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Abstract: Three fast mutual exclusion
algorithms using read-modify-write and atomic
read/write registers are presented in a sequence,
with an improvement from one to the next. The
last algorithm is shown to be optimal in minimizing
the number of remote memory accesses required in
a resource busy period. Remote memory access is
the key factor of memory access bottleneck in large
shared-memory multiprocessors. The algorithm is
particularly suitable in such systems for applications
with small critical sections and frequent resource re-
quests.
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1 Introduction

Critical section facilities must be provided for user
programs to share resources in multiprocessing sys-
tems. A large number of mutual exclusion algo-
rithms have been proposed during the last thirty
some years. Nevertheless, designing mutual exclu-
sion algorithms that are both practical and correct
has always been a very tricky task. Even when pow-
erful primitives are available, mistakes in designing
mutual exclusion algorithms [1, 3] are not uncom-
mon.

Mellor-Crummey and Scott [2] (referred to as
MCS algorithms in literature) initiates a series of
studies that more or less follow their ideas of busy
waiting on local memory locations only. Zhang et al.
[5] has similar algorithms. Recently Fu and Tzeng
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[8] presented a circular list-based mutual exclusion
scheme (referred to as CL algorithms in this pa-
per) for large-scaled multiprocessor systems. While
it provides considerable performance improvements,
the CL algorithms suffer from the following draw-
backs:

1) Deadlock error in the trying protocol, and
2) Starvation unfairness in the exit protocol.

In this article, several algorithms that follows the
line of CL algorithms but suffer from neither of the
drawbacks is provided. Furthermore, one of the al-
gorithms is proved optimal in minimizing the num-
ber of remote memory accesses executed in the algo-
rithm during resource busy period. Remote memory
access is probably the most important factor that
contributes to memory access bottleneck in large-
scaled shared-memory multiprocessors. The success
of MCS algorithm and CL algorithm is largely due to
the elimination of busy waiting (with unpredictable
number of accesses) on remote memory locations.
The major merit of CL algorithm is the elimination
of remote memory access needed in MCS algorithm
to re-direct an address link for each privilege pass-
ing during resource busy periods. Our algorithm is
shown to be optimal in reducing the number of re-
mote memory accesses: we show that any further
reduction beyond what is achieved by our algorithm
is impossible.

Like MCS algorithms, our algorithms assume that
fetchéstore and compareédswap primitives are avail-
able. Such primitives have been widely implemented
in current multiprocessor systems. The CL algo-
rithms assume the same fetchéstore and a fictitious
swap&compare. The latter one has never been im-



compare&swap
(r: public register, old, new: value) returns(value)
previous :=r1
if previous = old
then r := new
fi

return previous

swap&compare
(r: public register, old: private register, new: value)
previous :=r1

r :=old
old := previous
ifr = old
then r := new
fi
fetch&store

(r: public register, my: value) returns(value)
previous :=r
r = my
return previous

Figure 1: Compare&swap, Swap&compare and
Fetch&store primitives.

plemented in any system.

In addition to the read-modify-write shared vari-
able that is accessed by the primitives, the algo-
rithms require N atomic read/write shared variables
(called g-nodes later in this paper), one for each par-
ticipating process. A small number of private vari-
ables for each process is also required.

Rest of the paper is organized as follows. Section 2
provides definitions and models. Section 3 presents
the three fast algorithms. Section 4 is the conclusion.

2 Definitions and models

2.1 The RMW primitives

Definitions of the read-modify-write (RMW) primi-
tives used in this article are given in Figure 1. To fol-
low the convention in literature of RMW primitives,
the definitions use “register” to refer to wvariable in
common usage.

2.2 Flowcharts as algorithms

The algorithms are represented by flowcharts. When
an algorithm involves only a few actions but is nev-

ertheless very subtle, a flowchart provides a clear
picture of the control flow and leads to an easier
correctness argument, at least for the algorithms in
this article.

A rectangular node contains a sequence of actions
that satisfy one of the following conditions:

(1) All memory accesses are to private
variables;

(2) No more than one memory access is to
the shared variables;

(3) Multiple memory accesses occur for the
shared variables via exactly one execution
of a RWM primitive.

If the set of accesses in a rectangular node does not
satisfy the above condition, the sequence of actions
should be split into two or more nodes. The rule
is helpful in simplifying correctness reasoning when
we need to consider all possibilities of interleaving
among the processes: State transitions in a rule-
abiding node can be lumped together as one tran-
sition. Note that full advantages of such lumping
may not have been taken in all flowcharts given in
this article. But the rule is followed and there is no
node that needs to be split.

A diamond node contains a test of condition that
involves at most one access to shared variables.

An oval node represents a sequence of test oper-
ations that will block the process until the awaited
condition becomes true. Each test operation involves
at most one access to shared variables.

While there may be more than one incoming edge
to any node, there is exactly one outgoing edge for
a rectangular or an oval node. The two outgoing
edges for a diamond node are labeled “yes” and “no”,
respectively.

2.3 Flowcharts as mutual exclusion
algorithms

For a non-terminating algorithm such as mutual ex-
clusion, the flowchart has an incoming edge (labeled
start) but no escaping edges.

Formal definition of mutual exclusion problem can
be found in [6]. Lynch [4] introduced several impos-
sibility results in mutual exclusion algorithms using
only one RMW register. Here we extract from var-
ious sources and re-define the problem in terms of
our model. For mutual exclusion algorithms to meet
well-formedness requirement, a flowchart prescribes
an endless loop of life cycles for each process: trying
(T) region, critical (C) region, exit (E) region and
remainder (R) region. The label in each node starts
with a T for trying regions, an E for exit regions. No



path exists for a process to bypass any region in the
life cycles.

For mutual exclusion algorithms to meet mutual
exclusion requirement, the set of edges (as a whole)
that are labeled “critical region” cannot be visited
by more than one process at any time. If there is
one process visiting one such edge, no other pro-
cesses visit such edges at the same time. Instead of
proving such “exclusiveness” for the critical region
set, we may want to prove there exists a set of edges
for a flowchart, called the exclusive set, that en-
joys exclusiveness, and that it includes the critical
region set. We use thick lines to mark the edges of
the exclusive sets. We found it easier to argue for the
entire exclusive set than to do so for the critical re-
gion directly. Of course, an in-depth understanding
is required in selecting the exclusive set for a given
algorithm. One necessary condition for correct se-
lection is that the incoming edges to any particular
node must all be thick or none is thick. If the con-
dition is not satisfied, either the algorithm itself is
wrong or the selection is wrong.

3 The fast mutual exclusion
algorithms

Most optimal mutual exclusion algorithms aim at
minimizing the size of the shared variables or mini-
mizing the number of shared variables. Few are min-
imizing the number of memory accesses. Lamport
[7] tried to minimize the number of accesses in a
period of no competing requests. We try to mini-
mize the number of accesses in a period of frequent
competing requests. We also take into account the
difference between local memory and remote mem-
ory. Access to local memory does not incur mem-
ory access bottleneck, while remote memory access
does. Therefore, we count only the number of re-
mote memory accesses. Minimizing remote accesses
in a period of frequent competing requests serves
a good purpose since memory access bottleneck in
large shared-memory multiprocessor in such periods
can lead to bad performance, and remote memory
access is a key factor of memory access bottleneck.

Figure 2 shows the data structure of the memory
space that is allocated for each process in the mutual
exclusion algorithm. The first algorithm actually
uses only one bit (the boolean wait) for the g-node
and the second algorithm uses three bits (adding di-
rect and hold) for the q-node. The permission-word
is used by the third algorithm.

type g-node = record

wait : Boolean
direct : Boolean
hold : Boolean

type permission-word = fullword
head : halfword
tail : halfword

Figure 2: Per process data structures for the algo-
rithms.

3.1 A deadlock-free CL algorithm

Figure 3 is the circular list-based mutual exclusion
algorithm with the original deadlock error removed.
The original CL algorithm was given in a C-like lan-
guage. Here the flowchart version has some advan-
tages for illustration purposes. The exit region is
apparently divided into two separate paths: one for
those processes that may stay in the exit region in-
definitely, and one for those that move to the remain-
der region immediately after one step. The C-like
version, in contrast, represents the exit region using
one procedure with single entry point and therefore
requires an extraneous decision statement to branch
to the two separate paths. Correctness arguments
on the flowchart version are also much easier than
those on the C-like version.

For those who are not familiar with the circular
list-based algorithms and for those who will read all
three algorithms carefully, the rest of this section ex-
plains the interaction among processes. Initial state
is such that (1) the RMW variable L has the nil
value; (2) each process is allocated a data structure
(called g-node) the address of which is stored in the
private variable I; and (3) the value of the wait vari-
able in each g-node is true.

For brevity, the process that is the focus of our
discussion is referred to as P. T1 is to set the wait
bit true, as is required for each new life cycle. T2
is to make public the address of P’s g-node via the
shared RMW variable L, and to obtain the address
of the g-node which will be needed for P to wake up
the next process when P is through with its critical
section. The RMW primitive fetchéstore is defined
in Figure 1. T3 checks whether P is the first process
that accesses the RMW variable L either since sys-
tem start-up or since the last event that the value nil
was written back to L. The nil is written back to L
by a process when no other processes are interested
in entering critical sections. If T3 answers “yes”, P
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Figure 3: The CL mutual exclusion algorithm with
deadlock error removed.

is entitled to enter critical section and all competing
processes are now waiting at T4 node.

The RMW primitive swapécompare is defined in
Figure 1. E1, E2 and E3 together take care of the fol-
lowings. If L is still pointing at P’s g-node, no other
processes are interested in entering critical section.
P writes nil to L and moves to remainder region. If
L is pointing to some other g-node, there are some
other processes that are waiting. P stores the ad-
dress of its gq-node at the private variable next and
will use a remote write to wake up that process at
E5.

E4 is to make sure that P cannot pass E6 until
some other process writes to P’s g-node. E4 should
precede E5 in execution, or deadlock may occur. De-
tails of the deadlock error can be found in [3].

After passing E6, several processes have been
granted permission to enter critical sections but
more processes may have arrived and have been kept
waiting. P is the sole controller among the compet-
ing processes and therefore should go back to E1l to
prepare for the next run of playing controller. P
will be kept in this potentially unbounded number
of runs of playing controller as long as there are pro-
cesses interested in entering critical section. Later,
we will show that the other two algorithms suffer
from no such severe unfairness.

E7 is to wake up the next process that either is
waiting at T4 for permission to enter critical section
or is waiting at E6 for the role of playing controller.

3.2 A bounded-waiting CL algorithm

The main idea of this algorithm, see Figure 4, is to
use two more bits in each g-node for better coopera-
tion among processes and to prevent the unfair bur-
den on the controller. The popular compareédswap
primitive, see Figure 1, is used by current controller
to decide whether there are other processes inter-
ested in entering critical section. If not, the nil value
is assigned to L and the controller has nothing else to
do. If so, the value of L is returned and assigned to
the private variable next. That value is the address
of the next controller’s g-node. The two extra bits
of each g-node are used to transfer the role of con-
troller from the current one to the next. The direct
bit is to inform the next controller that it is chosen
as such. The hold bit is to hold the next controller at
E10 until the current controller finishes a complete
run and executes E7. It is easy to observe from the
flowchart that no process will be kept in E region for
an unbounded number of runs since a process will
be able to leave E region if it passes E6. A pro-
cess cannot be kept indefinitely at E6 because the
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Figure 4: The bounded-waiting CL mutual exclusion
algorithm using 1-bit messages.

fetchéstore primitive regulates the g-node addresses
in such a way that the wake-up signal sent by P at
E5 is bound to come back in finite steps as a signal
to release P at E6. In fact, after P enters E region,
no process can bypass P in passing E region for more
than twice. Such level of fairness is good enough for
almost all applications.

3.3 The permission word algorithm

We establish a tight bound on the number of
remote accesses required for the mutual exclusion
problem allowing the use of any RMW primitives.
A lower bound is shown by an impossibility proof in
the next section. This section provides an algorithm
that requires exactly the lower bound.

The main idea of the algorithm, see Figure 5, is
to write a fullword in each remote write, instead of
writing a single bit. The fullword, called permis-
sion word, consists of a pair of non-zero halfwords,
(head,tail), each being the address of a g-node. The
permission word not only serves as permission to en-
ter critical section, but also carries enough informa-
tion for processes to maintain proper control of role
playing, without using any other control message.
The scheme is simple, but the encoding of the per-
mission word may be confusing at first glance. Fig-
ure 6 is an example to help explain how it works.

A busy period is an execution sequence that
starts with a state in which the RMW variable L has
the nil value, and ends with a later state in which
L has the nil value, with at least one process en-
ters and leaves critical section and no states with
nil in L in between. A run in a busy period is an
execution sequence that starts with a process exe-
cuting E1 and ends with some process executing E1,
with no such events and at least one process enters
and leaves critical section in between. The set of
processes permitted to enter critical section (passing
T4) in a run is called the relay of that run. The pro-
cess that executes E1 defining a new run is called the
controller of the new run. One process in the relay
of the old run is to be selected as the controller for
the new run. Exactly how the controller is selected
is explained later. A controller cannot also be in the
relay of the new run because when it executes EI,
all members of the relay must be somewhere between
T2 and T4, waiting for permission. In Figure 6, pro-
cess 30 is the controller for relay of run 1; process
10 for relay of run 2; process 60 for relay of run 3;
and process 70 defines the end of the whole busy pe-
riod since L does not change (still is 10-) during the
whole run. Process 70 puts nil in L when it executes
El.
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Figure 5: The permission word mutual exclusion al-

gorithm.

run 1 50

run 2

0 (40-.10-)

40

run 3

30

10

Figure 6: An example of a busy period consisting of
3 runs.



Since the least significant bit of an address is not
used in most computer architectures, we can use that
bit as the incarnation bit to avoid a subtle situation.
Although a process cannot appear more than once
in a relay, it may appear in both relays of two neigh-
boring runs. A process’s incarnation bit (indicated
as “+” or “” in the circles) from one incarnation
to the next must be different since a process always
flips its incarnation bit at T1. Therefore, no two in-
carnation bits of the same process in two consecutive
runs are the same. This is important for a process
to determine whether it should act as the controller
for the next run. A process executing E4, which is
to check whether the value of next equals the head
halfword in the permission message it receives, will
identify itself as the controller if the result (taking
into account the incarnation bit) is “yes”. For ex-
ample, process 30 in run 3 would not be able to tell
the difference between 40+ in run 3 and 40- in run 2
without the incarnation bit. With the difference of
the bit, process 30 should pass the permission mes-
sage to process 40, rather than taking up the role of
controller. Process 70 in run 3 should be the con-
troller since it receives (40-,10-) as the (head,tail)
pair and its next has value 40-. (It will get “yes”
result at E4.) Therefore, it should go to E5 to take
up the role of controller. The subtlety occurs when-
ever the next process of E3 after having been given
permission to enter critical section, quickly makes a
new request (at T2) in the next run. Fortunately,
the subtlety needs to be resolved only between two
neighboring runs, thus a single bit suffices.

This algorithm enjoys an even better fairness in
E region than the previous one does. There exists
no blocking statement in E region. After P enters
E region, no other process can bypass P in passing
E region more than once. Such level of fairness is
probably the best we can get in asynchronous sys-
tems.

3.4 An impossibility result

To prove that the permission word algorithm is op-
timal, we must prove that there is no algorithm
that requires less remote accesses than our algorithm
does. The proof is informal in nature. More rigorous
proof is possible, but should convey similar ideas as
what we now provide.

Theorem 1 There is no mutual exclusion algorithm
using RMW registers and atomic read/write registers
that requires less than 2K+1 remote accesses in any
interval (within a busy period) with K life cycles.

< proof > The k life cycles within a busy
period entails a chain of privilege passing
from the first exit region to the K-th exit
region. By way of contradiction, assumes
that only 2K remote accesses are needed
for the complete chain of K cycles. One life
cycle requires at least 2 remote writes: one
in the trying region and another in the exit
region. Under the constraint of 2 remote
writes for one life cycle, a process must
have announced its g-node address when it
access the RMW register in the trying re-
gion, and it must have used a remote write
to wake up its successor in the chain. Let
P be a process that is the first one to ac-
cess the RMW register making public its
address and trying to pick up an address of
others. P is destined to fail in getting any
address in that access since no one has put
address in the RMW register, yet. For P to
be able to wake up some one, it must use an
extra (besides the 2K accesses aforemen-
tioned) remote access to the RMW register
in order to obtain the address. If P wakes
up no one, then the system will be deadlock
since every process is held waiting.

Theorem 2 There is no mutual exclusion algorithm
using RMW registers and atomic read/write regis-
ters that requires less than 2K+2 remote accesses in
any interval (within a busy period) with K life cycles
among which some process completes more than one
life cycle.

< proof > The k life cycles within
a busy period entails a chain of privilege
passing from the first exit region to the K-
th exit region. By way of contradiction,
assumes that only 2K + 1 remote accesses
are needed for the complete chain of K cy-
cles with at least one process completes two
life cycles. One life cycle requires at least 2
remote writes: one in the trying region and
another in the exit region. Under the con-
straint of 2 remote writes for one life cycle,
a process must have announced its g-node
address when it access the RMW register
in the trying region, and it must have used
a remote write to wake up its successor in
the chain. Let P be a process that appears
twice in the chain. The assumption that P
is able to finish the first cycle entails that
one extra remote write has been spent, as
we understood in the proof of the previous
theorem. Now, there are no more extra re-



mote writes besides the 2K accesses. For
P to be allowed in the critical section for
the second time, its predecessor must have
used a remote write to wake up P. The
predecessor’s predecessor must have used a
remote write to wake up P’s predecessor.
The argument goes on and we have that
the first occurrence of P must have used
a remote write to wake up its successor.
For one process to know where to write a
wake-up message, the successor must have
written its g-node address in a RMW reg-
ister, and the predecessor must have some-
how read the address from a RMW regis-
ter. Therefore, the address-write happened
before the address-read. A contradiction
is inevitable since then it entails that the
address-write in the second occurrence of
P happened before the address-read in the
first occurrence of P. A process’s current
incarnation cannot happen before its pre-
vious incarnation.

Theorem 3 The permission word algorithm re-
quires 2K+2 remote accesses in any interval (within
a busy period) with K life cycles among which some
process completes two life cycles.

< proof > All remote accesses are ei-
ther to the RMW registers or write opera-
tions to read/write registers. There are no
remote reads from read/write registers in
this algorithm.

In an interval within a busy period with
K life cycles among which no process com-
pletes more than one life cycle, the algo-
rithm requires 2K + 1 remote writes: one
at T2 for announcing the g-node address
and one at either E3 or E6 to wake up some
successor. Only one process needs to use an
extra remote access at E1: the controller.

In an interval within a busy period with K
life cycles among which some process com-
pletes two life cycles but none completes
more than two, the algorithm uses 2K + 2
remote accesses. Two executions of E1 are
sufficient to allow some process to complete
two life cycles.

4 Conclusions

Three algorithms have been presented in a sequence
and each is shown to have better quality than the

previous one. The first removes the deadlock error
from its previous one. The second eliminates the
starvation unfairness from its previous one. In fact,
it guarantees bounded bypass in the exit protocol:
when a process P wishes to exit, no process can exit
more than two times before P is allowed to do so.
The third reduces the number of remote accesses re-
quired in a busy period to such extend that any fur-
ther reduction is impossible. It also enjoys better
fairness in exit protocol than the second one does.
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