O(na
2 × k2) O(1) O(na

2 × k2) O(na × k) O(1)
YHH O(na × nh) O(1) O(na × nh) O(1) O(na × nh)
LH O(na) Θ(na) Θ(na) O(1) Θ(na)

PRS O(nh
2) O(nh) O(nh

2) O(1) O(nh
2)

Ours O(na) O(na) O(na) O(1) O(1)

columns, respectively, in Table 1. As a note, in point-
to-point protocols each message is intended for a single
site, whereas multicast protocols LH, PRS, and ours
allow a message to be destined for multiple sites.

To be precise, in our protocol, the message space
overhead is |H| and each timestamped message is meant
for |H| agents. Here a formal statement can be made
with |H| in place of O(min(nh, na)). From Table 1, it
can be seen that our protocol outperforms the other
counterparts in terms of communication overhead.

Storage overhead refers to the size of the data
structures that an agent maintains for MHs to execute a
given protocol. As described in Sect. 3.2, in our scheme,
a serving agent maintains delivery information for MHs,
at the expense of O(min(nh, na)) integers.

Handoff complexity indicates the amount of infor-
mation exchanged between agents during a handoff pro-
cedure. In our protocol, two messages containing sev-
eral scalars is transferred between two agents, so O(1)
messages of size O(1) are needed during the handoff
procedure. This concludes that our protocol also out-
performs the other counterparts regarding handoff com-
plexity.

6. Performance Analysis

This section evaluates causal ordering protocols in
terms of the average communication latency over the
static network. This metrics mainly consists of message
propagation time and the delayed time of the message
(which is deferred from delivery at the recipient agent.)

6.1 Assumptions

The assumptions used in this performance study are
listed below.

A1. Message propagation time between any two mo-
bility agents is exponentially distributed with the
same probability density function f(x) = βe−βx.

A2. Message propagation time is approximately pro-
portional to the amount of the control information
conveyed. Hence protocols with different message
overheads will yield distinct β’s.

A3. Compared with message propagation time, both
message transmission latency and protocol pro-
cessing delay are insignificant.

A4. As a message is delivered at an agent, the agent
initiates a new causal multicast without delay.

Assumptions A1, A2, and A3 suggest a relation be-
tween the averaged message propagation time and the
vector timestamp size of messages. That is, 1

β ≈ (mes-
sage space overhead) × (message propagation delay per
integer).

6.2 Analytical Model

Consider a sequence σ of messages m(k),m(k−1),
· · · ,m(0) satisfying: (1) send(m(k))→ send(m(k−1))→
· · · → send(m(0)), and (2) for any two consecutive mes-
sages m(i) and m(i−1) in σ, there exists no other mes-
sage m′ such that m(i) → m′ and m′ → m(i−1). In
essence, σ represents a set of sending events over which
the happened-before relation is defined with the smallest
transitivity. Here m(k) is said to be the kth predeces-
sor for m(0). Further, we say that σ is terminated with
length k+1, denoted by |σ|, if m(k) has no undelivered
predecessor.

Let X(i) be the propagation time for message m(i).
The sum Yk+1 = X(0) +X(1) + · · ·+X(k) is known to
be Erlang distributed with probability density function
g(y) = β(βy)k

k! e−βy. The probability that a message, say
m(0), waits for the arrival of its kth predecessor is thus

P [X(k) > X(0) +X(1) + · · ·+X(k)]
= P [X(k) > Yk+1]

=
∫ ∞

y=0

∫ ∞

x=y

f(x)g(y)dxdy

=
∫ ∞

y=0

[−e−βx]
∣∣∣∞
x=y

β(βy)k

k!
e−βydy

=
∫ ∞

y=0

e−βy β(βy)
k

k!
e−βydy

=
1

2k+1
. (5)

Notice that Eq. (5) above also indicates the probability

2072
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.12 DECEMBER 2000

that |σ| exceeds k. Therefore we have

P [|σ| = k + 1] =
1
2k

− 1
2k+1

=
1

2k+1
. (6)

At a destination site, message m(i−1) may arrive
prior to its immediate predecessor m(i) by Wi,i−1 time
units. From assumption A1, the message propagation
time beingmemoryless, it can be shown that, for w ≥ 0,
P [X(k) ≥ Yk+1 + w|X(k) > Yk+1] = P [X(k) ≥ w] =
e−βw. Namely P [Wi,i−1 ≥ w|Wi,i−1 ≥ 0] = e−βw.
When k = 1, this equation can be used to derive the
expected waiting time of a message for its immediate
predecessor, given that the predecessor is yet absent, as
follows.∫ ∞

0

P [X(1) − Y2 ≥ w|X(1) > Y2]dw =
1
β

= E[Wi,i−1|Wi,i−1 > 0]. (7)

If |σ| = k+1, the delayed time for messagem(0) can
be expressed as the sumWk,k−1+Wk−1,k−2+· · ·+W1,0,
where Wi,i−1 > 0 (∀i > 0). SinceWi,i−1’s are identical
independently distributed, for a message we have the
conditional expectation

E[delayed time
∣∣∣|σ| = k + 1]

=
k∑

i=1

E[Wi,i−1|Wi,i−1 > 0]

=
k

β
. (8)

In combination with Eq.(6), it follows that

E[delayed time]

=
∞∑

k=1

E[deferred time
∣∣∣|σ| = k + 1]P [|σ| = k + 1]

=
∞∑

k=1

k

β
· 1
2k+1

=
3
β
.

To summarize, the average communication latency
of previous protocols can be expressed as a form of
1
β +

3
β . In contrast, our scheme would demand a la-

tency of p(1
β) +

1
β +

3
β + p(1

β), where p denotes the
probability that an MH is away from its serving agent.
The first term and the last term in the foregoing expres-
sion, respectively, represent the extra time to redirect
a message to and from an MH at some remote site.

6.3 Performance Results

The network parameters used in our evaluation are in-
stantiated as follows. na is 100, and p is 0.3 [8]. As-
sume that, on average, our message space overhead is

(1−p)×min(na, nh) integers (this assumption could be
justified when hosts move randomly.) In addition, the
average message space overhead in the PRS algorithm
is assumed to be 0.05n2

h integers.
We can derive the ratio of communication la-

tency of our scheme to that of the PRS protocol as
(2p+ 4)((1− p)×min(na, nh))/(4× 0.05n2

h). Likewise
the ratio of our protocol to that of the LH algorithm
is (2p + 4)((1 − p) × min(na, nh))/(4na). Given that
nh is 20, these two ratios result in 80% and 16.1%,
respectively. This corresponds to a case where only
small groups of mobile hosts are present in the system.
When nh is 120, these two ratios are 11.2% and 80.5%,
respectively. The performance of our protocol relative
to the counterparts under different parameter settings
can also be obtained similarly. The performance results
show that our scheme is promising.

7. Conclusion

This paper presented a scalable protocol for causally or-
dered message delivery among a group of mobile hosts.
Our protocol appends to messages the delivery infor-
mation about the serving agents only. The resulting
communication overhead can be thus kept small. An
inevitable drawback to our scheme is unnecessary de-
ferring of messages, as discussed in Sect. 3.6. In other
words, the proposed protocol achieves better scalabil-
ity, while at the expense of longer delay in delivering
messages. However, some researchers showed that this
drawback will be cancelled out by the benefits gained
from the reduction in message space overhead.

In addition, our protocol deals with mobile host
disconnections and reconnections, and tolerates mo-
bile host stop-failures. A stop-failure could be used to
model an MH moving outside any coverage area of wire-
less media. Under this circumstance, the MH is treated
as having been terminated. The correctness of the pro-
posed protocol was proved in this paper. Our protocol
outperforms the counterparts in terms of communica-
tion overhead and handoff complexity. In Sect. 6, we
developed an analytical model to evaluate causal order-
ing protocols. The performance results demonstrated
that our proposal is promising.

Acknowledgments

We thank the anonymous referees for their valuable
comments. This work has been supported by the Na-
tional Science Council, ROC, under grants NSC88-
2213-E009-081 and NSC89-2213-E-009-028, and by the
MOE Program of E. Research under grant 89-E-FA04-
1-4.

References

[1] A. Acharya, “Structuring distributed algorithms and ser-
vices for networks with mobile hosts,” Ph.D. Thesis, Rut-

CHI et al.: A MOBILE CAUSAL MULTICAST PROTOCOL
2073

gers, The State University of New Jersey, May 1995.
[2] A. Acharya and B.R. Badrinath, “A framework for deliv-

ering multicast messages in networks with mobile hosts,”
ACM/Baltzer Mobile Networks and Applications, vol.1,
no.2, pp.199–219, 1996.

[3] S. Alagar and S. Venkatesan, “Causal ordering in mobile
distributed systems,” IEEE Trans. Comput., vol.46, no.4,
pp.353–361, 1997.

[4] K.P. Birman and R. van Renesse, Reliable Distributed
Computing with the Isis Toolkit, IEEE Computer Society
Press, 1994.

[5] K.P. Birman, Building Secure and Reliable Network Appli-
cations, Manning Publications Co., 1996.

[6] B. Charron-Bost, G. Tel, and F. Mattern, “Synchronous,
asynchronous, and causally ordered communication,” Dis-
tributed Comp., vol.9, no.4, pp.173–191, 1996.

[7] V. Chikarmane, C.L. Williamson, R.B. Bunt, and W.L.
Mackrell, “Multicast support for mobile hosts using mobile
IP: Design issues and proposed architecture,” ACM/Baltzer
Mobile Networking and Applications, vol.3, no.4, pp.365–
379, Jan. 1999.

[8] G. Cho and L.F. Marshall, “An efficient location and rout-
ing scheme for mobile computing environment,” IEEE J.
Selected Areas in Commun., vol.13, no.5, pp.868–879, 1995.

[9] D. Dolev and D. Malki, “The transis approach to high avail-
ability cluster communication,” Commun. ACM, vol.39,
no.4, pp.64–70, April 1996.

[10] J. Fidge, “Timestamps in message-passing systems that
preserve the partial ordering,” Proc. 11th Australian Com-
put. Science Conf., pp.56–66, Feb. 1988.

[11] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and
related problems,” Distributed Systems, 2nd ed., ed. S.
Mullender, pp.97–145, ACM Press, 1993.

[12] I.H. Jang, J.W. Cho, and H. Yoon, “An efficient causal
multicast algorithm for distributed system,” IEICE Trans.
Inf. & Syst., vol.E81-D, no.1, pp.27–36, Jan. 1998.

[13] M.F. Kaashoek, A.S. Tanenbaum, S.F. Hummel, and H.E.
Bal, “An efficient reliable broadcast protocol,” Oper. Syst.
Rev., vol.23, no.4, pp.5–19, 1989.

[14] A.D. Kshemkalyani and M. Singhal, “Necessary and suffi-
cient conditions on information for causal message ordering
and their optimal implementation,” Distributed Comput-
ing, vol.11, no.2, pp.91–111, 1998.

[15] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol.21, no.7, pp.538–
565, 1978.

[16] C.P. Li and T.L. Huang, “A mobile-support-station-based
causal multicast algorithm in mobile computing environ-
ment,” Proc. 11th Int’l Conf. Info. Networking, vol.2,
pp.9C-1.1-9C-1.10, Taipei, Taiwan, Jan. 1997.

[17] K. Obraczka, “Multicast transport protocols: A survey and
taxonomy,” IEEE Commun. Mag., vol.36, no.1, pp.94–102,
1998.

[18] F. Mattern, “Virtual time and global states of distributed
systems,” Proc. Int’l Wksp. Parallel and Distributed Algo-
rithms, pp.215–226, North-Holland, 1989.

[19] R. Prakash, M. Raynal, and M. Singhal, “An adaptive
causal ordering algorithm suited to mobile computing envi-
ronments,” J. Parallel and Distributed Computing, vol.41,
no.2, pp.190–204, March 1997.

[20] M. Raynal, A. Schiper, and S. Toueg, “Causal ordering ab-
straction and a simple way to implement it,” Inform. Pro-
cess. Lett., vol.39, no.6, pp.343–350, 1991.

[21] M. Reiter and L. Gong, “Securing causal and relationships
in distributed systems,” The Comput. Journal, vol.38, no.8,
pp.633–642, 1996.

[22] A. Schiper, J. Eggli, and A. Sandoz, “A new algorithm

to implement causal ordering,” Proc. 3rd Int’l Wksp. Dis-
tributed Algorithms, 1989. Also published in Lecture Notes
in Computer Science, p.392.

[23] L.H. Yen and T.L. Huang, “Resetting vector clocks in dis-
tributed systems,” J. Parallel and Distributed Computing,
vol.43, pp.15–20, 1997.

[24] L.H. Yen, T.L. Huang, and S.Y. Hwang, “A protocol for
causally ordered message delivery in mobile computing sys-
tems,” ACM/Baltzer Mobile Networks and Applications,
vol.2, no.4, pp.365–372, 1997.

Appendix: Group Management

Adding or dropping a host from a group in the middle
of message exchanges among the group members re-
quires a form of synchronizations [4, pp.109–132]. The
messages that were sent by each participant in an origi-
nal group, before the group changes, need to be flushed
to their destinations. Hence we say that a flushing is
initiated within x, given a group x of sites. Flushing
can be dealt with by efficient solutions, e.g., the scheme
by Yen and Huang [23]. Such a proposal is used as a
building block to manage groups in our protocol.

Assume that there is an administrator site which
maintains the information about H and Ag per multi-
cast group, and authenticates the hosts that apply for
participation in a group. The administrator is known
beforehand to the interested hosts. To join group g,
MH h sends a join-group request via the current agent,
say ah, to the administrator for permission. If h is
admitted, the administrator then conducts the actions
shown in Fig.A· 1. In response to the acknowledgment
from the administrator, ah will execute some necessary
steps such as depositing of the information of H and
Ag, initializing V Th to V Tah

, allocating storage space
for DLV Qh, and then acknowledging h. At this point,

Let ah be the local agent of an MH h that requests to join mul-
ticast group g.

1. If ah ∈ H, then do the following.

a. If ah /∈ Ag, then

i. Initiate a flushing within Ag.
ii. Inform all the agents in Ag of a directive saying

“add ah to Ag”.

b. Acknowledge ah for h is admitted.

2. If ah /∈ H, then perform the steps below.

a. Initiate a flushing within H.
b. Inform all the agents in Ag of a directive saying “add

ah to both H and Ag”, and all the agents in H− Ag

of a directive saying “add ah to H”.
c. Send the information about H and Ag to ah as an

acknowledgment.
d. Record the binding between ah and h.

Fig.A· 1 Actions executed by the administrator upon receiv-
ing a join-group request.

2074
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.12 DECEMBER 2000

ah start as a serving agent for h.
Notice that after a flushing withinH, each agent in

H will receive a directive from the group administrator,
upon which its delivery vectors are caused to add an
entry for ah and reset to all zeros.

On the contrary, when MH h requests to leave
group g, the request is also relayed to the administra-
tor. The recorded bindings are examined to determine
whether there exists any other MH whose serving agent
is ah. If so, but none of the remaining MHs belongs to
Ag, the administrator initiates a flushing with an addi-
tional directive saying “remove ah from Ag.” If not, a
flushing is initiated with an additional directive saying
“remove ah from both H and Ag.” The directive causes
each of the recipient agent to adjust its delivery vectors
and the knowledge about Ag (or H) accordingly. In all
cases, ah will revoke the data structures for h from the
local storage.

Kuang-Hwei Chi received his B.S.
degree in Computer Science and Informa-
tion Engineering from Tatung Institute of
Technology, Taipei, Taiwan, in 1991 and
his M.S. degree in Computer Science and
Information Engineering from National
Chiao-Tung University, Hsinchu, Taiwan,
in 1993. He is currently a Ph.D. candi-
date in the Department of Computer Sci-
ence and Information Engineering from
National Chiao-Tung University. He is a

member of the ACM.

Li-Hsing Yen is currently an assis-
tant professor at the Department of Com-
puter Science and Information Engineer-
ing in Chung-Hua University, Hsin-Chu,
Taiwan. He received his BS, MS, and
Ph.D. degrees in Computer Science and
Information Engineering, all from Na-
tional Chiao-Tung University, Hsin-Chu,
Taiwan, in 1989, 1991, and 1997, respec-
tively. His research interests include dis-
tributed algorithms, wireless communica-

tions, and mobile computing.

Chien-Chao Tseng is currently
a professor in the Department of Com-
puter Science and Information Engineer-
ing at National Chiao-Tung University,
Hsin-Chu, Taiwan. He received his BS
degree in Industrial Engineering from Na-
tional Tsing-Hua University, Hsin-Chu,
Taiwan, in 1981; MS and Ph.D. degrees
in Computer Science from the South-
ern Methodist University, Dallas, Texas,
USA, in 1986 and 1989, respectively. His

research interests include mobile computing, and wireless Inter-
net.

Ting-Lu Huang studied at Tung-
hi University (B.S., 1976), University of
Texas at Arlington (M.S., 1981), and
Northwestern University (Ph.D., 1989).
He is currently an associate professor
in the Department of Computer Science
and Information Engineering at National
Chiao-Tung University. He has been
working on mutual exclusion algorithms,
causality in distributed computing, test-
ing and debugging of concurrent software,

and verification.

