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Abstract: A new lock synchronization algorithm,
proposed independently by Craig and the authors,
not only eliminates memory contention caused by pro-
cess spinning but also preserves First_in_first_out prop-
erty. A previous result, the MCS lock algorithm, re-
quires both compare_and_swap and fetch_and_store in-
structions, or the FIFO property is lost and hence
starvation may occur. The new one requires only
fetch_and_store. We provide an assertional proof for
the new algorithm. Most of behavioral proofs of con-
current programs are error-prone since it is difficult
and tedious to take all possibilities of interleaving
among the processes into consideration. An asser-
tional proof replaces a large number of possibilities
of interleaving by a small number of invariants. New
techniques in this proof are : (1) an assertional charac-
terization of token bit accessibility, (2) the definition
of effective assignments that brings about the notion of
token creation/destruction, (3) the definition of token
count that derives the mutual exclusion theorem, (4)
the constructing procedure of a token-list that faith-
fully records the arrival time sequence of lock requests
so that FIFO ordering can be enforced.

1 Introduction

Synchronization among the processes in a shared-
memory multiprocessor system is usually implemented
by busy-waiting (spinning) on some shared variables.
Spinning on a single shared variable causes serious

memory contention problems since that variable can
easily become a hot spot. Mellor-Crummey and
Scott[6] proposed a lock synchronization algorithm(
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known as MCS lock ) whereby each process spins
on distinct variable. Memory contention is greatly re-
duced. However, the MCS lock requires that both
fetch_and_store and compare_and_swap atomic instruc-
tions be available, or the first_in_first_out (FIFO) or-
dering property will be lost. Although FIFO ordering
is not absolutely necessary for lock synchronization,
at least some weaker ordering control is needed in or-
der to prevent starvation. The alternate version of
the MCS lock functioning in an environment where
only fetch_and_store is available fails in this regard.
The felch.and_store instruction is much more common
than compare_and_swap. For example, Sequent S27
multiprocessors have Intel 80386 as the processors. It
has “XCHG” instruction which is a fetch_and_store,
but it does not has compare_and_swap[8]. Craig|7] and
Lin-Huang[2] independently proposed an algorithm for
such environment that not only preserves the FIFO
property, and therefore is starvation free, but also
preserves the property that each process spins on a
distinct token bit. For convenience of discussion, we
name it as Craig-LH algorithm.

Our proof essentially follows the model used by
Lamport[9]. In the model, read/write operation on
a variable is assumed to be atomic. Lamport has
developed a non-assertional proof technique[12] for
the bakery algorithm that does not require atomic
read/write operations. However, the bakery algo-
rithm is not suitable for shared-memory multiproces-
sors since it induces an extremely large amount of
network contention. Balbo et al. [4] reports a proof
technique that combines both correctness proof and
performance evaluation of Lamport’s fast mutual ex-
clusion algorithm{11]. Colored generalized stochastic
Petri net model is used. However, the algorithm is not



suitable for shared-memory multiprocessor systems for
the same reason as in the bakery algorithm. Rigorous
proofs of synchronization algorithms that make good
use of some atomic instructions so that memory con-
tention is greatly reduced are still lacking. Our proofis
the first that takes advantage of an assertional charac-
terization of the fetch_and_store instructions. A recent
report[5] has a proof of the MCS lock algorithm that
uses atomic instructions. However, the proof is based
on a high level concept of abstract data type (waiting
queue) that is assumed to exist in the system. Our
proof is based on the basic notion of state transition
model[3] that has been widely accepted. It assumes
no such high level concept that needs further justifi-
cation. In fact, a similar high level concept of waiting
queue can be justified in our proof only after many
supporting theorems are proved first.

We benefit from the well-known concepts of pre-
condition and post-condition with respect to an ac-
tion, i.e. the Hoare triple[1]. However, the following
techniques in this proof are new:

1. an assertional characterization of token bit accessi-
bility,

2. the definition of effective assignments that brings
about the notion of token creation/destruction,

3. the definition of token count that derives the mu-
tual exclusion theorem,

4. the constructing procedure of a token-list that
faithfully records the arrival time sequence of lock re-
quests so that FIFO ordering can be enforced.

Organization of the paper follows. Section 1 is the
introduction. Section 2 describes the algorithm. Sec-
tion 3 states and proves several useful properties that
support the derivation of the final part of the proofs.
Section 4 finally states and proves the the major prop-
erties that the algorithm possesses. Section 5 is the
conclusion.

2 Craig-LH Lock Algorithm

Figure 1(a) is the data structure and Figure 1(b) the
initial state. Define a PARTICIPATING process to be
one that has requested the per process data structure
from the system and has executed at least one action
of the synchronization algorithm. Let N be the num-
ber of participating processes in the system. FEach
process is allocated a request record which contains
a token bit. The system prepares an extra token bit
besides the NV token bits. Therefore, there would be
N + 1 token bits in total. Private variables are only
accessed by its owner. Global variables are accessed
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Figure 1: Data structure and the initial state for

Craig-LH algorithm

|
g |

Al

pred := fetch&store(L,l)

Figure 2: Craig-LH algorithm



by all participating processes. Private variables are: [
and pred, both of which are pointers that will point
to any of the token bits. Global variables are: L and
the N token bits. Variable L is accessed only through
the fetch&store(L,I) instruction each time a pro-
cess makes a request to enter critical section. The
token bits can only be accessed via a pointer variable,
i.e., via either I or pred.

We will use *pred to denote the token bit pointed
to by pred. Since there is only one field in a request
record, the token bit, there is no ambiguity in what
+pred refers to. Likewise, we will use *I to denote the
token bit pointed to by 1.

Based on the data structure so described and the
initial state shown in Figure 1(b), the following set of
predicates is sufficient to characterize the initial state:
1.{L#£L Vi}

/* L points to a token bit that is different from those
accessible by all processes via I-type pointers. */

2. { L#IL Vi#j }

/* A process’s I pointer must access a token bit that
is different from what other processes can access via I
pointers. */

3. { Li=pred; Vi }

/* Both the pred-type pointer and the I-type pointer
belonging to a process must point to the same token
bit. */

4. { xL=F }

/* L points to a token bit that has false value. */

5. { ;=T Vi }

/* All token bits that are pointed to by the I-type
pointers have true values. */

Several more predicates for the initial state can be de-
rived from the set:

6. { L#pred; Vi }
' /* L points to a token bit that is different from those
pointed to by all pred-type pointers. */

7. { pred; #pred; Vis#£j }

/* Each pred-type pointer points to a distinct token
bit. */

8. { *pred; =T Vi }

/* All token bits pointed to by the pred-type pointers
have true values. */

Figure 2 is the algorithm represented in a flow-chart
like graph. Several cursory observations follows. One
or more edges can go to the same statement. One and
only one edge comes out from an assignment state-
ment. Two edges come out from a decision statement,
one for “Yes”, and the other for “No”. Al and A2
statements, together with the edges, constitute the
acquire procedure. R1, R2 and R3 statements, to-
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gether with the edges, constitute the release proce-
dure. The directed edges represent the control flow of
each process.

A critical section (CS) is placed on edge 3. A non-
critical section (NCS) is placed on edge 0 and another
one on edge 6. The CS, and each NCS as well, repre-
sents a set of actions that do not change any variables
used in the algorithm. In the initial state, all processes
reside at edge 0. A process begins to participate by
executing Al.

Statement R1 contains two actions, *I := F and
I := nil, both of which as a whole will be executed
atomically. The first action is meant to be imple-
mented, while the second is only for convenience of
proof. Deleting the second action from R1 does not
affect the algorithm in any way since the actions fol-
lowing R1 will not use the old value of I anymore.
Such actions are called auziliary actions.

Figure 3 shows an example of several changes of
data structure for several processes. Figure 3(a) is the
initial state. Each process is allocated a token bit, an
I pointer and a pred pointer. In Figure 3(b) pl has
executed Al, where L and pred; are swapped atomi-
cally. In Figure 3(c) p2 and then p3 have executed Al
in sequence. In Figure 3(d) p1 has successfully entered
critical section and has executed R1 and R2, leaving
an “F” in the xpred, token bit and advancing the I;
to where pred; points to. P1 will have the same data
structure as in the initial state after it executes R3.

Definition 1 (Process lifecyle) A process i is in
INITIAL stage if {pred; = I,} and {xI; = T} hold. It 1is
in ENQUEUING stage if {pred; # I} and {+pred; = T}
hold. It is in ELIGIBLE stage if {pred; # I} and
{*pred; = F} hold but is still at edge 1 or 2. It is
in CS stage if it is at edge 3. It is in DEQUEUING
stage if {I; = nil} holds. It is in RETURNING stage if
{pred; = I} and {xI; = F} hold.

A process starts up in an initial stage. It enters an
enqueuing stage via Al action. It enters an eligible
stage when the #pred; token bit is modified by another
process. It enters a CS stage after it actually examines
that token bit. It enters a dequeuing stage via R1
action. It enters a returning stage via R2 action. It
re-enters an initial stage via R3 action.

3 Some useful properties and
their proofs
This section introduces some properties that are in-

strumental for the proof of the properties of a lock
synchronization algorithm.
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Craig-LH algorithm
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3.1 State Transition Model

We use the state transition model[3] in our correctness
proof. A state of the synchronization system consists
of the values of all variables and the edge numbers all
processes are currently at. The initial state charac-
terized by predicates 1-5 in section 2 is actually a set
of such states. When no confusion arises, we do not
make such distinction in our discussion.

A statement consists of a set of actions that are en-
closed by a rectangle node or a diamond node in the
algorithm graph. The actions in a statement are exe-
cuted as a group that is indivisible. For example, the
Al statement, pred := fetch&store(L,I), consists
of two actions that are indivisible as a whole:

1. pred; .= L

2. L= I,'

Variable pred; can be considered as a register that is
local to process ¢ and therefore is not accessible to
other processes. Executing Al, as any other state-
ment, causes a state transition. A state transition
does not necessarily induce a state change, however.
For example, a process repeatedly executing A2 with
“Yes” results in a row does not cause state changes.

3.2 Definition of Mutual Exclusion

We assumes that a process endlessly executes the cy-
cle : NCS, acquire, CS and release. One of the main
goals in designing a lock synchronization algorithm is
to ensure mutual exclusion. The goal is, in the rep-

resentation of the algorithm in terms of a graph, to

ensure that there exists a set of edges that satisfies
the following two criteria:

Indispensability A process cannot completes its
acquire-release cycle without visiting some edge
in the set.

Exclusiveness All edges in the set as a group can-
not be visited simultaneously by two or more pro-
cesses.

Since executing a CS does not cause any state transi-
tion, it causes only an arbitrarily long but finite delay.
When constructing a proof, we can ignore the effect of
executing a CS and concentrate on proving that the
CS set is indeed indispensable and exclusive.
Likewise, we must identify a set of edges that satis-
fies the indispensability criterion (but not necessarily
the exclusiveness criterion) and place a non-critical
section (NCS) at each of the edges. The NCS set is
those edges that coming to the first statement of the
acquire procedure. The placement of CS and NCS in



this way conforms our assumption that a process end-
lessly executes the cycle : NCS, acquire, CS and re-
lease. Executing a NCS, like executing a CS, does not
modify the variables used by the lock algorithm and
therefore causes no state transitions. It only causes
an arbitrarily long but finite delay. Therefore, we can
concentrate on the state transitions caused by execut-
ing acquire or release procedures, and can ignore the
actions in both CS and NCS.

From Figure 2, it is clear that placing CS at edge
3 and placing NCS at edges 0 and 6 satisfies the in-
dispensability criterion. What remains to be proved,
for mutual exclusion, is to prove that edge 3 cannot
be visited by two or more processes simultaneously.

3.3 Token Bit Accessibility via pred-
type pointers

The fetch_and_store instruction, with the global vari-
able L as an operand, plays an important role in
the algorithm. A fundamental property of the al-
gorithm, Theorem 1, will be needed in many places
in the derivation of other properties. It is derived
from an assertional reasoning on the atomic action
pred := fetch&store(L,I). The following definition
helps to simplify the description of the theorem.

Definition 2 The token-access-pointer (TAP for
short) set consists of L and all the pred variables.

When N is the number of participating processes,
there will be N + 1 such pointers in the set and the
same number of token bits in the system. The follow-
ing theorem states a fundamental property that maps
the N + 1 pointers to the N 41 token bits.

Theorem 1 For every reachable state, predicate
{ pred; # pred; Vi # j } and predicate{ L #
pred; Y i } always hold. Stated equivalently, for
every reachable state, each TAP wvariable points to a
distinct token bit.

< proof > The predicates hold in the ini-
tial state. Consider only the atomic action
pred := fetch&store(L,I) since it is the only one

that can possibly cause changes to the TAP point-
ers. From the flow of the algorithm, we see that
pred is assigned with the value of L after the atomic
action, and [ is assigned with the value of pred
at R2. Therefore, before each execution of the
pred := fetch&store(L,I) action by an arbitrary
process i, predicate {pred; = I;} always holds. An
execution of the atomic action always results in the
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values of L and pred; being swapped, since L is as-
signed with the old value of I;, which is equal to pred;,
and pred; is assigned with the old value of L. Swap-
ping a pair of the TAP pointers does not falsify either
of the predicates. The predicates remain true after
every execution of the atomic action. Q.E.D.

From a cursory observation of the algorithm, we
know that a process never access a token bit directly
via the L pointer. A process can access a token bit
either via pred-type or via I-type pointers. Suppose we
are dealing with a particular token bit and are asking
the question: How many processes can possibly access
this token bit via pred-type pointers? The theorem
says that, at any reachable state, there is at most one
process that can possibly access the token bit via a
pred-type pointer.

Suppose we are asking another question: How many
processes can possibly access this token bit via I-type
pointers? The following sub-section answers such
questions.

3.4 Token Bit Accessibility via I-type
pointers

Theorem 2 For all reachable states, the following
predicate holds:

{ L#L Vi#j, L#nil, I; #nil }

Stated equivalently, it is impossible to reach a state in
which a token bit is pointed to by two or more I-type
variables.

< proof > Examines how an action can increase
number of pointers to a token bit. The A1l action can
be ruled out since it only swaps two pointers atom-
ically. Swapping two pointers atomically does not
change the number of pointers to the token bits. The
I := nil action in R1 decreases number of pointers
to a token bit. The only action that can increase num-
ber of pointers to a token bit is R2: I := pred. The
action increases the number by one on the token bit
*pred and, at the same time, decreases the number by
one on the token bit *J. We can conclude that for all
actions, at most one pointer is added to a token bit at
a time. There is no action which can add two or more
pointers to a token bit.

In the initial state, the predicate of the theorem
holds. Each token bit is pointed to by at most one
I-type variable. We only have to prove that it is im-
possible to reach a state in which there exists a token
bit that is pointed to by exactly two I-type variables.
We don’t have to consider those states in which some
token bits are pointed to by more than two I-type vari-
ables since an action can add at most one pointer to



a token bit.

Denote by Sy the set of states in which exactly
two I-type variables point to a toke bit. By way of
contradiction, assume that it is possible to reach a
state in Sy; from the initial state $;n::. Let s € St
be the first state that is reached from s,,;;. Let B be
the token bit in s;; that we identify to be pointed to by
exactly two I-type variables. All other token bits are
pointed to by at most one I-type variable. Without
loss of generality, we assume that B was pointed to
by exactly one I-type variable in the initial state s;,.
There exists a behavior(history) whereby state sy is
reached from sini:. In state s;;, there exist process 4
and process j such that {I; = I;, I; # nill, I; # nil}
and {+I; = x[; = B} hold. Consider the case where
process i had its [ variable pointing to B earlier than
process j did. (By symmetry, we can argue for the
opposite case similarly.) Then the behavior must be
of the form: s;nit,---, 8i;. In order to reach s;; from
Sinit, there must be at least the following events:

1. Process i does Al, resulting in {I; # pred;}. Vari-
able I; remains to point to B, but pred; points
away. Only after pred; points away can process j
have pred; to point to B .

2. Process j does Al, resulting in {pred; = I;}.
Variable pred; points to B.
3. Process j does R2, resulting in {pred; = I;}.

Variable I; points to B too.

We observe that before event 1, B has a “T” in it
and after event 1, B still has a “T”. Before process i
itself set B to “F” at R1, no other process can do that
to B. Before process i itself did that, event 3 cannot
occur because process j cannot pass its spinning at
A2, waiting on B for an “F”. By the time process
1 did R1, B is set to “F”, but at the same time, I;
is assigned nil in the same atomic action. Although
event 3 can occur now, B is pointed to by I;, but
not by I; anymore. We conclude that s;; cannot be
reached.

For the case that B was not pointed to by any I-type
variable in the initial state s;,;;, We consider a behav-
ior(history) of the form: 844, -+, 8:,- -+, 85, Where
8; is the first state in which B was pointed to by ex-
actly one I-type variable. Similarly, we argue that it
is impossible to reach s;;. Q.E.D.

3.5 Assertional Characterization of

Token Bit Accessibility

We have discussed in section 3.3 and section 3.4 token
bit accessibility via the pred-type pointers, and token
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bit accessibility via the I-type pointers, respectively.
The results are the two theorems that are summarised
in several predicates. Such predicates unambigously
characterize the behavior of both type of pointers.
We now consider how a token bit can be accessed
by processes via both types of pointers, be it of pred-
type or of I-type. We will express the result in an
assertional manner in the following theorem.

Theorem 3 Let N be the number of participating
processes. For any reachable state, each of the N + 1
token bits can be pointed to by at most two pointers.
At least one of the token bits is pointed to by exactly
one pointer.

< proof > For N participating processes, there are
2N + 1 pointers among which N pointers are of pred-
type, another N pointers are of I-type, and the last
one is the L pointer. Recall the both the pred pointers
and the L pointer are defined as of TAP-type. From
Theorem 1, we know each token bit is pointed to by
each of the TAP pointers, i.e., the following two pred-
icates are true: { pred; # pred; Vi # j } and
{ L#pred; Vi }. We must also consider the I-type
pointers that can also point to the token bits. From
Theorem 2, we know a token bit cannot be pointed to
by two or more I-type pointers:

Since no other pointers can possibly point to the token
bits, we conclude that a token bit can be pointed to
by at most two pointers:

(1) one of TAP-type, which is necessary, and

(2) one of I-type, which is not necessary.

The reason that a token bit is not necessarily pointed
to by an I-type pointer is that there are only N such
pointers in total while there are N 4 1 token bits in
total. There is always one token bit that is left out.
Since an I-type pointer can sometimes become nil by
the R1 statement, there might be two or more token
bits that are pointed to by exactly one pointer, which
must be of TAP type. When no process is at edge
4, there is exactly one token bit that is pointed to by
exactly one pointer. Q.E.D.

3.6 Constructing Invariants Table

Table 1 is a collection of predicates that are to be
proved correct at certain edges for a process, regard-
less of the actions of other processes. We will examine
each predicate for each edge and then mark with a
“¥symbol if the predicate is proved correct for that
edge. When a predicate has been marked for some
edges, we call it a point invariant at those edges.



Table 1: Invariants for the Craig-LH algorithm

Edge Number

| Predicates 0J1]2]3]4]5]6
1 | I'=pred * it
2 | I#pred S B
3 | L=1I
4 L#I * * *
5 L = pred
6 L # pred *T * [ *| % | £ %
7 | predi#pred; Yi£Fj ff * | *|*|*[*|*|*
R 1 +I=T =+ [+ [+
9 #[ = F *
10 | *pred =T * *
11 | *pred = F
12 L;épred,' Y3 * * * * * * *

When a predicate has been marked for all edges, we
call it a global invariant. A global invariant is a
predicate that is true for all reachable states. If a pred-
icate in the table is not marked for a certain edge, it
does not mean that the predicate is always false when
a process resides at that edge. Rather, it means that
the value of the predicate is not determined. For ex-
ample, predicates 3 and 5 are not marked for each of
the edges. The values of both predicates cannot be
determined for each of the edges.

The rest of the subsection shows the examination
process of the predicates. The order of the predicates
to be examined does not follow the predicate number
in the talbe. Rather, it follows the sequence of deriving
new invariants from previously established theorems
or invariants. Note that the derivation process does
not contain circularity. An example of circularity in
a derivation is when an unproved claim C; is used to
prove claim Cy, and later, claim Cy is used to prove
claim Cj.

Predicate 1: I = pred

Consider a process at edge 0. Initially, {I; = pred; V i}
holds and other processes’ actions cannot change the
value of either I or pred since both variables are local
to the process at edge 0. Therefore, predicate 1 is a
point invariant at edge 0. We mark (1,0).

Consider a process at edge 5. The local variable [
has just been assigned the value of the local variable
pred. Clearly, predicate 1 must be a point invariant
at edge 5. Similarly, it must be a point invariant at
edge 6. We mark (1,5) and (1,6).

Predicate 6: L # pred
By Theorem 1, we can mark all edges for this predi-
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cate.

Predicate 12: L # pred; Vi

By Theorem 1, we can mark all edges for this predi-
cate.

Predicate 7: pred; # pred; Vi#j

By Theorem 1, we can mark all edges for this predi-
cate.

Predicate 4: L #1

The predicate holds for every process in the initial
state. Consider a process ¢ remaining at edge 0 while
other processes may proceed to execute Al and other
actions. Variable L can, however, be changed to be
equal to some I; each time Al is executed by some
process j. But predicate {I; # I; V j # i} holds for
the initial state and the subsequent states in which
process i remains at edge 0. No action of Al by any
other process, nor any other action besides Al, can
lead to {L = I;}. Therefore, {L # I} is a point in-
variant at edge 0. We mark (4,0).

Consider a process 4 at edge 4, having {L # pred}
by entry (6,4). The action R2 (I := pred) clearly
results in a point invariant: {I = pred} at edge 5.
Since {L # pred} also holds at edge 5 and 6, we mark
(4,5) and (4,6).

Predicate 2: I # pred

Consider a process at edge 1. Before the process does
Al, it could have stayed at either 0 or 6. From (4,0)
and (4, 6), we know {L # I} holds prior to action
Al. The predicate {I # pred} must hold at edge 1
since pred has been assigned the old value of L while
I remains unchanged. Both I and pred remains un-
changed for the process when it flows from edge 1 to 4,
therefore the predicate {I # pred} must hold at edge
2, 3 and 4. We mark (2,1), (2,2), (2,3) and (2,4).
Predicate 8: xI =T

By Theorem 2, all non-nil I-type pointers have distinct
values. Consider a process ¢ at edge 0. The predicate
holds at edge 0 since the token bit %/ is not accessible
to any other process as long as process 1 stays at edge
0. We mark (8,0). Consider a process i at edge 6.
Token bit *I; is pointed to by I; and pred;, hence
no other pointers can also point to it. Process ¢ had
just finished R3 (*I := T) and the token bit *I is not
accessible to any other process as long as process 1
stays at edge 6, Therefore, we mark (8,6). Consider a
process ¢ at edge 1, having executed action Al. Prior
to Al, the predicate must hold for process i( since
(8,0) and (8,6) are marked). After Al, the predicate
still holds since no other process can change the token
bit from “T” to “F”. ( A token can only be assigned
“F" via *I := F action in R1. But Theorem 2 tells us
that other I-type variables must point to some other



token bits.) Therefore, we can mark (8,1). Similarly,
we can mark (8,2) and (8,3).

Predicate 10: xpred =T

By (8,0) and (1,0), we can mark (10,0). Similarly, by
(8,6) and (1,6), we can mark (10,6).

Predicate 11: spred = F

Consider a process 7 at edge 3. It had a “No” result
of the test at A2. At least at that particular moment
when the testing is carried out, the predicate is true.
The question is whether the predicate remains true
as long as process ¢ stays at edge 3. No other pro-
cess can access the token bit xpred; via pred variable
since {pred; # pred; V i # j} always holds. The
only process that can possibly access the token bit is
the one, process 7, that had executed Al earlier than
process 4 did and theirefore would have {I; = pred;}
until it re-define I; at R2. Its action at R1 had re-
sulted in process 7 being able to come to edge 3. Its
action at R3 would have done no harm since I; would
have been re-defined to point to elsewhere. No other
process can access pred; as long as process 1 stays at
edge 3. Therefore, we can mark (11,3). Similarly, we
can mark (11,4) and (11,5).

Predicate 9: I = F

Consider a process ¢ at edge 4. We cannot mark (9,4)
even though the process had executed (*I := F) at
R1 because that action may have let go some process
J spinning at A2. Process j may then execute R1, R2
and R3, thereby change the value of I. Consider a
process ¢ at edge 5. By entries (11,5) and (1,5), we
can mark (9,5). Edge 5 is the only one at which the
predicate holds.

4 Correctness Proof of the Al-
gorithm

We now come to the final part of the proof that is
eminently interesting to us.

Definition 3 (Effective Assignmeonts) An assign-
ment action i called EFFECTIVE if the new value after
the action is different from the old value before the ac-
tion.

Theorem 4 All assignment actions in the algorithm
are effective.

< proof > 'The assignment actions are:

1. the assignment pred := L in Al,
2. the assignment L := I in Al,

3. xI :=F,

4. 1 := pred
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5. %I :=T
The assignment I := nil in R1 is not included here
since it is an auxiliary action which is added only for
the convenience of proof.

For each action listed above, we show that the as-
signment is indeed effective as follows.
1. By entries (1,0) and (1,6), {pred = I'} holds before
the action. By entry (2,1), {pred # I} holds after the
action. Since I has not changed, it must be pred that
has changed.
2. Consider a process ¢ taking the assignment action.
By entries (4,0) and (4,6), {L # I;} holds before the
action. By the semantics of fetch&store(L,I), L has
been assigned with the value of I;. Therefore, L has
been changed by the assignment.
3. By entry (8,3), {#I = T'} holds before the action.
4. By entry (2,4), {I # pred} holds before the action.
5. By entry (9,5), {xI = F'} holds before the action.
Q.ED.

Definition 4 Let FTOKENCOUNT of a state be the
number of distinct token bits in the system having false
values tn that state.

Theorem 5 For any reachable state, Ftokencount
equals the number of processes at edges 4 or 5§ plus
one.

< proof > The statement of the theorem holds for
the initial state. From Theorem 4, all assignment ac-
tions are effective. For all actions of R1, Ftokencount
is increased by one and the number of processes at
edge 4 or 5 is also increased by one. The statement
of the theorem still holds. For all actions of R3,
Ftokencount is decreased by one and the number of
processes at edge 4 or 5 is also decreased by one. The
statement of the theorem still holds. Q.ED.

Theorem 6 (Mutual Exclusion) It is impossible

to reach a state in which two or more processes are
at edge 8.

< proof > By way of contradiction, assume that we
reach a state S in which two or more processes are at
edge 3. From entries (8,3) and (11,3), we know {+I =
T} and {+pred = F} hold for each process at edge 3.
From Theorem 1, we know {pred; # pred; V i # j}
holds. We can derive {Ftokencount > 2} since there
are two or more processes at edge 3. By Theorem 5,
there must exist at least one process at edges 4 or
5. But {xpred = F'} holds at edges.4 or 5, observ-
ing entries (11,4) and (11,5). The process at those
edges must have {#pred = F}, and therefore con-
tribute one more count into Ftokencount. That gives



{Ftokencount > 3}. By Theorem 5, there must
exist at least two processes at edges 4 or 5. The
argument can proceed in the same way and gives
{Ftokencount > 4}, {Ftokencount > 5}, and so on.
Therefore, we can write the following predicate:

Ftokencount > N

However, {xI = T} holds for each process at edge 3.
At least two token bits have true values since at least
two processes are at edge 3. Therefore we can write
the following predicate:

Ftokencount < N —1

A contradiction is derived. Q.E.D.

Consider the deadlock possibilities. Following the
strategy of Owicki and Gries[13], deadlock freedom
can be proved by first enumerating all potential dead-
lock states. Then we must show that it is impossible
to reach any of the deadlock states. From the algo-
rithm graph, it is clear that the only possible group of
deadlock states is for all participating processes to be
kept spinning indefinitely at A2. If such possibility is
ruled out, we are assured that no deadlock can occur.

Theorem 7 (Deadlock Freedom) It is impossible
to reach a state in which all participating processes
are kept spinning indefinitely at A2.

< proof > Suppose it is possible to reach such a
state S. All participating processes are kept spinning
indefinitely at A2, hence are at edges 1 or 2 indefi-
nitely. By Theorem 5, { Ftokencount = 1} holds since
no process is at edges 4 or 5. By entries (8,1) and
(8,2), {+*I; = T V i} holds in S. Since all processes are
at edges 1 or 2 indefinitely, {*pred; = T' V i} holds
in S. For all pointer variables in the system, only L
is left to point to the false token bit. Since each to-
ken bits must be pointed to by some TAP pointer by
Theorem 1, we are assured that state S must satisfy
the following predicate:

*L=F

Since all participating processes are kept spinning at
A2, there exists a process ¢ that is the last one in ex-
ecuting fetch&store(L,I) and no other process can
execute that action afterwards. Let that event be E.
The predicate {L = I;} holds after E and will con-
tinue to hold. The predicate {*I; = T} holds prior
to F and will continue to hold since all processes are
to be kept spinning at A2 indefinitely. Combining the
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two predicates, we conclude that state S must satisfy
the following predicate:

*L=T

A contradiction is derived. Q.E.D.

Consider the ordering discipline the algorithm en-
forces. We start from a definition of arrival time and
then show that the algorithm enforces a FIFO disci-
pline following the arrival ordering of the acquiring
processes. Note that a process must arrive each time
it makes a new request to enter critical section.

Definition 5 For each lifecycle of a process, the AR-
RIVAL TIME of the process i3 when the first action of
Acquire procedure is executed.

From the algorithm, it is clear that the arrival time
of a process is the when fetch&store(L,I) is exe-
cuted.

For every reachable state, we can always define a
data structure called T-list that faithfully records the
sequence of requests made by the acquiring processes.
The synchronization algorithm does not maintain the
T-list explicitly. It is defined by a constructing pro-
cedure solely for the purpose of proving the FIFO or-
dering property.

For each reachable state, we can construct the T-
list by the procedure.

Constructing procedure of the T-list:
1. Initially T-list consists of the token bit L alone.

Visit that token bit.

2. If the currently visited token bit is pointed to by
exactly one pointer, then stop.

3. The other pointer to the token bit must be of I-type.
Let the owner process of the pointer be P;. Append
the token bit *pred; to T-list and visit that token bit.
4. Goto 2.

The following lemma, which can be proved, guarantees
that the definition of T-list is valid.

Lemma 1 The constructing procedure of the T-list al-
ways terminates.

Theorem 8 (FIFO ordering) The acquiring pro-
cesses will enter critical section in the order of their
arrival time.

< proof > The basis of the proof is the T-list which
faithfully records the order of the arrival sequence of
the acquiring processes. Full proof is omitted. Q.E.D.

It has been shown by Lamport[10] that a mutual
exclusion algorithm is starvation free if it is deadlock
free and satisfies FIFO ordering. Starvation freedom is
assured directly from the Deadlock Freedom Theorem
and the FIFO ordering Theorem.



5 Conclusion

Correctness proof of multiprocessing algorithms for
shared-memory systems encounters a basic difficulty
that any memory access of a process can interfere with
that of other processes. One major effort in the proof
is to reduce the scope of the interference. The as-
sertional characterization of the token bit accessibility
reduces the scope of interference from N-processes to
2-processes. More specifically, the Theorem 1 allows
us to consider only the owner of the token bit (via the
I pointer) and the unique successor process (via the
pred pointer) as the possible processes having access
to a particular token bit. Without the theorem, we
would have to consider all participating processes as
the possible processes.

Token is often used in synchronization algorithms
for message-passing systems. In shared-memory sys-
tems, however, the notion of token needs a formal
definition. A token is nothing but a false value in
a token bit, and therefore can be inadvertently de-
stroyed or created by a memory access action of any
process. Our definition of effective assignments for-
mally defines the notion of token creation/destruction
by certain actions: a R1 action creates a token, and
a R3 action destroys a token. Once we have the no-
tion of token creation and destruction, we are able to
derive Theorem 5 that supports the Mutual Exclusion
Theorem.

The proofs for Deadlock Freedom and FIFO Order-
ing Theorems also use the supporting properties that
we established in section 3. The reasonings are pre-
cise and concise in those proofs because we were able
to state the supporting properties in predicates. The
rigorous approach that we take in our proofs aiso helps
to prevent circularity in the proof process. Without
such rigor, one can be inclined to use high level con-
cepts about the program behavior in the proof process.
Worse yet, one can even be tempted to justify the high
level concepts using the final theorems. That would be
a case of circularity that can easily be left undetected.
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