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Abstract

Many nonblocking algorithms have been proposed for
shared queues. Previous studies indicate that link-based al-
gorithms perform best. However, these algorithms have a
memory management problem: a dequeued node can not
be freed or reused without proper handling. The problem
is usually overlooked; one just assumes the existence of a
lower level mechanism, which takes care of all the details
of handling the problem. Employing such a mechanism in-
curs significant overheads, and consequently the link-based
queues may not perform as well as claimed. A new non-
blocking queue algorithm based on a finite array is pro-
posed in this paper. Comparing with the link-based al-
gorithms, the new algorithm provides the same degree of
concurrency without being subject to the memory problem,
hence suggests a good performance.

Keywords: concurrent queue, nonblocking, compare-and-
swap, linearizability

1. Introduction

Algorithms for concurrent data structures can be classi-
fied as either blocking ones or nonblocking ones. Blocking
algorithms are those in which a process trying to read or
modify the data structure isolates or locks part or all of the
data structure to prevent interference from other processes.
A deadlock may occur in such algorithms if a process fails
or is halted. Such algorithms also suffer from significant
performance degradation when a process is delayed at an
inopportune moment [6][7][9]. Possible sources of delay
include process preemption, page faults, remote memory
access, and cache misses. Nonblocking algorithms, on the
other hand, ensure that the data structure is always access-
able to all processes. Such algorithms guarantee that some
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active process can finish its operation in a finite number of
steps, no matter whether or not there are other processes
being halted or delayed. Nonblocking algorithms are thus
more robust in the presence of process failures. Nonblock-
ing algorithms outperform blocking ones when process de-
lay cannot be ignored.

Concurrent queues are widely used in a variety of par-
allel applications and operating system implementations.
Many nonblocking queue algorithms have been proposed.
They can be classified into three categories: queues resulted
from universal constructions, array-based queues, and link-
based queues. A universal construction is a transformation
that constructing a concurrent nonblocking data structure
from a sequential one. Herlihy [2] first presented such a
transformation. It requires the entire data structure to be
copied on every update, and the concurrency of the data
structure is also restricted by the transformation, resulting
in poor performance. Herlihy proposes an optimization by
which the programimer can avoid some fraction of the copy-
ing for certain data structures [2]. Alemany and Felten [1]
and LaMarca [5] also proposed techniques to reduce unnec-
essary copying associated with Herlihy’s methodologies.
However, even with the optimizations applied, nonblocking
queues resulted from universal constructions perform worse
than the link-based queues.

The second category is the nonblocking queues based
on finite or infinite arrays. Herlihy and Wing [3] gave a
nonblocking queue algorithm that requires an infinite array.
Wing and Gong [14] proposed a modification that removes
the need for an infinite array. Treiber [11] also presented a
similar algorithm that does not use an infinite array. How-
ever, the dequeue operation incurs an accumulative cost:
the running time of dequeue operation is proportional to
the number of enqueue operations that have been com-
pleted since initialization. Poor performance is expected as
a result of the accumulative cost. Valois [13][12] gave an
array-based algorithm which requires a special unaligned
compare-and-swap which is not implemented on any
existing machine.



The third category consists of algorithms based on link-
ing lists. Prakash, Lee, and Johnson [8][9] presented a link-
based nonblocking algorithm that requires enqueuing and
dequeuing processes to take a snapshot of the queue in or-
der to determine its state prior to an update. Valois [13][12]
improved the algorithm by avoiding the snapshot and by al-
lowing more concurrency by keeping a dummy node at the
front of the linked-list, thus simplified a special case associ-
ated with empty and single item queues. Michael and Scott
[6][7] also presented a link-based algorithm similar to the
one proposed by Valois. These link-based queue algorithms
enjoy a high degree of concurrency, and are efficient.

Performance analyses in [6][9][13] suggest that link-
based queues outperform the ones of other categories. Un-
fortunately, link-based queues are subject to a memory man-
agement problem: once a dequeuing process removes a
node from the list, the node cannot be freed because there
may be some other processes that are still accessing it.
Since memory is a limited resource, there must be some
mechanism to help freeing or reusing the dequeued node.
Suggested solutions to deal with this problem introduce sig-
nificant overheads, and the concurrency of the queue may
also be restricted. The memory management problem will
be discussed in detail in section 2.

Our goal is to design a nonblocking concurrent queue al-
gorithm that supports enqueue and dequeue operations. The
new algorithm is based on a finite array, and use popular
compare-and-~swap primitives. The features of the al-
gorithm include (1) absence of the memory management
problem associates with the link-based algorithms, (2) pre-
serving the concurrency of the queue, and (3) dequeue time
without the accumulative cost associates with other array-
based algorithms. The rest of the paper is organized as fol-
lows. Section 2 describes the memory management prob-
lem and strategies to deal with it. Section 3 describes a new
array-based concurrent queue algorithm. The correctness
of the algorithm is presented in section 4. Section 5 is our
conclusions.

2. The Memory Management Problem

In link-based nonblocking queue algorithms, a queue is
expressed as a linked-list of nodes; an enqueuer inserts a
node into the list, and a dequeuer removes a node from the
list; processes can access the list concurrently. The mem-
ory management problem occurs when a dequeuer removes
a node from the list, and at this point, some other processes
may still want to access the node. The dequeued node can-
not be freed, or subsequent accesses to the node will fail.
Two strategies are suggested to deal with this problem.

The first strategy is to reuse a dequeued node. If this
strategy is to be used, the queue algorithm has to maintain a
pool of free nodes. Whenever an enqueuer requires a node,
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it obtains one from the free pool; whenever a dequeuer re-
moves a node from the queue, the node is added to the free
pool for later use. A concurrent stack is usually suggested
to implement the free pool [6][9].

Several drawbacks come along with this strategy:
(1) maintaining the free pool incurs significant overheads,
and (2) the concurrency of the queue may also be restricted
by the implementation of the free pool. To see how the con-
currency is restricted, suppose a stack is used to implement
the free pool as suggested. The insert and remove opera-
tions of the pool are realized via the push and the pop op-
erations of the stack. These two operations access the same
data item (the stack top); concurrent execution of a push
and a pop operations must therefore be serialized. Thus the
concurrency of the queue, is restricted by the stack.

The second strategy is to actually free a dequeued node;
the dequeuer has to ensure that no other process is still ac-
cessing the node. Valois [12] presented a mechanism that
successfully implements this strategy. The mechanism as-
sociates a reference counter with each node. Each time a
process creates a pointer to a node, it increments the node’s
reference counter atomically; when it does not intend to ac-
cess a node that it has accessed before, it decrements the
counter atomically. The reference counter reflects the num-
ber of pointers that point to the node. A node can be freed
only if the value of its reference counter is zero.

The mechanism is obviously inefficient; however, it is
also impractical, due to the infinite memory requirement
discussed below. Suppose a process accesses a pointer to a
node and is then delayed; while the process is not running,
other processes can enqueue and dequeue arbitrary number
of additional nodes. All of the additional nodes are suc-
cessors of the delayed node in the list; each of them has a
reference counter value of at least one. None of them can be
freed. It is therefore possible to run out of memory even if
the number of items in the queue is bounded by a constant
[6].

All link-based nonblocking queue algorithms suffer from
the memory management problem; unfortunately, existing
solutions are inefficient. The link-based algorithms may not
perform as well as claimed.

3. The Algorithm

Our goal is to design a nonblocking concurrent queue al-
gorithm that supports enqueue and dequeue operations. The
new algorithm, like most nonblocking queue algorithms,
uses the compare-and-swap atomic instruction, as de-
picted in figure 1. The instruction is used in the following
manner: shared is a shared variable and old is the private
copy of it made earlier by a process; new is the value which
the process is attempting to update shared by means of the
compare-and-swap instruction. The attempt succeeds



compare-and-~swap(shared, old, new): Boolean
if shared = old then
shared := new
return TURE
elseif
return FALSE
endif

Figure 1. The compare-and-swap instruction

if old is equal to shared; in this case, one can expect that

“shared is not modified since the private copy is made and
the update is consistent. Concurrent algorithms using the
compare-and-swap instruction are based on this expec-
tation, i.e., they assume an update is always consistent if the
compare-and-swap instruction succeeds.

Indeed, the update may be inconsisent, as a result of
the A-B-A problem [4][10]): if during the time between
the private copy is made and the attempt to update share,
there are some other processes that modify shared to
another value and then modify it back to the old value
again, the attempt will succeed while it is expected not to.
The most common solution is to associate a modification
counter with each shared data item that is accessed by a
compare-and-~-swap instruction; the counter is always
incremented at each successful attempt to update the data
itern. This solution does not guarantee that the A-B-A prob-
lem will not occur, but it makes it extremely unlikely [10].
Our algorithm employs this solution to prevent the A-B-A
problem.

The idea behind the new algorithm is to implement a cir-
cular list based on a finite array. An item is added only to
the rear end of the list; an item is removed only from the
front end of the list. In this way, the circular list success-
fully serves as a FIFO queue.

Figure 2 presents the data structure and the pseudo-code
of the algorithm for the queue. The data structure consists
of a finite array and two counters. Each slot in the array,
namely @), comprises a val part that stores a queue item, and
a ref part that serves as a modification counter to prevent
the A-B-A problem. Two counters, namely FRONT and
REAR, are used to locate the front end and the rear end
of the list. We say that a slot is empty if its val part is
NULL. We also say that the queue is empty if FRONT
equals REAR; itis full if FRONT+L equals RAER. In
addition, QI F RONT mod L] is referred to as the front of
the list; QIRE AR mod LJ] is referred to as the rear of the
list.

The enqueue operation comprises two steps: an en-
queuer first stores an item into the rear of the list, it then
increments REAR by one. A compare-and-swap in-
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struction is used to obtain a consistent update for each step.
The enqueue operation is nonblocking. An enqueuer can
proceed with its operation only if the queue is not full and
the rear of the list is empty. If the queue is full, the enqueuer
waits for some dequeuer to remove an item from the list. If
the rear of the list is not empty, there must be some other
process that is at the midst of its steps. In this case, the
enqueuer tries to help the other process complete its steps.

The dequeue operation works in a similar manner. It
comprises two steps: a dequeuer first empties the front
of the list, it then increments FRONT by one. A
compare-and-swap instruction is used to obtain a con-
sistent update for each step. The dequeue operation is non-
blocking. A dequeuer can proceed with its operation only if
the queue is not empty and the front of the list is not empty.
If the queue is empty, the dequeuer waits for some enqueuer
to add an item to the list. If the front of the list is empty,
there must be some other process that is at the midst of its
steps. In this case, the dequeuer trigs to help the other pro-
cess complete its steps.

The algorithm is based on a finite array; the memory
management problem is thus avoided. There is no accu-
mulative cost associates with the algorithm; the execution
time of a dequeue operation is independent on the number
of enqueue operations that have been completed since ini-
tialization. In addition, provided the queue is neither full
nor empty, an enqueue operation is never forced to wait for
a dequeue operation to complete; a dequeue operation is
never forced to wait for an enqueue operation to complete.
Thus, enqueue and dequeue operations can proceed inde-
pendently and concurrently. This is enough to say that the
algorithm preserves the concurrency of the queue data type.

Our algorithm is practical and efficient. Indeed, it is the
first array-based nonblock queue algorithm which is both
practical and efficient. It is practical because it is based on
a finite array and uses the popular compare-and-swap
instruction. It is efficient because it is subject to neither the
memory management problem nor the accumulative cost of
the dequeue operation, and it preserves the concurrency of
the queue data type. The efficiency of the algorithm sug-
gests a good performance. The correctness of the algorithm
is discussed in the next section.

4. Correctness

We show that the algorithm is correct by showing that
it satisfies certain safety and liveness properties. We also
show that the queue is linearizable. The proof is done under
the assumption that the A-B-A problem does not occur.



# CAS denotes the compare-and-swap instruction.
# <z || y> denotes the concatenation operation of x and y.

# Variables in uppercase letters are shared; those in lowercase letters are local.

Q:
FRONT,REAR: counter_t
enqueue(X: gitem._t)

el  enq.try.again:

€2 rear := REAR

€3 T := Q[rear mod L}

ed if rear # RE AR then goto enqg_try_again endif

es if rear = FRONT+L then goto enq_try_again endif
eb if z.val = NULL then

e7 if CAS(Q[rear mod L], z, <X || z.ref+1>) then
e8 CAS(REAR, rear, rear+1)

e9 return

el0 endif

ell elseif

el2 CAS(REAR, rear, rear+1)

el3 endif

el4 goto enq_try_again

dequeue(): gitemt

array [0..L—1] of structure {val: gitem_t; re f: counter_t}

#read REAR

# read the rear of the list

# are rear and z consistent?
#is queue full?

# is the rear of the list empty?
# try to store an item

# try to increment REAR

# enqueue is done

# the slot is not empty
# help others increment REAR

# enqueue failed, try again

#read FRONT

# read the front of the list

# are front and x consistent?

# is queue empty?

# is the front of the list nonempty?
# try to remove an item

# try to increment FRONT

# dequeue is done

# help others increment FRONT

# dequeue failed, try again

dl  deq-try_again:
a2 front := FRONT
a3 z = Q{front mod L]
d4 if front # FRONT then goto deq_try_again endif
ds if front = REAR then goto deq_try_again endif
deé if z.val # NULL then '
a7 if CAS(Q{front mod L}, z, <NULL || z.ref+1>) then
d8 CAS(FRONT, front, front+1)
d9 return(z.val)
d1o endif
dli elseif
41 CAS(FRONT, front, front+1)
di3 endif
di4 goto deq_try_again
Figure 2. Data structure and pseudo code of the algorithm
4.1. Safety

We begin the proof with defining four events. The first
two events are for the enqueue procedure. A STORE event
occurs whenever an enqueuer successfully stores an item
into a slot (line €7), and an INC_REAR event occurs when-
ever an enqueuer successfully increments REAR by one
(line €8, el2). Similarly, we define two events for the
dequeue procedure. An EMPTY event occurs whenever
a dequener successfully empties a slot (line d7), and an
INC_FRONT event occurs whenever a dequeuer success-
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fully increments FRONT by one (line d8, d12). The fol-
Jowing lemmas state some basic properties of the algorithm.

Lemma 1 An INC_REAR event can occur, only if all of the
following statements are true: 1. REAR is not modified
since it was last read at line e2. 2. Q[REAR mod L] is
nonempty.

Proof. The compare-and-swap instruction and the as-
sumption of the absence of the A-B-A problem ensures the
first statement is true. We now show the second statement
is also true. By the first statement, we know the read at



line e3 indeed reads Q[REAR mod L], and by the check
at line e6, the read value is nonempty. Since only the de-
queuer can empty the slot, we need to show no such de-
queuer exists. Suppose there is a dequeuer that empties
the slot QIREAR mod L), this implies FRONT equals
REAR. However, this is a contradiction to the check at
line d5, which simply prohibits any dequeuer to proceed
when the queue is empty. 0

Lemma 2 A STORE event can occur, only if all of the fol-
lowing statements are true: 1. Qrear mod L} is empty.
2. Qlrear mod L] is not modified since it was read at
line e3. 3. REAR is not modified since it was last read
at line e2.

Proof. To show that the first statement is true, suppose
Qfrear mod L] is nonempty. However, by line €6, z must
be empty. This implies that the compare-and-swap in-
struction must fail, a contradiction. To show the second
statement is true, suppose Q[rear mod L] is modified af-
ter the read at line e3, the ref part of it must have changed.
Therefore the compare-and-swap instruction must fail,
a contradiction.

It remains to show that the third statement is also
true. Suppose REAR is modified since it was last
read at line e2. This implies that there must be some
other enqueuer that successfully performs either one of
the two compare-and-swap instructions in line e8 and
line €12. However, Lemma 1 implies that in either case,
Q[rear mod L] must be nonempty, again, a contradic-
tion. ]

Lemma 3 The STORE events and the INC_REAR events

occur alternatively.

Proof. Lemma 3 can be easily proved by the previous lem-
mas and by induction on the number of enqueue operations
performed. The detail are skipped here. ]

Lemma 1, Lemma 2 and Lemma 3 are associated with
the enqueue procedure. We can have similar lemmas for the
dequeue procedure. The proofs are also similar to those of
Lemma 1, Lemma 3 and Lemma 3. They are thus omitted.

Lemma 4 An INC_FRONT event can occur, only if all of
the following statements are true: 1. FRONT is not modi-
fied since it was last read at line d2. 2. Q[F RONT mod L]
is nonempty.

Lemma 5 An EMPTY event can succeed, only if all of the
Jollowing statements are true: 1. Q[ front mod L] is empty.
2. Q[front mod L] is not modified since it was read at
line d3. 3. FRONT is not modified since it was last read
at line d2.
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Lemma 6 The EMPTY events and the INC_FRONT event
occur alternatively.

The safety properties of the algorithm is as follows. To
show that the algorithm satisfies these safety properties is
straitforward by these lemmas.

Property 1 A dequeuer removes an item only from the front
of the list.

Property 2 A dequeuer removes an item only from the front
of the list.

Property 3 Each array slot in the list, except the front and
the rear of the list, is nonempty; Each slot not in the list is

empry.
4.2. Lineraizability

Linearizability [3] is a correctness condition for con-
current objects. A concurrent object is linearizable if ev-
ery (concurrent) computation accepted by it is equivalent
to some legal sequential computation, and the order of en-
queue and dequeue operations in the concurrent computa-
tion is respected by the sequential one. We show our al-
gorithm is linearizable by stating how a legal sequential
computation can be constructed according to our concurrent
queue algorithm.

We order every operation of the concurrent queue by the
time the STORE event occurs, if it is an enqueue operation,
or the EMPTY event occurs, if it is a dequeue operation.
In this way we can construct an new computation in which
every operations in it are ordered. The new computation
is therefore a sequential one. Obviously the order of the
concurrent computation is respected by the new sequential
one, and it is a legal queue computation. This is because
(1) by Property 1 and Property 2, we can show that the
queue obeys the FIFO order, and (2) by Property 3, we can
show that items do not spontaneously appear, and they do
not spontaneously disappear.

4.3, Liveness: nonblockingness

An algorithm is nonblocking if there are non-delayed
processes attempting to perform operations, an operation
is guaranteed to complete within a finite time. We show
that our algorithm is nonblocking by showing that a pro-
cess loops beyond a finite number of times only if another
processes completes an operation on the queue.

Provided the queue is not full, an enqueue operation can-
not proceed with its operation only if (1) the conditional test
in line e4 fails, (2) the conditional test in line e6 fails, or
(3) the compare-and-swap instruction in line €7 fails.
We argue that, in each case, an enqueue operation cannot



proceed only if there is some other process that has com-
pleted its operation; nonblockingness is thus sustained.

(1) The conditional test in line e4 fails only if REAR is
written by some other process. By property 3 and the
assumption that the queue is not full, the rear of the
list must be empty after REAR is written. Therefore
some other process completes its operation in a finite
number of steps.

(2) The conditional test in line e6 fails only if the rear of

the list is nonempty. After the compare-and-swap

instruction in line e12 the rear of the list must become
empty. Therefore some other process completes its op-
eration in a finite number of steps.

(3) The compare-and-swap instruction in €7 fails

only if another process has completed its operation.

We need to show the dequeue procedure is also non-
blocking. However, the proof is very much similar to how
the nonblockingness of the enqueue procedure is shown.
Thus, it is again omitted.

5. Conclusion

Concurrent queue is a frequently used data object for var-
1ous applications and parallel programs. A practical non-
blocking algorithm is thus essential to system availability
and performance. In this paper, we have presented a prac-
tical nonblocking queue algorithm based on a finite array
and the popular compare-and-swap atomic instruction.
Our algorithm is more efficient than other array-based al-
gorithms, which are subect to an accumulative cost in the
dequeue operation. Comparing with the link-based algo-
rithms, our algorithm provides the same degree of concur-
rency without being subject to the memory management
problem, hence suggested a good performance. In particu-
lar, the proposed algorithm is the first array-based algorithm
that promises such performance.

We also have discussed the memory management prob-
lem, which is usually overlooked. The problem is fundmen-
tal; all link-based nonblocking algorithms appear to suffer
from it. Nevertheless, there is no practical and efficient so-
lution that has been proposed; the performance degradation
owing to this problem is not carefully studied either. We
think solving this problem would be an intesting research
direction.

Because of lack of time, we cannot provide a perfor-
mance evaluation of the proposed algorithm in this paper.
We will still working on it and will present the results in the
next version of this article.
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