
A Fair and Space-efficient Mutual Exclusion Using read/write and

fetch&store Primitives∗

Sheng-Hsiung Chen†and Ting-Lu Huang

Dept. Comp. Sci. & Info. Engr.

National Chiao Tung University

Hsinchu, Taiwan, R.O.C.

{chenss,tlhuang}@csie.nctu.edu.tw

Abstract

For an asynchronous shared memory model with only
read/write primitives, Burns et al. show that at least
n shared variables are required to solve n-process
mutual exclusion problem. With a commonly avail-
able hardware primitive fetch&store in addition to
read/write, we present a bounded-bypass mutual ex-
clusion algorithm with constant 2 shared variables.
Our algorithm achieves the limit of these primitives
to reduce the space requirement since we prove that
it is impossible to obtain bounded-bypass algorithms
with less than 2 shared variables using the same prim-
itives. Although there are several algorithms with
only 1 shared variable in literature, they use hypo-
thetical read-modify-write primitives which are not
supported by any modern multiprocessor architec-
tures. This paper first reveals the data requirement of
bounded-bypass mutual exclusion using read/write
and fetch&store primitives.

Keywords: mutual exclusion, atomic instructions,
shared-memory systems, fairness

1 Introduction

The mutual exclusion problem is fundamental to re-
source allocation in asynchronous shared memory
systems. A mutual exclusion algorithm provides ex-
clusive accesses to a common nonshareable resource
among processes. Using basic read/write operations,
many researchers have devised mutual exclusion algo-
rithms, such as Dijksta [5], Burns [2], Peterson [17],
Lamport [11], etc. Commonly, all of these algorithms
use at least n shared variables, where n is the num-
ber of processes. This is not an accident. Burns and
Lynch [4] have shown that n-process mutual exclu-
sion problem cannot be solved at all with fewer than
n shared variables if only read/write operations are
available.

The lower bound n exhibits some inherent draw-
backs. If processes can be created and destroyed dy-

∗This work is supported by National Science Council, Re-
public of China, under Grant NSC 92-2213-E-009-064.

†Corresponding Author: Sheng-Hsiung Chen

namically, the number n may be unknown. Moreover,
the number n may be very large and therefore these
algorithms are not suitable for space-limited systems
such as embedded systems.

To relieve the above drawbacks by reducing the
number of needed shared variables, some previ-
ous work assumed certain read-modify-write prim-
itive, abbreviated as RMW , is available besides
read/write. In one instantaneous step, a RMW
primitive can access a shared variable and write back
a new value according to the current variable value
and the submitted function. Trivially, we can devise
a simple mutual exclusion algorithm with only one
shared variable, using a RMW primitive test&set
additionally. The shared variable has value false
initially. Any process tests the shared variable un-
til it discovers the shared variable equals to false, at
which time it immediately sets the variable as true.
After accessing the resource, the process resets the
shared variable as false. Unfortunately, this triv-
ial algorithm does not guarantee any fairness among
processes, that is, some process may not gain the re-
source always.

In literature, there are several algorithms using
only one shared variable and guaranteeing certain
level of fairness. Fischer et al. [7] devised a first-
in-first-out algorithm. Burns et al. [3] devised a
bounded-bypass algorithm and a starvation-free al-
gorithm1. However, all of these algorithms used
hypothetical RMW primitives which have never
been implemented in any system. Modern multi-
processors generally include RMW primitives with
simple submitted functions, such as fetch&store,
fetch&add, fetch&increment, fetch&decrement,
compare&swap, etc.

The main focus of this paper is to implement a
fair mutual exclusion algorithm directly by commonly
available primitives supported by modern multipro-
cessor architectures. We select fetch&store to im-
plement our algorithm since it commonly appears at
modern processors2 and widely be used to design al-

1Indeed, their work aimed at theoretical discussion between
data requirements and different fairness conditions.

2For instance, the “XCHG” instruction in a series of pro-
cessors of Intel and AMD. The instruction set can be got at
http://www.intel.com and http://www.amd.com.

~1059~



gorithms for multiprocessor systems [16, 8, 9]. We
present a 2-bounded-bypass algorithm with 2 shared
variables, using a hardware primitive fetch&store as
well as read/write in our asynchronous shared mem-
ory model. Our algorithm has the following advan-
tages.

1. The algorithm is 2-bounded-bypass. We say that
an algorithm satisfies b-bounded bypass if a re-
questing process cannot be bypassed by any cer-
tain process in accessing the resource for more
than b times.

2. 2 shared variables are used. Without any hypo-
thetical primitives, our algorithm requires only
one more shared variable than those algorithms
needing hypothetical primitives.

Our algorithm is inspired by the circular list-
based mutual exclusion algorithm proposed by Fu
and Tzeng [8, 10]. Informally, a mutual exclusion
algorithm is to arrange competing processes in order
for accessing the resource. We organized the order to
enter the critical region among processes via a shared
variable and a fetch&store primitive.

In addition, we show that it is impossible to obtain
bounded-bypass algorithms with less than 2 shared
variables using fetch&store as well as read/write
primitives. Due to this impossibility result, our algo-
rithm achieves the limit of these primitives to reduce
the space requirement. We use the proving strategies
proposed by Burns and Lynch [4] in our impossibil-
ity result. Their method is for read/write primitive
only. We extend their method for fetch&store to
gain our impossibility.

Other recent work on mutual exclusion has focused
on designing local-spin algorithms by hardware prim-
itives for distributed shared memory systems in which
shared memory physically distributed to all proces-
sors [16, 8, 10, 9, 1]. In local-spin algorithms, all busy
waiting is by repeatedly testing a locally-accessible
spin variable without a processor-to-memory inter-
connection traversal. These algorithms aim at min-
imizing the number of required remote memory ac-
cesses. Since each process must have a shared vari-
able which is locally-accessible by itself, at least n
shared variables are needed, where n is the number
of processors. These algorithms are suitable for dis-
tributed shared memory systems because each pro-
cess has its own local shared memory. However, if we
concern centralized shared memory systems in which
all memory references must traverse the processor-
to-memory interconnection, counting remote mem-
ory accesses doesn’t make sense since each memory
access is remote, that is, local-spin algorithms take
no advantage and use at least n shared variables. In
such centralized shared memory systems, our con-
stant space algorithm is better in terms of space com-
plexity.

The rest of the paper is organized as follows. Sec-
tion 2 provides the system model and definitions

about the problem. In section 3, we present our algo-
rithm. Section 4 gives a impossibility result. Finally,
section 5 is the conclusion.

2 System model and Defini-

tions

2.1 Asynchronous Shared Memory

Model

We adopt the asynchronous shared memory
model [14] using I/O automata [15] since it is easy to
specify which portions of the code comprise indivisi-
ble steps under this model. We slightly modify the
model such that processes communicate by means of
instantaneous primitives to shared variables, but not
by means of external events in the original model.

The system is modelled as a triple (P, V, δ), where
P is a nonempty finite set of processes, V is a
nonempty finite set of shared variables, and δ is a
transition relation for the entire system. Each pro-
cess i is a kind of state machine with the following
elements.

• statei: a set of state;

• starti: a subset of statei, indicating the start
states;

• stepi: a set of steps, describing the activities in
which it participates.

These steps are classified as either input, output, or
internal steps. An internal step may involve the
shared memory. If it does, we assume that it only
involves one shared variable.

A system state is a combination of states for all
processes and values for all shared variables. The
transition relation δ is a set of (s, π, s′), where s and
s′ are system states, and where π ∈ stepi for some
process i.

The transition relation δ has some locality restric-
tions. That is, if step π associated with process i
does not involve any shared variable, only the state
of process i can be involved. In contrast, if π involves
a shared variable x, only the state of process i and the
value of x can be involved. We assume that whether
a shared memory action is enabled depends only on
the process state and not on the value of the shared
variable.

A step π is enabled for system state s if there ex-
ists s′ such that (s, π, s′) ∈ δ. The system is input-
enabled, that is, for every system state s and input
step π, there exists s′ such that (s, π, s′) ∈ δ. The
above assumption is made since the input steps are
controlled by arbitrary external users. In comparison,
the internal and output steps are locally controlled by
the system itself.

An execution fragment is defined as an alternating
finite or infinite sequence, s0, π1, s1, . . ., consisting of
system states alternated with steps, where successive

~1060~



(state, step, state) triples satisfy the transition rela-
tion. An execution is an execution fragment whose
s0 is a starting system state in which each process i’s
state is in starti. A system state s′ is reachable from
system state s if there exists a finite execution frag-
ment s, . . . , s′. We want to exclude a situation that
a process has no chance to take a step, when some
locally controlled step is enabled. Thus, we define
the following low-level fairness condition.

1. If the execution is finite, then no locally con-
trolled action for each process is enabled.

2. If the execution is infinite, then for each process i
there are either infinitely many occurrences of lo-
cally controlled steps of i, or else infinitely many
places where no such step is enabled.

2.2 The primitives

Under this model, shared variables will be accessed by
processes through atomic primitives. In this paper,
fetch&store and read/write primitives are involved.
To prove a impossibility result later, we formally de-
fine these primitives as follows.

A fetch&store primitive is defined below.

fetch&store(constant function u, variable
v)

previous := v
v := u
return previous

The second parameter v denotes the variable it in-
volves, equipped with an arbitrary set Vv of val-
ues. The first parameter is the submitted function
of this RMW primitive. The submitted functions
of a fetch&store primitive are restricted to constant
functions. Let value u also denotes a constant func-
tion, where u : Vv → {u}. In one instantaneous
fetch&store operation on v, it returns the prior value
of v and assigns value u into v. Note that once a
fetch&store primitive is enabled, the value to update
variable v is determined no matter what the current
value of v is.

Two other basic primitives are read and write. A
read primitive, read(variable v), returns the value of
v atomically. A write primitive, write(value u, vari-
able v), updates the value of variable v as u atomi-
cally. A write primitive can also be treated below.

write(constant function u, variable v)
v := u

That is, once a write primitive is enabled, the value
to update variable v is also fixed.

2.3 The Problem

A formal definition of mutual exclusion problem can
be found in [12, 13]. In order to consist with the asyn-
chronous shared memory model using I/O automata,

we still adopt the definition of the problem given by
Lynch [14].

The mutual exclusion problem is to devise proto-
cols for n users, U1, . . . , Un, to control accesses to a
designated region of code called the critical region.
The users can be thought of as application programs
and such code might manipulate a common nonshare-
able resource that requires exclusive accesses.

In order to gain the permission to its critical region,
a user executes a trying protocol, and when the user
leaves its critical region, it executes an exit protocol

and returns to the remainder of its code, called the
remainder region. Each user obeys an endless loop
of life cycle: remainder (R) region (initially), trying
(T ) region, critical (C ) region and exit (E ) region.

Considering the mutual exclusion problem within
the asynchronous shared memory model, we assume
that the system contains n processes, numbered
1, . . . , n, each corresponding to one user Ui. Each
process i acts on behalf of user Ui. The input to pro-
cess i are the tryi step, which models a request by
user Ui for admission to enter its C region, and the
exiti step, which models a notification Ui has finished
its C region. The outputs of process i are criti, which
models the granting to Ui for entering its C region,
and remi, which informs Ui that it can enter its R

region.
We classify each process i in an execution into the

following regions, according which events i is in be-
tween.

• remainder region: initially and in between any
remi event and the following tryi event.

• trying region: in between any tryi event and the
following criti event.

• critical region: in between any criti event and
the following exiti event.

• exit region: in between any exiti event and the
following remi event.

Finally, an algorithm which specifies the actions
of each process solves the mutual exclusion problem
must meet the conditions below.

Mutual exclusion: In any execution, there is no
reachable system state in which more than one
process is in its critical region.

Progress: At any point in a low-level fair execution,

1. If at least one process is in T region and no
other process is in C region, then at some
later point some process enters C region.

2. If at least one process is in E region, then
at some later point some process enters R

region.

The above-mentioned requirements are necessary
for a mutual exclusion algorithm to be correct. How-
ever, there is no guarantee that the critical region

~1061~



is granted fairly to different individual process, i.e.
lockout (also known as starvation) may occur. Thus,
it is often desirable to have some level of fairness of
granting the critical region.

A mutual exclusion algorithm is lockout-free pro-
vided that it guarantees, assuming a low-level fair ex-
ecution, no process can be kept waiting indefinitely
either for C region or for R region if all processes
always return the C region.

A mutual exclusion algorithm is bounded-bypass

if it guarantees b-bounded bypass for some b. b-
bounded bypass is defined as follows.

b-bounded bypass: After a process i has per-
formed a locally controlled step in T region, pro-
cess i cannot be bypassed by any certain process
in entering critical region for more than b times.

According to the definitions, lockout freedom con-
dition implies progress condition. Thus, if we prove
an algorithm satisfies lockout freedom, this algorithm
also satisfies progress condition. For granting the
critical region, bounded bypass provides a stronger
fairness than lockout freedom since bounded bypass
guarantees that not only every requesting process will
enter its critical region but also there exists a bound
b such that no requesting process will be bypassed by
any certain process for more than b times.

3 A Fair and Space-efficient Al-

gorithm

In this section, we propose a bounded-bypass mu-
tual exclusion algorithm using mere 2 variables by
fetch&store as well as read/write primitives. Due
to space limitation, the correctness proof is omitted.

3.1 The Algorithm

We begin by presenting the main idea of the algo-
rithm in an informal pseudocode style as shown in
Figure 1. Exactly two shared variables are used in
the algorithm: variable L is used to arrange pro-
cesses’ requests to critical regions; while variable P
to indicate which process has permission to enter its
critical section. Initially, variables L and P are set to
nil, respectively.

Through variable L and fetch&store primitive, the
order to enter the critical region is organized as a
circular waiting list in which the first element has
the identity of the last one, and each other element
has the identity of its predecessor. A circular list is
formed as follows. Each process i makes a request
by a fetch&store onto L (T1), announcing its pro-
cess identity and obtaining the predecessor’s identity
if has one. Any process which acquires a nil from
L (i.e., next = nil) becomes the header; otherwise,
it becomes a list member. (A header is also dubbed
a controller and has extra duty at its exit region.)
A waiting list is closed after the controller leaves its

Shared variables:

L ∈ {nil, 1, . . . , n}, initially nil

P ∈ {nil, 1, . . . , n}, initially nil

Process i : (1 ≤ i ≤ n)

Private variables:

next ∈ {nil, 1, . . . , n}
tail ∈ {nil, 1, . . . , n}

while true do

R: Remainder region

T1: next := fetch&store(L, i);
T2: if next = nil then

T3: await P = nil;
T4: P := i;
T5: else

T6: await P = i;
T7: fi

C: Critical region

E1: if next = nil then

E2: tail := fetch&store(L, nil);
E3: if tail 6= i then

E4: P := tail

E5: await P = i;
E6: fi

E7: P := nil;
E8: else

E9: P := next;
E10: fi

od

Figure 1: The algorithm

critical region and resets L as nil (E2). The con-
troller stores the identity of the last element in the
list into its private variable tail. This closed waiting
list contains all processes making a request between
the controller obtaining nil from the L (T1) and re-
setting L as nil (E2). Note that, only after the cur-
rent controller closes its waiting list such that L will
become nil again, a new list might start to form.

The value of shared variable P indicates which pro-
cess has permission to enter its critical region now.
After making a request, a controller repeatedly tests
the value of P until P is equal to nil (T3), a specific
permission for a controller. The controller takes the
permission by assigning P as its identity (T4). (This
action prevents another new controller to enter its
critical region.) In contrast, a list member i—that is,
if nexti 6= nil—checks the value of P until P = i (T6)
indicating i gains the permission to enter its critical
region. Since P is nil initially, the first controller at
all will gain the permission to enter its critical region.

After a process leaves its critical region, it should
convey the permission to certain waiting process if
has one. As a list member, the process simply trans-
fers the permission to its predecessor by setting P
as next (E9) and then enters its remainder region.
As a controller, after closing the waiting list, if the
list contains any process other than the controller, it
passes the permission to the last element in the list by

~1062~



setting P as tail (E4). The permission will be passed
from the last element back to the controller, i.e., in
the reverse order of processes making a request. The
controller is blocked until the permission passes back
to itself (E5).

Although resetting L as nil might introduce a new
controller, this new controller and subsequent re-
questing processes will not obtain the permission and
this new waiting list will not be closed unless all pro-
cesses in the previous circular waiting list have fin-
ished their critical regions. (Hence, there are at most
2 waiting lists simultaneously, and at most one of
these two lists contains the permission.) This con-
tributes to the bounded bypass property of our al-
gorithm. The new controller will get the permission
after the permission passes back to the previous con-
troller causing the previous controller to reset P as
nil (E7).

4 Impossibility Result

In this section, we show that there is no mutual ex-
clusion algorithm guaranteeing bounded bypass with
fewer than 2 shared variables, using fetch&store as
well as read/write primitives. We follow the proving
strategies proposed by Burns and Lynch [4]. Their
model contains only read/write primitive. We ex-
tend the model to include fetch&store and prove our
result. The following definitions will be used in the
proof. The first two are directly borrowed from [14].

Definition 1 System states s and s′ are indistin-

guishable to process i, written as s
i
∼ s′, if the state

of process i and the values of all the shared variables

are the same in s and s′.

Definition 2 A system state s is idle if all processes

are in their remainder regions in s.

Following from the progress condition, a process
starting from an idle state and involving its steps only
will reach the critical region. Furthermore, a process
starting from a system state which is indistinguish-
able to an idle state for this process and involving its
steps only will also reach its critical region, since the
state of this process and the values of shared variables
are the same in this two system states.

The last definition generalized the one defined by
Burns and Lynch [4]. According to their original def-
inition, a process covers shared variable x if a write
primitive of the process is enabled to write x. An
enabled write primitive will overwrite the variable
it involves. Inspecting fetch&store primitive, once
it is enabled, it will write a pre-specified value into
the variable and overwrite other processes might have
written to x. Thus, we generalize the concept of
“covering” to fetch&store primitive. The difference
between write and fetch&store primitives is that a
fetch&store primitive will return the value of the
shared variable it overwritten.

Definition 3 Process i covers shared variable x in

system state s provided that in state s, a primitive

of process i is enabled to assign a value v into x, the

value v depending on a constant function.

Once process i covers shared variable x with constant
value v, i will assign v into x in its next step.

The main idea of the lower bound is that when
a process covers shared variable x, it will overwrite
other processes might have written to x. If a request
of some process is overwritten, we may let another
process enter its critical region so many times that
violate the bounded bypass condition.

Before proving the lower bound, a basic lemma is
needed, showing that a process in its exit region must
write something into a shared variable.

Lemma 1 Suppose A is a mutual exclusion algo-

rithm for n ≥ 2 processes. Suppose that s is a reach-

able system state in which process i is in the critical

region. If process i reaches R in an execution frag-

ment starting from s that involves steps of i only, then

it must write some shared variable along the way.

Proof. Let α1 be any finite execution fragment that
starts from s (i in C), involves steps of i only, and
ends with process i in R. By way of contradiction,
suppose that α1 does not include any write to a
shared variable. Let s′ be the state at the end of
α1. s

j
∼ s′, for all j 6= i, since all the shared variables

remain unchanged.
According to the progress condition, there is an

execution fragment starting from s′ and not including
any steps of process i, in which some other process

reaches C. Because s
j
∼ s′, for all j 6= i, there is also

such an execution fragment starting from s.
An execution α violating the mutual exclusion is

easily constructed as follows. Execution α begins
with a finite execution fragment leading to reachable
state s, then let another process go to C without any
steps of i. Since there are two processes in C at the
end of α, this violates the mutual exclusion condition.
2

Theorem 2 If algorithm A solves the mutual ex-

clusion problem for n > 2 processes and guaran-

tees bounded bypass, using fetch&store as well as

read/write primitives, then A must use at least 2

shared variables.

Proof. Suppose for the sake of contradiction that
there is such an algorithm, A, using a single shared
variable x and guaranteeing b-bounded bypass. We
construct an execution of A that violates bounded
bypass.

There is an execution involving process 1 only,
starting from an initial state s which is idle, that
causes process 1 to enter C once and back to an idle
state s′. Lemma 1 implies that when process 1 is
in the exit region, it must write the shared variable
x. Since read/write and fetch&store primitives are
concerned, to write a shared variable will use write or

~1063~



fetch&store primitives which will assign a constant
value into variable x when enabled.

First, we construct α1 by running process 1 alone
from s until it last covers the shared variable x. Then
we extend α1 to α2 by causing process 2 to perform
a locally controlled step in the try region and contin-
uing to run process 1 one step, which writes a value
into x. Let the final states of α1 and α2 be s1 and s2,
respectively. In states s′ and s2, the shared variable

x has the same value and therefore s′
i
∼ s2, for all

i 6= 1 and 2. Only process 1 might know that pro-
cess 2 has preformed a locally controlled step by the
return value when process 1 overwritten x.

Since s′
i
∼ s2, for all i 6= 1 and 2, and s′ is an idle

state, we run process 3 alone, starting from s2, and
let process 3 to enter the critical region b + 1 times,
which causes process 3 to bypass process 2 more than
b times. This is the needed contradiction. 2

5 Conclusion

We have presented an n-process bounded-bypass mu-
tual exclusion with 2 shared variables which can
contain n + 1 distinct values, respectively, using
fetch&store besides read/write primitives. We
proved that it is impossible to achieve the same level
of fairness with fewer than 2 shared variable by the
same primitives.

The hot spot contention [6], the maximal number
of pending operations for any individual variable in
any execution, of our algorithm is n. To alleviate
hot spot contention, the number of shared variables
might increase. In this paper, we mainly focus on
the data requirement for the implementation of mu-
tual exclusion using hardware primitives. It would
be interesting to investigate whether there exists a
trade-off between hot spot contention and space re-
quirement.

The remote-memory-reference complexity of our
algorithm is unbounded in distributed shared mem-
ory systems. This is unavoidable since only con-
stant 2 shared variables are used among n processes.
Consequently, our algorithm is suitable for central-
ized shared memory systems, benefiting from con-
stant space consumption.

References

[1] J. Anderson and Y.-J. Kim. “Local-spin mu-
tual exclusion using fetch-and-phi primitives.”
In Proceeding of the 23rd IEEE International

Conference on Distributed Computing Systems,
pp. 538-547, May 2003.

[2] J.E. Burns. “Mutual exclusion with linear
waiting using binary shared variables.” ACM

SIGACT News, 10(2): 42-47, summer 1978.

[3] J.E. Burns, P. Jackson, N.A. Lynch, M.J. Fis-
cher and G.L. Peterson. “Data requirements for

implementation of N -process mutual exclusion
using a single shared variable.” Journal of the

ACM, 29(1): 183-205, January 1982.

[4] J.E. Burns and N.A. Lynch. “Bounds on shared
memory for mutual exclusion,” Information and

Computation. 107(2): 171-184, December 1993.

[5] E.W. Dijkstra. “Solution of a problem in con-
current programming control,” Communiations

of the ACM. 8(9): 569, September 1965.

[6] C. Dwork, M. Herlihy and O. Waarts. “Con-
tention in shared memory algorithms.” Journal

of the ACM, 44(6): 779-805, November 1997.

[7] M.J. Fischer, N.A. Lynch, J.E. Burns and A.
Borodin. “Distributed FIFO allocation of iden-
tical resources using small shared space.” ACM

Transactions on Programming Languages and

Systems, 11(1): 90-114, January 1989.

[8] S.S. Fu and N.-F. Tzeng. “A circular list-
based mutual exclusion scheme for large shared-
memory multiprocessors.” IEEE Tansactions on

Parallel and Distributed Systems, 6(6): 343-364,
June 1997.

[9] T.-L. Huang. “Fast and fair mutual exclusion
for shared memory systems.” In Proceeding of

the 19th IEEE International Conference on Dis-

tributed Computing Systems, pp. 224-231, June
1999.

[10] T.-L. Huang and C.-H. Shann. “A comment on
A circular list-based mutual exclusion scheme
for large shared-memory multiprocessors.” IEEE

Tansactions on Parallel and Distributed Sys-

tems, 9(4): 414-415, April 1998.

[11] L. Lamport. “A new solution of Dijkstra’s con-
current programming problem.” Communiations

of the ACM, 17(8): 453-455, August 1974.

[12] L. Lamport. “The mutual exclusion problem
part I: a theory of interprocess communication.”
Journal of the ACM, 33(2): 313-326, April 1986.

[13] L. Lamport. “The mutual exclusion problem
part II: statement and solutions.” Journal of the

ACM, 33(2): 327-348, April 1986.

[14] N.A. Lynch. Distributed Algorithm. Morgan
Kaufmann Publisher, 1996.

[15] N.A. Lynch and M.R. Tuttle. “An introduction
to input/output auaomata.” CWI-Quarterly,
2(3): 219-246, September, 1989.

[16] J.M. Mellor-Crummey and M.L. Scott. “Algo-
rithms for scalable synchronization on shared-
memory multiprocessors.” ACM Transactions

on Computer Systems, 9(1): 21-65, Feb. 1991.

[17] G.L. Peterson. “Myths about the mutual exclu-
sion problem.” Information Processing Letters,
12(3): 115-116, June 1981.

~1064~


