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Abstract

Although the compare&swap primitive and the
fetch&store primitive are important for fast mutual
exclusion algorithms, a large portion of production-
quality multiprocessors does not support the former. A
sequence of fast mutual exclusion algorithms using only
fetch&store is shown to have qualitative improvements
from one to the next. The last algorithm is optimal in
minimizing the number of remote memory accesses for
a self-scheduling unit and in guaranteeing the best pos-
sible fairness under such circumstances. We prove that
no better algorithms exist. Minimizing the number of
remote accesses serves a good purpose since remote ac-
cess contributes to memory contention problem in large
shared-memory multiprocessors. The results show that
we were able to maintain the same level of performance
with or without the support of compare&swap. How-
ever, fairness is degraded from bounded bypass to lock-
out freedom without the support.

1 Introduction

Critical section facilities must be provided for user pro-
grams to share resources in multiprocessing systems. A
large number of mutual exclusion algorithms have been
proposed during the last thirty some years. Neverthe-
less, designing mutual exclusion algorithms that are
both practical and correct has always been a very tricky
task. Even when powerful primitives are available, mis-
takes in designing mutual exclusion algorithms[1, 3] are
not uncommon.

Mellor-Crummey and Scott[2] (referred to as MCS
algorithms in literature) initiates a series of studies,
for large shared-memory multiprocessors, that more or
less follows their ideas of busy waiting on local memory
locations only. Zhang et al. [5] has similar algorithms.
Herlihy et al. (9] used the MCS algorithm as the back-
bone for a lock-based concurrent counting primitive.
Recently Fu and Tzeng(8] presented a circular list-
based mutual exclusion scheme (referred to as CL al-
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gorithms in this paper) also for large shared-memory
multiprocessors. All of these studies did make an at-
tempt to provide algorithms using only fetch&store
since compare&swap is not commonly available in
production-quality multiprocessors. Bershad [10] in-
dicated that only two out of eight production-quality
shared memory multiprocessors have a processor which
implements compare&swap. We should note that the
memory system does not necessarily support the prim-
itive even when the processor does. That may explain
why almost all studies of fast mutual exclusion algo-
rithms using read-modify-write primitives include an
alternative version that uses only fetch&store, and con-
duct performance evaluation based on that version.

The success of MCS algorithms and CL algorithms
is largely due to the elimination of busy waiting (with
unpredictable number of accesses) on remote memory
locations. Unfortunately, the fetch&store version of
MCS algorithm is not fair at all: it suffers from starva-
tion. The major merit of CL algorithm is the elimina-
tion of remote memory access needed in MCS algorithm
to re-direct an address link for each privilege passing
during resource busy period. While it provides consid-
erable performance improvements over MCS, the CL
algorithms (with or without the support of a powerful
primitive similarly to compare&swap) suffer from the
following drawbacks:

1) Deadlock error in the trying protocol, and
2) Starvation unfairness in the exit protocol.

In this article, a sequence of algorithms using only
fetché&store that follows the line of CL algorithms but
suffer from neither of the drawbacks is provided. Fur-
thermore, each one in the sequence has some improve-
ments over the previous one, and the last one is proved
optimal in minimizing the number of remote memory
accesses required for a self-scheduling unit of the re-
questing processes, and in guaranteeing the best pos-
sible fairness under such circumstances. We show that
any further improvements beyond what is achieved by
the algorithm is impossible.

In addition to the read-modify-write shared variable
that is accessed by the fetch&store primitive, the algo-
rithms require V atomic read/write shared variables



compare&swap(r: public register, old, new: value)
returns(value)
previous :=r1
if previous = old
then r := new
fi

return previous

fetch&store(r: public register, my: value)

returns(value)
previous :=r
r = My

return previous

Figure 1: Compare&swap and Fetch&store primitives.

(called g-nodes later in this paper), one for each par-
ticipating process. A small number of private variables
for each process is also required.

The rest of the paper is organized as follows. Sec-
tion 2 provides definitions and models. Section 3
presents the three fast algorithms. Section 4 is the
conclusion.

2 Definitions and models

2.1 The RMW primitives

Definitions of the read-modify-write (RMW) primitives
used in this article are given in Figure 1. To follow
the convention in literature of RMW primitives, the
definitions use “register” to refer to variable in common

usage.

2.2 Flowcharts as algorithms

The algorithms are represented by flowcharts. When
an algorithm involves only a few actions but is never-
theless very subtle, a flowchart provides a clear picture
of the control flow and leads to an easier correctness
argument, at least for the algorithms in this article.

A rectangular node contains a sequence of actions
that satisfy one of the following conditions:

(1) All memory accesses are to private variables;

(2) No more than one memory access is to the
shared variables;

(3) Multiple memory accesses occur for the
shared variables via exactly one execution
of a RWM primitive.

If the set of accesses in a rectangular node does not sat-
isfy the above condition, the sequence of actions should
be split into two or more nodes. The rule is helpful
in simplifying correctness reasoning when we need to
consider all possibilities of interleaving among the pro-
cesses: State transitions in a rule-abiding node can be

1998 International Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

lumped together as one transition. Note that full ad-
vantages of such lumping may not have been taken in
all flowcharts of this article. But the rule is always
observed; none of the nodes needs to be split.

A diamond node contains a test of condition that
involves at most one access to shared variables.

An oval node represents a sequence of test opera-
tions that will block the process until the awaited con-
dition becomes true. Each test operation involves at
most one access to shared variables.

While there may be more than one incoming edge to
any node, there is exactly one outgoing edge for a rect-
angular or an oval node. The two outgoing edges for a
diamond node are labeled “yes” and “no”, respectively.

2.3 Flowcharts as mutual exclusion al-
gorithms

For a non-terminating algorithm such as mutual exclu-
sion, the flowchart has an incoming edge (labeled start)
but no escaping edges.

Formal definition of mutual exclusion problem can
be found in [6]. Lynch [4] introduced several impos-
sibility results in mutual exclusion algorithms using
only one RMW register. Here we extract from vari-
ous sources and re-define the problem in terms of our
model. For mutual exclusion algorithms to meet well-
formedness requirement, a flowchart prescribes an end-
less loop of life cycles for each process: trying (T) re-
gion, critical (C) region, exit (E) region and remainder
(R) region. The label in each node starts with a T for
trying regions, an E for exit regions. No path exists for
a process to bypass any region in the life cycles.

For mutual exclusion algorithms to meet mutual ez-
clusion requirement, the set of edges (as a whole) that
are labeled “critical region” cannot be visited by more
than one process at any time. If there is one process
visiting one such edge, no other processes visit such
edges at the same time. Instead of proving such “ex-
clusiveness” for the critical region set, we may want to
prove there exists a set of edges for a flowchart, called
the exclusive set, that enjoys exclusiveness, and that
it includes the critical region set. We use thick lines to
mark the edges of the exclusive sets. We found it easier
to argue for the entire exclusive set than to do so for
the critical region directly. Of course, an in-depth un-
derstanding is required in selecting the exclusive set for
a given algorithm. One necessary condition for correct
selection is that the incoming edges to any particular
node must all be thick or none are thick. If the condi-
tion is not satisfied, either the algorithm itself is wrong
or the selection is wrong.

For mutual exclusion algorithm to meet deadlock
freedom requirement, both progress for the trying re-
gion and progress for the exit region must hold. That
is, at any point in a low-level fair execution, (1) if at
least one process is in T region and no other process
is in C region, then at some later point some process
enters C region; and (2) if at least one process is in
E region, then at some later point some user enters R
region.

The abovementioned requirements are necessary for
a mutual exclusion algorithm to be correct. It is of-
ten desirable to have some confidence in the level of
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fairness in accessing critical region for each individual
process. The first-in-first-out (FIFO) order is the
most stringent requirement. It is not clear what kind
of applications would demand such strong fairness in
accessing critical regions.

For most applications, bounded bypass is good
enough. If the algorithm guarantees that a requesting
process cannot be bypassed by any certain process in
entering critical region for more than b times, we say
b-bounded bypass for C region is assured. If the al-
gorithm guarantees that an exiting process cannot be
bypassed by any certain process in entering remainder
region for more than b times, we say b-bounded bypass
for R region is assured. For many mutual exclusion al-
gorithms, the logical structures in exit regions are quite
trivial, and therefore only bounded bypass for C region
is discussed in some literature. This article particularly
defines bounded bypass for R region since we found
that almost all fast algorithms using RMW primitives
have non-trivial logical structures in exit regions.

There are algorithms that cannot guarantee any
bounded value on the number of bypasses, but is nev-
ertheless lockout free: it guarantee that, assuming a
low-level fair execution, no process can be kept waiting
indefinitely either for C region or for R region.

The worst kind of fairness is, of course, no fair-
ness at all. That is, an individual process may be kept
waiting indefinitely for either C region or for R region.

3 The fast mutual exclusion al-
gorithms wusing fetch&store
only

Most optimal mutual exclusion algorithms aim at min-
imizing the size of the shared variables or minimizing
the number of shared variables. Burns and Lynch [11]
showed that n binary shared variables are necessary
and sufficient to solve n-process mutual exclusion us-
ing only atomic read/write shared variables. Peter-
son [12] provided a nearly optimal algorithm, allowing
processes to fail, uses four values of shared memory
per process, which is within one value of the known
lower bound. Lycklama and Hadzilacos [13] presented
an algorithm that satisfies the “first-come-first-served”
property and requires only five shared bits per pro-
cess. Styer and Peterson [14] established some tight
bounds on the number of variables required for sym-
metric mutual exclusion problems. Few studies aim at
minimizing the number of memory accesses. Lamport
[7] tried to minimize the number of accesses in a pe-
riod of no competing requests. We try to minimize
the number of accesses in a period of frequent compet-
ing requests. We also take into account the difference
between local memory and remote memory. Access to
local memory does not incur memory contention, while
remote memory access does. Therefore, we count only
the number of remote memory accesses. Minimizing
remote accesses in a period of frequent competing re-
quests serves a good purpose since memory contention
in large shared-memory multiprocessor in such periods
can lead to bad performance and remote memory ac-
cess is a key factor of memory contention.

type g-node = record

wait : Boolean
direct : Boolean
hold : Boolean

type permission-word = fullword
head : halfword
tail : halfword

Figure 2: Per process data structures for the algo-
rithms.

Figure 2 shows the data structure of the memory
space that are allocated for each process in the mu-
tual exclusion algorithm. The first algorithm actually
uses only one bit (the boolean wait) for the q-node and
the second algorithm uses three bits (adding direct and
hold) for the g-node. The permission-word is used by
the third algorithm.

3.1 A deadlock-free CL algorithm using
fetch&store only

Figure 3 is an improved version of the circular
list-based mutual exclusion algorithm using only
fetch&store with the original deadlock error removed
and with the original schematic diagram expanded to
the full algorithm in flow chart.

For readers who are not familiar with the circular
list-based algorithms and for those who will read all
the algorithms in this paper carefully, the rest of this
section explains the interaction among processes. Ini-
tial state is such that (1) the RMW variable L has the
nil value; (2) each process is allocated a data structure
(called g-node) the address of which is stored in the pri-
vate variable I; and (3) the value of the wait variable
in each g-node is true.

For brevity, the process that is the focus of our dis-
cussion is referred to as P. T1 is to set the wait bit
true, as is required for each new life cycle. T2 is to
make public the address of P’s q-node via the shared
RMW variable L, and to obtain the address of the g-
node which will be needed for P to wake up the next
process when P is through with its critical section. The
RMW primitive fetch&store is defined in Figure 1. T3
checks whether P is the first process that accesses the
RMW variable L either since system start-up or since
the last event that the value nil was written back to L.
The nil is written back to L by a process when it seems
that no other processes are interested in entering crit-
ical sections, which will be explained in more details.
If T3 answers “yes”, P is entitled to enter critical sec-
tion and all competing processes are now waiting at T4
node.

E1l, E2 and E3 together take care of the followings. If
L is pointing at some other process’s q-node, P should
be prepared to wake up one of the requesting processes,
which is taill as returned by the fetchéstore of E1. E3
is the preparation that is needed. E4 is to wake up
that process. E5 is to wait until the chain of privilege
passing come back to P. Then P should go back to
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R region

T1: g-node init

l T2:next := fetch&store(L, I) ]

C region yes

nOI

( T4: await not (I->wait) )

C region

| E13: next->wait := false |

| R region

v’i

l El: taill ::fetch&store(L,I)l

[ E6: tail2:=feich&store(L,nil) |

I E3: I->wait := truel

|E4: taill ->wait := false I

(ES: await not (I->waitD

|

I E8: [->wait := trueJ

|E9: next:=fetch&store(L,tail2) l

( Ell: await not (I->wait))

l E12: next->wait := false I

Figure 3: The CL mutual exclusion algorithm using
only fetch&store with the deadlock error removed.

R region
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E1l and repeats the role of playing controller for other
processes.

El, E2 and EG together take care of the followings. If
L is still pointing to P ’s g-node, it seems that no other
processes are interested in entering critical sections. E6
is to make such an assumption and go ahead to assign
L as nil. The assumption may be correct, in which
case the result of E7 will be “yes,” and then P has
nothing else to do in the exit region. The assumption
may be wrong, in which case the result of E7 will be
“no.”  The processes that are requesting should not
be left forgotten by the controlling process, or starva-
tion will arise. Since there is no powerful primitive like
compareédswap available, there is no way to avoid such
kind of guess work. Fortunately, with the help of the
fetch€store of E9, the list of the requesting processes
will be inserted back to the mainstream that possesses
the control privilege. If the control privilege has come
back to P immediately at E9, the test at E10 will be
“yes,” and P should act as the controller again. If the
control privilege is still at some other process, P has
already done the right thing for the requesting pro-
cesses: tail2 has already been pointed to by L as the
result of E9. The control privilege will eventually come
to tail2 and will wake up in sequence each of the re-
questing processes in the list. E11 will then terminate
and P should do nothing but to pass the privilege to
the next (as in E12) in the mainstream.

Note that E8 should precede E9 and E3 should pre-
cede E4 in execution, or deadlock may occur. Details
of the deadlock error in the original CL algorithm can
be found in [3].

Note also that P will be kept indefinitely in the cy-
cle of playing controller as long as either there are pro-
cesses interested in entering critical section (with the
“no” result at E2,) or the control privilege has been
reclaimed successfully (with the “yes” result at E10.)
Later, we will show two other algorithms that suffer
from no such severe unfairness.

3.2 A lockout-free CL algorithm using
fetch&store only

The algorithm, see Figure 4, aims to avoid the starva-
tion unfairness imposed on the controller process. The
main idea is to use two more bits in each g-node to
transfer the controller role from the current process to
the next. The direct bit is to inform the next controller
that it is chosen as such. The hold bit is to hold the
appointed next controller at E15 until the current con-
troller finishes a complete run and executes E9. The
initialization at T1 is to set direct false and hold true.
The algorithm is largely the same as the previous one,
except the necessary changes involving the role trans-
fer using the two bits. It is easy to observe from the
flowchart that no process will be kept in E region indef-
initely provided that the await statements at E11 and
E8 terminate. A process cannot be kept indefinitely
at the await statement at E8 because the fetchéstore
primitive regulates the g-node address sharing in such
a way that the wake-up signal sent by P at E7 is bound
to come back in finite steps as a signal to release P at
E8. Similarly, a process cannot be kept indefinitely at
the await statement at E11 because the process had
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R region 4 I Y J R region

C region

C T4: await not (I—>wail))

T S C region
‘ I E13: next->wait := falsel

El: tail:= fetch&store(L,nil)
El4:1->direct

‘ <Firras
l yes
ye (_EIS: await not(l->hold))

3 next —fetch&slore(Ltml) I

4@

I E10: I>wzut —truel

ES: [->wait ;= true

1

@11 await not (I- >wa1t)) I E6: tail->direct := lrld

I E12: next->wait := false I | E7: tail->wait := false J

R region

658: await not (I—>wait))

I E9: tail->hold := false ]
R region

Figure 4: The lockout-free CL mutual exclusion algo-
rithm using fetch&store and bit messages.

just inserted the list of requesting processes into the
mainstream which must have the control privilege go-
ing. Eventually, the privilege will come to release the
busy waiting at E11. Therefore, lockout freedom of
the controller process in E region is assured. However,
the number of bypasses observed by the controller pro-
cess in E region cannot be bounded mainly because
fairness in accessing L only guarantees eventual access.
Later, we will prove that there in no decisive mutual
exclusion algorithm (the definition of which is given
in section 3.4) using only fetch&store that guarantees
bounded bypass.

3.3 The permission word algorithm

We establish a tight bound on the number of remote
accesses required for the mutual exclusion problem al-
lowing only the fetchéstore primitive. A lower bound is
shown by an impossibility theorem in the next section.
In addition, we establish a tight bound on the best
possible fairness one can expect in algorithms under
the circumstances that only the fetch&store primitive
is available and that the algorithm must be decisive.
Again, the impossibility theorem for fairness is shown
in the next section. This section provides an algorithm
that delivers both of the lower bounds.

The main idea of the algorithm, see Figure 5, is to
write a fullword in each remote write, instead of writing
a single bit. The fullword, called permission word,
consists of a pair of non-zero half words, (head,tail),
each being the address of a g-node. The permission
word not only serves as permission to enter critical sec-
tion, but also carries enough information for processes
to maintain proper control of role playing, without us-
ing any other control message. The scheme is simple,
but the encoding of the permission word may be con-
fusing at first glance. Figure 6 is an example to help
explain how it works. Reading the previous two algo-
rithms also help.

A busy period is an execution sequence that starts
with the first process making a request, and ends with
some process deciding correctly that there is no request
pending. We are interested in busy periods in which
two or more requests have been made and served. A
run in a busy period is an execution sequence that
starts with a process executing E9 and ends with some
process executing E9, with no such events and at least
one process enters and leaves critical section in be-
tween. The set of processes permitted to enter critical
section (passing T4) in a run is called the relay of that
run. The process that executes E9 defining a new run
is called the controller of the new run. One process in
the relay of the old run is to be selected as the controller
for the new run. Exactly how the controller is selected
is explained later. A controller cannot also be in the
relay of the new run because when it executes E9, all
members of the relay must be somewhere between T2
and T4, waiting for permission. In Figure 6, process 30
is the controller for relay of run 1; process 10 for relay
of run 2; process 60 for relay of run 3; and process 70
defines the end of the whole busy period since L does
not change (still is 10-) during the whole run. Process
70 puts nil in L when it executes E1.

Since the least significant bit of an address is not
used in most computer architecture, we can use that
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start

+1”4ﬁ

T1: I:=address of my-full-word,
change the incarnation bit of I;

*] :=0;

R region

I T2: next := fetch&store(L, 1) I

<GrexoniT>

( T4: await not (*I = 0) )

Cregion Y¢S no

E10:next=head(*I)?

no I
| El11: *next ;= *I I

R region

I El2: 1= lail(*l)l
I

[ El: tail := fetch&slore(L,nil)l

)’e

no
I E3: *I =0 |

|E4: next := fetch&store(L,tail)

no
(E’I: awaitl not (*I=0) ) [ E9: *tail := pack(ltail)

R region

IiES: *next := *IJ

R region

Figure 5: The permission word mutual exclusion algo-
rithm using fetch&store.
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run |

run 2

run 3

Figure 6: An example of a busy period consisting of 3
runs.

bit as the incarnation bit to avoid a subtle situation.
Although a process cannot appear more than once in
a relay, it may appear in both relays of two neighbor-
ing runs. A process’s incarnation bit (indicated as “+”
or “-” in the circles) from one incarnation to the next
must be different since a process always flips its incar-
nation bit at T'1. Therefore, no two incarnation bits of
the same process in two consecutive runs are the same.
This is important for a process to determine whether it
should act as the controller for the next run. A process
executing E10, which is to check whether the value of
nezt equals the head half word in the permission mes-
sage it receives, will identify itself as the controller if
the result (taking into account the incarnation bit) is
“yes”. For example, process 30 in run 3 would not be
able to tell the difference between 40+ in run 3 and 40-
in run 2 without the incarnation bit. With the differ-
ence of the bit, process 30 should pass the permission
message to process 40, rather than acting as the con-
troller after receiving the permission word (40-, 10-).
Process 70 in run 3 should be the controller since it
receives (40-,10-) as the (head,tail) pair and its next
has value 40-. (It will get “yes” result at E10.) There-
fore, it should go to E12 to act as the controller. The
subtlety occurs whenever the tail process of E9 having
been given permission to enter critical section did so
and then quickly made a new request (at T2) in the
next run. Such subtlety arises since we don’t require
a controller to be appointed earlier and then be held
waiting for the release signal which is sent only when
the old controller actually transfers its privilege. Fortu-
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nately, the subtlety needs to be resolved only between
two neighboring runs, thus a single bit suffices.

3.4 Two impossibility results

The permission word algorithm is considered the best
among a set of possible solutions to an extended mu-
tual exclusion problem that aims to eliminate the over-
head of link re-directions. A link re-direction is the
synchronization mechanism that establishes a privilege
passing chain among the processes in an order that re-
spects the actual first-in-first-out (FIFO) order of the
process request. The CL algorithm specifically seeks
to avoid such link re-direction, since the FIFO order
is not only non-essential in fairness requirements but
also the cause of too high a cost in terms of remote
memory access when link re-direction is implemented.
The permission word contains enough information for
a controller to identify itself as such and to take on
the role without using extra synchronization messages.
Past experiences showed that avoiding link re-direction
save significant amount of remote accesses while fair-
ness can still be kept at an acceptable level. The fol-
lowing definition captures the salient feature of the set
of possible solutions that avoid link re-directions.

Definition 1 (decisiveness) A mutual exclusion al-
gorithm 1s decisive if no more than one remote access
15 required in the trying region to determine whether
the process should enter immediately or it should wait.

In the algorithms using fetch&store, decisiveness can
be expressed as a state formula:

(L = nil) = (no process is in critical region.)

Thus, a requesting process is able to decide, using one
access to L, whether it is allowed to enter critical region
right away or it should spin on a local variable whose
value clearly indicates whether permission has arrived.

Definition 2 (cluster) A cluster is the set of pro-
cesses that has made requests in an interval between
two consecutive states with (L = nal).

A cluster is a self-scheduling unit in the decisive mutual
exclusion algorithms that allow no link re-directions. A
leader among the cluster must be selected to act as the
controller for the cluster. Such controller inevitably
uses some remote access overhead in its controlling
task. The following is to establish a lower bound on
the number of remote accesses required for a cluster
controller to act properly.

Theorem 1 (1-overhead impossibility)

There is no decisive mutual exclusion algorithm using
fetchéstore primitives and atomic read/write registers
that requires less than 2K+2 remote accesses for any
cluster of K processes.

< proof > By way of contradiction, assumes that
only 2K remote accesses are needed for the complete
chain of the K cycles. One life cycle requires at least
2 remote writes: one in the trying region and another
in the exit region. Under the constraint of 2 remote

writes for one life cycle, a process must announce its g-
node address when it access the RMW register in the
trying region, and it must use a remote write in the
exit region to wake up its successor in the chain. Let
P be a process that is the first one to access the RMW
register making public its address and trying to pick
up an address of others. P is destined to fail in getting
any address in that access since no one has put address
in the RMW register, yet. For P to be able to wake up
some one, it must use an extra (besides the 2K accesses
aforementioned) remote access to the RMW register in
order to obtain the address. If P wakes up no one, then
the rest of the cluster will be deadlock since each such
process is held waiting. Thus, a contradiction is found.

By way of contradiction, assumes that only 2K + 1
remote accesses are needed for the complete chain of
the K cycles in the cluster. The extra remote access
to the RMW register in the previous argument should
now be examined in more detail since now we don’t
have the full power of general read-modify-write primi-
tive. Rather, what is available is fetch&store only. The
smallest number of remote accesses overhead for a con-
troller of a self-scheduling cluster in the exit region is
two, explained in the followings.

Case (1): If no fetch&store is used, then at least two
ordinary accesses are needed. One is to obtain the ad-
dress of some g-node from L, the other is to set L as
nil. The controller cannot finish its controlling task us-
ing two ordinary accesses since there may be requesting
processes in the cluster that need to be schedule prop-
erly.

Case (2): If fetch&store is used, then the first one
must be of the form

tail := fetch&store(L,nil),

and if the variable tail does not have the same value as |
(meaning there are requesting processes to be handled,)
one more fetch&store is required in order to schedule
the requesting processes properly. Note that the con-
troller cannot foretell whether there will be requesting
processes or not. It should anticipate both outcomes
properly. This cannot be accomplished by using less
than two remote accesses. Since these two accesses are
control overhead, one more remote access is still needed
to actually wake up one process that is waiting. In to-
tal, we know at least three remote accesses are needed
for the cluster controller in its exit region. Therefore,
we need at least 2K + 2 remote accesses for the com-
plete chain of K cycles in the cluster. Q.E.D.

Theorem 2 (Bounded bypass impossibility)
There is no decisive mutual exclusion algorithm using
only the fetchéstore primitives and atomic read/write
registers that guarantees bounded bypass.

< proof > Suppose there is one such algorithm
that guarantees a bounded bypass value B. We are to
construct a “bad” sequence of events that leads to a
contradiction. Let pI, p2, p3 be the three processes
that are about to request. Process p! requests and
enters first while no one is requesting. When it is in
exit region, it must set L as nil since no one is request-
ing. Then it enters remainder region. The system stays
idle for a while. Then p2 requests and enters critical
section, and then leaves. The system stays idle for a
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while, again. Then p3 requests and enters while no one
is requesting. Since the algorithm is deadlock free, p3
should be able to repeatedly enter and leave critical
section for an unbounded number of times. Certainly
it can enter and leave critical section for B + 1 times.

However, the sequence of events can be turned “bad”
at the point just before pI sets L as nil. Since there
is only fetch&store available, pI has no way of telling
whether there is any process requesting at the point.
It is perfectly legal to insert to this point a sequence
of events that p2 is requesting by accessing L. After
setting L as mil, pI will be able to detect that there is
some one requesting, and that it should try to reclaim
the privilege in order to wake up some process that is
waiting. However, once L has become nil, a decisive
mutual exclusion algorithm should allow some other
process to cut in immediately. And since the fair access
to L only guarantees eventual access, there is no way to
assure that p7 will be able to access L before the B +
1 consecutive entering and leaving critical section has
completed. A “bad” sequence that p2 is bypassed by
p3 for more than B times can be constructed. Q.E.D.

Theorem 3 The permission word algorithm requires
2K +2 remote accesses for a cluster of K processes and
guarantees lockout freedom for fairness.

< proof > Observe that at most three remote writes
are required for a controller to complete the exit region
before it enters the next remainder region: path (E1),
path (E1, E4, E8), or path (E1, E4, E9). The cost of
E8 and E9 can be considered as the inherent cost to
wake up some other process. Hence, only two remote
accesses are control overhead for the cluster.

Observe that a process executing in the exit region
is bound to enter remainder region since all the awasit
statements are terminating. Hence, lockout freedom is
guaranteed. Q.E.D.

4 Conclusions

Three algorithms have been presented in a sequence
and each is shown to have better quality than the pre-
vious one. The first removes the deadlock error from
its previous one. The second eliminates the starvation
unfairness from its previous one. It guarantees only
lockout freedom, however. We show that a better fair-
ness is impossible if only fetch&store is used. (A related
study by the author showed that when we are given the
additional support of compare&swap, fairness can be
improved to be bounded bypass.) The third (and the
last) algorithm reduces the number of remote accesses
required in a self-scheduling unit to such extend that
any further reduction of remote access is impossible.
It also maintains the same fairness as the second one
does.
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