
A Fair and Space-efficient Mutual Exclusion

Sheng-Hsiung Chen and Ting-Lu Huang
Dept. Comp. Sci. & Info. Engr.
National Chiao Tung University

Hsinchu, Taiwan, R.O.C.
{chenss,tlhuang}@csie.nctu.edu.tw

Abstract

For shared memory systems with time and resource con-
straints such as embedded real-time systems, mutual ex-
clusion mechanism that is both fair and space-efficient
can be very useful. In this paper, we present a bounded-
bypass algorithm using only two shared variables, regard-
less of the number of contending processes, by operation
fetch&store as well as atomic read/write. To achieve the
same level of fairness, we show that, by the same set of op-
erations, two shared variables are necessary, and therefore
our algorithm is space-optimal.

1. Introduction

The mutual exclusion problem [4] is fundamental in mul-
tiprocessing systems for managing accesses to a single in-
divisible resource. In this problem, a process accesses the
resource within a distinct part of code called its critical
region. Before and after executing the critical region, a
process executes trying and exit regions, respectively, in or-
der to guarantee the following requirements.

Mutual Exclusion: At most one process at a time is per-
mitted to enter its critical region.

Progress: If some process is in the trying region and no
one is in the critical region, then at some later point
some process enters the critical region. In addition, a
process in the exit region will eventually enter the rest
of code, called the remainder region.

Within the last few years there has been a surge of inter-
est in embedded real-time systems such as automotive con-
trol systems, mobile computing devices and home electron-
ics. In general, an algorithm for such systems should take
time and resource constraints into consideration. As shown
below, a mutual exclusion algorithm, in particular, should
take fairness and space-efficiency into consideration.

A mutual exclusion algorithm may not guarantee that the
critical region is granted “fairly” to each individual process;
that is, starvation may occur. A fair mutual exclusion al-
gorithm means that it has the ability to control the order of
granting requests in a fair manner. In systems with time con-
straint, a process has a deadline in executing a particular job.
The goal of a fair mutual exclusion is to reduce the worst-
case waiting time and thereby make the algorithm more fea-
sible for such systems.

Besides, the major goal of a space-efficient mutual ex-
clusion algorithm is to reduce the memory consumption. It
is crucial for systems with resource constraint. For instance,
embedded systems often have small memory (about 32–64
kBytes [13]) since making low production costs is one of
the primary concerns in their design. Thus, an algorithm for
such systems must be space-efficient.

In terms of space complexity, most of n-process mutual
exclusion algorithms in the literature use at least n shared
variables; see surveys of Raynal [11] and Anderson et al. [1]
However, the number n may be very large and even un-
known because a process, in practice, can usually be created
and destroyed dynamically. Hence, these algorithms using
at least n variables are not suitable for space-limited sys-
tems.

The primary contribution of this paper is a fair and space-
efficient mutual exclusion algorithm. Our algorithm has the
following advantages.

Fair: The algorithm is 2-bounded-bypass.

Space-efficient: Only constant two shared variables
are needed, regardless of the number of contend-
ing processes.

We say that a mutual exclusion algorithm satisfies b-
bounded bypass if a requesting process cannot be bypassed
by any certain process in accessing the resource for more
than b times. An algorithm is bounded-bypass if it is b-
bounded-bypass for some constant b. In fact, 2-bounded
bypass is very close to the first-in-first-out (FIFO) order,
the most stringent fairness requirement, which satisfies 1-

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

bounded bypass. (More precisely, a FIFO algorithm is also
1-bounded-bypass, but the reverse is not true.) For real-time
systems, we suggest that a fair mutual exclusion algorithm
should satisfy at least bounded bypass so that a process can
roughly estimate the waiting time. For instance, in our 2-
bounded-bypass algorithm, after requesting the critical re-
gion, a process will not be bypassed more than 2(n − 1)
times totally by all other processes. In contrast, if an algo-
rithm only satisfies starvation freedom (i.e., no process will
starve), it is possible that a process might be bypassed un-
bounded times.

To implement our algorithm, we use operation
fetch&store in addition to atomic read and write.
Burns and Lynch [3] have shown n shared variables are
necessary to solve the n-process mutual exclusion prob-
lem if only read and write are available. Thus, we need
certain more powerful operations to reduce the space re-
quirement. Fortunately, modern microprocessors often pro-
vide some read-modify-write (RMW) operations such as
test&set, fetch&store, compare&swap, etc. In one in-
stantaneous step, an RMW operation can read a shared vari-
able and write back a new value according to the current
value and the submitted function. Operation fetch&store
is adopted to implement our algorithm since it is a com-
monly supported instruction in modern microprocessors
such as a series of processors of Intel and AMD, Mo-
torola 88000, and SPARC [12]. Especially, it is also avail-
able in the ARM processor family1 which is arguably
the most popular embedded architecture today. Thus, us-
ing fetch&store makes the algorithm more portable.

Notice that, in the literature, there are several algorithms
using only one shared variable and guaranteeing certain
level of fairness. For instance, Fischer et al. [7] devised a
FIFO algorithm. Burns et al. [2] devised a bounded-bypass
algorithm and a starvation-free algorithm2. Unfortunately,
all of these algorithms used hypothetical RMW operations
which have never been implemented in any system ship-
ping today. In contrast, our algorithm uses no hypothetical
RMW operation and requires only one more shared vari-
able than these algorithms.

Our algorithm is inspired by the circular list-based mu-
tual exclusion algorithm proposed by Fu and Tzeng [8, 9].
As their method, our algorithm also let waiting processes
form a list. But the way of conveying permission in a list
and between two lists is very different from theirs. By their
way, a process may be blocked in the exit region. In con-
trast, our algorithm eliminates this drawback. Actually, the
problem they tackle is to reduce the number of remote mem-

1 The ARM processor provides the SWP instruction performing the
same functionality of fetch&store. The instruction set can be found
at http://www.arm.com/documentation/ARMProcessor Cores/.

2 Indeed, their work aimed at theoretical discussion between data re-
quirements and different fairness conditions.

ory accesses, whereas we try to reduce the space complex-
ity and guarantee certain level of fairness.

In addition, we prove that it is impossible to obtain any
bounded-bypass algorithm with fewer than two shared vari-
ables by fetch&store as well as read and write. Our algo-
rithm is therefore space-optimal by the same set of opera-
tions. To follow the convention in the literature on impossi-
bility results, a shared variable associated with a set of oper-
ations is called an object. We prove this impossibility result
by showing a more general result: using only historyless
objects, two object instances are required to implement a
bounded-bypass mutual exclusion algorithm. Since a shared
variable associated with read/write and fetch&store is a
historyless object, our algorithm is space-optimal. The def-
inition of a historyless object is given by Fich et al. [6] and
will be restated in Section 4. Informally, an object is his-
toryless if its value after a sequence of operations applied
to it depends only on the last nontrivial operation in the se-
quence. A nontrivial operation is one that will write a value
into the object. For example, a shared variable associated
with any subset of read, write, fetch&store and test&set
operations is a historyless object. This lower bound holds
even if the objects have infinite size.

Our lower bound proof technique is related to the method
introduced by Burns and Lynch in proving the lower bound
of n on the number of read/write objects required to solve
the n-process mutual exclusion problem [3]. The difference
is that our lower bound applies to all historyless objects
rather than only read/write objects. Moreover, our lower
bound is for the bounded-bypass mutual exclusion problem,
whereas Burns and Lynch consider the general mutual ex-
clusion problem.

Although there are many fair mutual exclusion algo-
rithms in the literature, few of these algorithms are also
space-efficient [11, 1]. For those algorithms that are both
fair and space-efficient, however, they used hypothetical op-
erations [2, 7]. Without any hypothetical operations, this pa-
per provide a fair and space-efficient algorithm. This algo-
rithm may be useful for systems with time and resource con-
straints.

The rest of the paper is organized as follows. Section 2
provides the system model and definitions about the prob-
lem. In Section 3, we present our algorithm. Section 4 gives
an impossibility result. Finally, Section 5 is the conclusion.

2. System model and Definitions

2.1. Asynchronous Shared Memory Model

An algorithm in an asynchronous shared memory model
is modelled as a triple (P ,V , δ), where P is a nonempty fi-
nite set of processes, V is a nonempty finite set of shared
variables, and δ is a transition relation for the entire sys-

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

tem. Each variable v ∈ V has an associated set of values,
among which some are designated as the initial values. Each
process i is a kind of state machine with the following ele-
ments.

• Σi: a set of states;

• Ii: a subset of Σi, indicating the start states;

• Πi: a set of steps, describing the activities in which it
participates.

A step may involve the shared memory. If it does, we as-
sume that it involves only one shared variable.

A system state is a tuple consisting of the state of each
process in P and the value of each shared variable in V . For
a system state s, we write s(i), i ∈ P , to denote the state
of process i in s, and s(v), v ∈ V , to denote the value of
shared variable v. An initial system state is a system state
s in which s(i) ∈ Ii for each process i ∈ P and s(v) is
a value in the set of initial values for each shared variable
v ∈ V .

The transition relation δ is a set of (s, e, s′), where s and
s′ are system states, and where e ∈ Πi for some process i.
The transition relation δ has a locality restriction as follows.
If step e of process i does not involve any shared variable,
only the state of process i can be involved. Otherwise—e
involves a shared variable v, only the state of process i and
the value of v can be involved.

A step e is enabled at system state s if there exists a sys-
tem state s′ such that (s, e, s′) ∈ δ. We assume that whether
a step of a process is enabled at a system state depends only
on the process state. Namely, if e ∈ Πi (i.e., e is a step of
process i) is enabled at system state s, then e is also en-
abled at any system state s′ that s(i) = s′(i).

An execution fragment is defined as an alternating fi-
nite or infinite sequence, s0, e1, s1, . . ., consisting of system
states alternated with steps, where successive (state, step,
state) triples satisfy the transition relation. An execution is
an execution fragment whose s0 is an initial system state. A
system state s is a reachable one if there exists a finite exe-
cution that ends with s.

2.2. The operations

Under this model, shared variables will be accessed by
processes through atomic operations. In addition to atomic
read and write, operation fetch&store is involved in this
paper. A fetch&store operation is formally defined below.

fetch&store(variable v, value u)
previous := v
v := u
return previous

It atomically writes value u into variable v and returns the
old value.

2.3. The Problem

So far, we have described an asynchronous shared mem-
ory model. We now give a formal definition of the mutual
exclusion problem which is similar to the definition pro-
posed by Burns et al. in [2].

Informally, the mutual exclusion problem is to devise
algorithms for each process to access a designated region
of code called the critical region. A process can only oc-
cupy its critical region while no other process is in its own.
In order to gain the permission to enter its critical region,
a process executes the trying region code, and when the
process leaves its critical region, it executes the exit region
code and then returns to the rest of its code, called the re-
mainder region.

For each process i, Σi is partitioned into nonempty dis-
joint subsets Ri, Ti, Ci and Ei. We say that a process i is in
the remainder (R) region, trying (T) region, critical (C) re-
gion and exit (E) region at system state s if s(i) belongs to
Ri, Ti, Ci and Ei, respectively. A system state is said to
be idle if all processes are in R region. For each initial sys-
tem state, we assume that it is idle. Besides, we assume that
each process obeys an endless loop of life cycle: remain-
der region, trying region, critical region and exit region.

Finally, an algorithm which specifies the actions of each
process solves the mutual exclusion problem must meet the
conditions below.

Mutual exclusion: In any execution, there is no reachable
system state at which more than one process is in C re-
gion.

The next condition depends on a low-level fairness as-
sumption for executions. We say that an execution is low-
level fair if for each process i that contains only finite steps
in this execution, the state of i belongs to Ri after i per-
forms its last step. Namely, a process halts in a low-level
fair execution only if it is in R region.

Progress: At any point in a low-level fair execution,

1. If at least one process is in T region and no other
process is in C region, then at some later point
some process enters C region.

2. If at least one process is in E region, then at some
later point some process enters R region.

The above-mentioned requirements are necessary for a
mutual exclusion algorithm to be correct. However, there is
no guarantee that the critical region is granted fairly to each
individual process, i.e., starvation may occur. Thus, it is of-
ten desirable to have some level of fairness of granting the
critical region.

A mutual exclusion algorithm is bounded-bypass if it
guarantees b-bounded bypass for some constant b. Condi-
tion b-bounded bypass is defined as follows.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Shared variables:
L ∈ {nil, 1, . . . , n}, initially nil
P ∈ {(current, head) | current, head ∈ {nil, 1, . . . , n}},

initially (nil, arbitrary)

Process i : (1 ≤ i ≤ n)

Private variables of i:
next, tail, c, h ∈ {nil, 1, . . . , n}

while true do
R: Remainder region
T1: next := fetch&store(L, i);
T2: (c, h) := P ;
T3: if next = nil then
T4: while c �= nil do � await current = nil
T5: (c, h) := P od
T6: P := (i, h);
T7: else
T8: while c �= i do � await current = i
T9: (c, h) := P od
T10: fi
C: Critical region
E1: if next = nil then � as a controller

� close the waiting list
E2: tail := fetch&store(L, nil);
E3: if tail �= i then

� wake up the tail and set head as i
E4: P := (tail, i);
E5: else
E6: P := (nil, h) fi � reset current
E7: else � as a list member
E8: if next = h then
E9: P := (nil, h); � reset current
E10: else

� wake up the predecessor
E11: P := (next, h) fi
E12: fi

od

Figure 1. The algorithm.

b-bounded bypass: After a process i has performed a step
in T region, process i cannot be bypassed by any cer-
tain process in entering C region for more than b times.

3. A Fair and Space-efficient Algorithm

In this section, we propose a bounded-bypass mu-
tual exclusion algorithm using only 2 shared variables by
read/write and fetch&store operations.

The algorithm is shown in Figure 1. Figure 2 is an ex-
ample to explain how it works. Exactly two shared vari-
ables are used in the algorithm: variable L is used to arrange
processes’ requests to C region; while variable P is used to

nil

L P

(a)

(nil, nil) 5

L P

(b)

(5, nil) 4

L P

(c)

(5, nil)

nil

L P

(d)

(5, nil) nil

L P

(e)

(4, 5) 1

L P

(f)

(2, 5)

7

L P

(g)

(nil, 5) 7

L P

(h)

(1, 5)

5 5

2

4

5

2

4

5

2

4

5

2

4

1

5

2

4

1 5

2

4

1

7 7

list 1

list 1 list 1list 2list 2

list 2list 1list 1

Figure 2. An execution of the algorithm. A
gray node indicates a process that has fin-
ished one life cycle.

indicate which process has permission to enter C region.
Variable P consists of two parts (current, head), each be-
ing the identity of a process or nil. Initially, variables L and
P are set to nil and (nil, arbitrary), respectively. In addi-
tion, each process has several private variables. If v is a pri-
vate variable of process i, we write vi to denote v. Note that
in shared memory systems, private variables of a process
can be seen as part of the state of the process. Thus, the
space consumption does not include private variables. In
fact, it costs little to implement private variables by hard-
ware since no memory consistency protocol is needed.

In T region, a process makes a request by executing
fetch&store to L (T1), announcing its process identity and
obtaining the predecessor’s identity if there is one. As a re-
sult, a waiting list will be formed. If a process acquires nil
from L (i.e., next = nil), it is selected as the controller of

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

the list. Otherwise (i.e., next �= nil), it is just a list mem-
ber. For example, in Figure 2(b–c), process 5 first makes a
request and acquires nil from L. Next, processes 2 and 4 ex-
ecute T1 in turn. The waiting list is shown in Figure 2(c).

The value of shared variable P indicates which process
has permission to enter C region. After executing T1, the
requesting process repeatedly tests P . As a controller, it re-
peatedly tests until current is equal to nil (T4–T5) which
is a specific permission for a controller. The controller takes
the permission by setting current as its identity (T6). (This
action prevents another new controller to enter C region.)
As a list member, it repeatedly tests until current is equal
to its identity (T8–T9) indicating it gains the permission to
enter C region. Since current is nil initially, the first con-
troller at all will gain the permission to enter C region. For
instance, in Figure 2(b), since current = nil process 5 will
enter C region after setting current as 5. In Figure 2(c),
because neither process 2 nor process 4 gets nil from L,
processes 2 and 4 are waiting at T8–T9 until current = 2
and current = 4, respectively.

The waiting list will be closed after the controller of the
list leaves C region. The controller closes the list by E2
which returns the identity of the tail of the list and mean-
while resets L as nil. The controller stores this identity into
its private variable tail. This closed waiting list contains all
processes making requests between the controller obtain-
ing nil from L (T1) and resetting L as nil (E2). After the
list is closed, the permission will be transmitted along the
list. As shown in Figure 2(d), when process 5 leaves C re-
gion, it closes the list by E2. The edge from 5 to 4 indicates
that tail5 = 4.

We now show how the permission is transmitted. As a
controller, two cases are discussed after it closes the waiting
list (E2). Suppose process i is a controller. (i) If the list con-
tains any process other than the controller (i.e., tail �= i),
the controller passes the permission to the tail of the list and
sets head as i by writing (tail, i) into P (E4). The value
of head will be used to check whether all processes in the
list have finished their C region. (ii) Otherwise, it just re-
sets the current of P (E6).

As a list member, the process simply transfers the per-
mission to its predecessor by setting current of P as next
(E11) and then enters its remainder region. However, if the
predecessor is the head of this list, the process should not
pass the permission to the head which has finished C re-
gion. Some information is needed for checking this situa-
tion. Part head of P is used to provide this information. If
the value of next of the process is equal to head, the process
will set current of P as nil instead of next (E9) to indi-
cate that all processes in the list have finished C region.

For example, in Figure 2(e), after process 5 closes the
waiting list, process 5 passes the permission to the tail,
process 4, and sets head as 5 by writing (4, 5) into P .

Process 4 will gain the permission and pass it to process
2 by setting current as 2 (E11) after finishing C region.
(See Figure 2(f).) Since next2 = head, process 2 will set
current as nil to indicate that all processes in the list have
finished C region.

Although resetting L as nil might introduce a new con-
troller as a controller closes a waiting list, this new con-
troller and subsequent requesting processes will not obtain
the permission (since current �= nill) until all processes in
the previous waiting list have finished their critical regions.
This contributes to the bounded bypass property of our al-
gorithm. As shown in Figure 2(f–h), a new list called list 2
forms after L is reset as nil by process 5. The head of list 2,
process 1, will not obtain the permission until all processes
in list 1 have finished C region. When process 2 in list 1 re-
sets current as nil, process 1 in list 2 will gain the permis-
sion to enter C region.

4. Impossibility Result

In this section, we show that the bounded-bypass mutual
exclusion problem can not be solved at all with fewer than
two shared variables by only read/write and fetch&store
operations. In the proof of this impossibility result, a shared
variable associated with a set of operations is defined as an
object. To prove this result, we show a more general one:
using only historyless objects, two object instances are nec-
essary to solve the bounded-bypass mutual exclusion prob-
lem. In our model, each shared variable can be manipulated
by operations read/write and fetch&store. That is, the
model provides the object associated with read/write and
fetch&store. As shown later, this object is a kind of histo-
ryless objects. Thus, the lower bound about historyless ob-
jects can be applied to our model and thereby implies that
our algorithm is space-optimal. We first give the definition
of historyless objects proposed by Fich et al. [6] and then
present the proof.

An object is a variable shared by processes. Each ob-
ject has a type which consists of a set of possible values and
a set of operations that provide the only means to manipu-
late the object. An operation of an object type is regarded
as trivial if it leaves the value of the object unchanged after
performing this operation. We say that an operation e over-
writes an operation e′ on an object, if, starting from any
value, applying e′ and then e yields the same value in the
object as applying just e. An object is historyless if all its
nontrivial operations overwrite one another. For example,
read is a trivial operation. Operations write, fetch&store
and test&set overwrite one another. Thus, an object asso-
ciated with any subset of read, write, fetch&store and
test&set is historyless. (This implies that the object pro-
vided in our model is historyless.) For a historyless object,
its value depends only on the last nontrivial operation ap-

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

plied to it because the last nontrivial operation will over-
write the value that might have been written into the object.

Next, we start to present the proof. We follow the prov-
ing strategies proposed by Burns and Lynch [3]. Two more
definitions are needed. The first one is borrowed from [10].

Definition 1 System states s and s′ are indistinguishable to

process i, written as s
i∼ s′, if the state of process i and the

values of all the object instances are the same in s and s′.

The second definition generalized the one defined by
Burns and Lynch [3]. According to their original definition,
a process covers shared variable x if a write operation of
the process is enabled to write x. An enabled write opera-
tion will overwrite the variable it involves. Similarly, a non-
trivial operation of a historyless object will also overwrite
the object. Thus, we generalize the concept of “covering”
to historyless objects.

Definition 2 Process i covers a historyless object instance
x at system state s provided that i enables a nontrivial op-
eration of x.

Once process i covers a historyless object instance x, i will
overwrite the value of x by performing this nontrivial oper-
ation.

The main idea of the lower bound is that when a process
covers a historyless object instance x, it will overwrite the
information that other processes might have written to x.
If a request of some process is overwritten, we may let an-
other process enter C region so many times that violate the
bounded bypass condition.

Before proving the lower bound, we present a basic
lemma showing that a process in E region must take a non-
trivial operation on some object instance.

Lemma 1 Suppose A is a mutual exclusion algorithm for
n ≥ 2 processes. Suppose that s is a reachable system state
at which process i is in C region. If process i reaches R re-
gion in an execution fragment starting from s that involves
steps of i only, then it must take a nontrivial operation to
some object instance along the way.

Proof. Let α1 be any finite execution fragment that starts
from s (at which i is in C region), involves steps of i only,
and ends with process i in R. By way of contradiction, sup-
pose that α1 does not include any nontrivial operation to
any object instance. Let s′ be the system state at the end
of α1. Since the values of all object instances remain un-

changed, we have s
j∼ s′, for all j �= i.

According to the progress condition, there is an execu-
tion fragment starting from s′ and not including any step of
process i such that some other process reaches C region. Be-

cause s
j∼ s′, for all j �= i, there is also such an execution

fragment starting from s.

An execution α violating the mutual exclusion is easily
constructed as follows. Execution α begins with a finite ex-
ecution fragment leading to reachable state s, then let an-
other process go to C region without any step of i. Since
there are two processes in C region at the end of α, this vi-
olates the mutual exclusion condition. �

Theorem 2 If algorithm A solves the bounded-bypass mu-
tual exclusion problem for n > 2 processes, using only his-
toryless objects, then A must use at least 2 object instances.

Proof. Suppose for the sake of contradiction that there is
such an algorithm, say A, using only one historyless ob-
ject instance, say x, and guaranteeing b-bounded bypass.
We construct an execution of A that violates bounded by-
pass. This construction is depicted in Figure 3.

Starting from an initial system state s, which is idle, the
progress condition implies that there is an execution involv-
ing only process i that causes process i to enter C region
once and back to an idle system state s′. Lemma 1 implies
that process i must take a nontrivial operation on some ob-
ject instance in E region. Since only one object instance is
involved, process i must take a nontrivial operation to his-
toryless object instance x in E region. That is, i must ever
cover x in E region in this execution.

Next, let α1 be the prefix of this execution up to the point
where process i last covers x. Then we extend α1 to α2 by
letting process j perform a step in T region and continuing
to run process i one step which overwrites the value of x.
Let the final system states of α1 and α2 be s1 and s2, respec-
tively. In s′ and s2, the object instance x has the same value

and therefore s′ k∼ s2, for all k �= i and j. Only process i
might know that process j has preformed a step by the re-
turn value when process i overwrote x.

Since s′ k∼ s2, for all k �= i and j, and s′ is an idle sys-
tem state, we can run process k alone from s2 (k exists since
n > 2), and let process k enter the critical region b+1 times.
This is the needed contradiction because process k bypasses
j more than b times. �

5. Conclusion

For systems with time and space constraints, we have
provided a fair and space-efficient algorithm. The algorithm
is 2-bounded-bypass and requires only 2 shared variables
by commonly available operation fetch&store as well as
read/write.

By the same set of operations, we have proved that it is
impossible to obtain any bounded-bypass algorithm better
than ours in terms of space requirement. We prove this im-
possibility result by showing that using historyless objects
including shared variables associated with read/write and
fetch&store, two object instances are necessary to solve
the bounded-bypass mutual exclusion problem. The proof

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

i in C

i only

i last covers x

s'

idle state

s1

s2

k in C k in C

k enters C region (b + 1) times

j performs a step in T

i writes a value into x

s

idle state

˙˙˙

Figure 3. The execution for the proof of Theorem 2.

technique is related to the method, called a covering argu-
ment, introduced by Burns and Lynch [3].

The hot spot contention [5], the maximal number of
pending operations for any individual variable in any ex-
ecution, of our algorithm is n, where n is the number of
processes. Since only constant number of variables are used
in the algorithm, Ω(n) hot spot contention is unavoidable.
To alleviate this problem, the number of variables might in-
crease. In his paper, we mainly focus on reducing space con-
sumption to meet the resource constraint.

Actually, there are several fair algorithms using only one
shared variable [2, 7]. However, all of these algorithms are
implemented by hypothetical read-modify-write operations.
In contrast, our algorithm uses only operations commonly
provided by hardware, and requires only one more variable
than these algorithms.

References

[1] J. H. Anderson, Y.-J. Kim, and T. Herman. Shared-memomry
mutual exclusion: major research trends since 1986. Distrib-
uted Computing, 16(2-3):75–110, Sept. 2003.

[2] J. E. Burns, P. Jackson, N. A. Lynch, M. J. Fischer, and G. L.
Peterson. Data requirements for implementation of n-process
mutual exclusion using a single shared variable. J. ACM,
29(1):183–205, Jan. 1982.

[3] J. E. Burns and N. A. Lynch. Bounds on shared mem-
ory for mutual exclusion. Information and Computation,
107(2):171–184, Dec. 1993.

[4] E. W. Dijkstra. Solution of a problem in concurrent program-
ming control. Communications of the ACM, 8(9):569, Sept.
1965.

[5] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared
memory algorithms. J. ACM, 44(6):779–805, Nov. 1997.

[6] F. Fich, M. Herlihy, and N. Shavit. On the space complex-
ity of randomized synchronization. J. ACM, 45(5):843–862,
Sept. 1998.

[7] M. J. Fischer, N. A. Lynch, J. E. Burns, and A. Borodin. Dis-
tributed FIFO allocation of identical resources using small
shared space. ACM Transactions on Programming Lan-
guages and Systems, 11(1):90–114, Jan. 1989.

[8] S. S. Fu and N.-F. Tzeng. A circular list-based mutual exclu-
sion scheme for large shared-memory multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 8(6):628–
639, June 1997.

[9] T.-L. Huang and C.-H. Shann. A comment on “A circular
list-based mutual exclusion scheme for large shared-memory
multiprocessors”. IEEE Transactions on Parallel and Dis-
tributed Systems, 9(4):414–415, Apr. 1998.

[10] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[11] M. Raynal. Algorithms for Mutual Exclusion. The MIT
Press, 1986.

[12] I. Rhee. Optimizing a FIFO, scalable spin lock using con-
sistent memory. In Proceedings of the 17th IEEE Real-Time
Systems Symposium, pages 106–114, Dec. 1996.

[13] K. M. Zuberi and K. G. Shin. An efficient semaphore im-
plementation scheme for small-memory embedded systems.
In Proceedings of the Third IEEE Real-Time Technology and
Applications Symposium, pages 25–34, June 1997.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

