

Fast and fair mutual exclusion for shared memory systems ∗

Ting-Lu Huang

Dept. of Computer Science
and Information Engineering

National Chiao Tung University
1001 Ta-Hsueh Road

Hsin-Chu, Taiwan 30050
Republic of China

E-mail: tlhuang@csie.nctu.edu.tw

Abstract

Two fast mutual exclusion algorithms using read-modify-
write and atomic read/write registers are presented. The
first one uses both compare&swap and fetch&store; the
second uses only fetch&store. Fetch&store are more
commonly available than compare&swap. It is impos-
sible to obtain better algorithms if “time” is measured
by counting remote memory references. We were able
to maintain the same level of performance with or with-
out the support of compare&swap. However, fairness
is degraded from 1-bounded bypass to lockout freedom
without the support.

1 Introduction

Critical section facilities must be provided for user pro-
grams to share resources in multiprocessing systems. A
large number of mutual exclusion algorithms have been
proposed during the last thirty some years. Neverthe-
less, designing mutual exclusion algorithms that are both
practical and correct has always been a very tricky task.
Even when powerful primitives are available, mistakes
in designing mutual exclusion algorithms [1, 3] are not
uncommon.
Mellor-Crummey and Scott[2] (referred to as MCS al-

gorithms in literature) initiates a series of studies, for
large shared-memory multiprocessors, that more or less
follows their ideas of busy waiting on local memory lo-
cations only. Zhang et al. [6] has similar algorithms.
Herlihy et al. [11] used the MCS algorithm as the back-
bone for a lock-based concurrent counting primitive. Re-
cently Fu and Tzeng[10] presented a circular list-based
mutual exclusion scheme (referred to as CL algorithms
in this article) also for large shared-memory multiproces-
sors. All of these studies did make an attempt to provide
algorithms using only fetch&store since compare&swap
is not commonly available in production-quality multi-
processors. Bershad [12] indicated that only two out of

∗This work was supported by National Science Council, Repub-
lic of China, under Grant NSC88-2213-E-009-014

eight production-quality shared memory multiprocessors
have a processor which implements compare&swap. We
should note that the memory system does not necessar-
ily support the primitive even when the processor does.
That may explain why almost all studies of fast mutual
exclusion algorithms using read-modify-write primitives
include an alternative version that uses only fetch&store,
and conduct performance evaluation based on that ver-
sion.
The success of MCS algorithms and CL algorithms

is largely due to the elimination of busy waiting (with
unpredictable number of memory references) on remote
memory locations. Unfortunately, the fetch&store ver-
sion of MCS algorithm is not fair at all: it suffers from
starvation. The major merit of CL algorithm is the elim-
ination of remote memory references needed in MCS al-
gorithm to re-direct an address link for each privilege
passing during resource busy period. While it provides
considerable performance improvements over MCS, the
CL algorithms (with or without the support of a power-
ful primitive similarly to compare&swap) suffer from the
following drawbacks:

1) Deadlock error in the trying protocol, and
2) Starvation unfairness in the exit protocol.

In this article, two algorithms that follow the line of
CL algorithms but suffer from neither of the drawbacks
are presented. The first one uses compare&swap and
fetch&store; the second one uses only fetch&store. Fur-
thermore, each one is proved optimal in minimizing the
number of remote memory references required for a self-
scheduling unit of the requesting processes, and in guar-
anteeing the best possible fairness under the constraints.
We show that any further improvement beyond what is
achieved by the algorithms is impossible.
In addition to the read-modify-write shared variable

that is referenced by the primitives, the algorithms re-
quire N atomic read/write shared variables (called q-
nodes later in this article), one for each participating
process. A small number of private variables for each
process is also required.
The rest of the paper is organized as follows. Section 2

provides definitions and models. Section 3 presents the

swap&compare
(r: public register, old: private register, new: value)
previous := r
r := old
old := previous
if r = old

then r := new
fi

————————————————————————
compare&swap

(r: public register, old, new: value) returns(value)
previous := r
if previous = old

then r := new
fi
return previous

————————————————————————
fetch&store

(r: public register, my: value) returns(value)
previous := r
r := my
return previous

Figure 1: Swap&compare, Compare&swap and
Fetch&store primitives.

three fast algorithms. Section 4 gives some lower bounds.
Section 5 is the conclusion.

2 The mutual exclusion problem

2.1 The RMW primitives

Definitions of the read-modify-write (RMW) primitives
used in this article are given in Figure 1. To follow the
convention in literature on RMW primitives, the defini-
tions use “register” to refer to variable in common usage.

2.2 Flowcharts as algorithms

The algorithms are represented by flowcharts. When an
algorithm involves only a few actions but is nevertheless
very subtle, a flowchart provides a clear picture of the
control flow and leads to an easier correctness argument,
at least for the algorithms in this article.
A rectangular node contains a sequence of actions on

variables that satisfy the following condition:

(1) All references are to private variables;
(2) At most one reference is to a shared variable; or
(3) Multiple references to a shared variable via

exactly one execution of a RMW primitive.

If the set of references in a rectangular node does not sat-
isfy the above condition, the sequence of actions should

be split into two or more nodes. The rule is helpful
in simplifying correctness reasoning since it reduces a
large number of possibilities of interleaving among the
processes that would have to be dealt with otherwise.
Several state transitions in a rule-abiding node can be
lumped together as one transition in our correctness ar-
guments. Note that full advantages of such lumping may
not have been taken in all flowcharts of this article. But
the rule is always observed; no node needs to be split.
A diamond node contains a test of condition that in-

volves at most one reference to shared variables.
An oval node represents a sequence of test operations

that will block the process until the awaited condition
becomes true. Each test operation involves at most one
reference to shared variables.

2.3 Flowcharts as mutual exclusion algo-
rithms

Formal definition of mutual exclusion problem can be
found in [8]. Lynch [5] gave a more succinct definition
and introduced several impossibility results in the mu-
tual exclusion problem that uses only one RMW register.
Here we extract from various sources and re-define the
problem in terms of our model.
For mutual exclusion algorithms to meet well-

formedness requirement, a flowchart prescribes an end-
less loop of life cycles for each process: trying (T) region,
critical (C) region, exit (E) region and remainder (R) re-
gion. The label in each node starts with a T for trying
regions, an E for exit regions. No path exists for a pro-
cess to bypass any region in the life cycles.
For mutual exclusion algorithms to meet mutual exclu-

sion requirement, the set of edges (as a whole) that are
labeled “critical region” cannot be visited by more than
one process at any time. If there is one process visiting
one such edge, no other processes visit such edges at the
same time. Instead of proving such “exclusiveness” for
the critical region set, we may want to prove that there
exists a set of edges for a flowchart, called the exclusive
set, that enjoys exclusiveness, and that it includes the
critical region set. We use thick lines to mark the edges
of an exclusive set. We found it easier to argue for the
entire exclusive set than to do so for the critical region
directly.
For mutual exclusion algorithm to meet deadlock free-

dom requirement, both progress for the trying region and
progress for the exit region must hold. That is, at any
point in a low-level fair execution, (1) if at least one pro-
cess is in T region and no other process is in C region,
then at some later point some process enters C region;
and (2) if at least one process is in E region, then at
some later point some process enters R region.
The abovementioned requirements are necessary for a

mutual exclusion algorithm to be correct. It is often de-
sirable to have some confidence in the level of fairness in
accessing critical region for each individual process. The
first-in-first-out (FIFO) order is the most stringent
requirement. It is not clear what kind of applications
would demand such strong fairness in accessing critical
regions.
For most applications, bounded bypass is good

enough. If the algorithm guarantees that a requesting

start

T1: q-node init

T2: next := fetch&store(L, I)

T3: next = nil ?

E1: next := I

E2: swap&compare(L, next, nil)

E3: next = I?

E4: I->wait := true

E5: next->wait := false

E6: await not (I->wait)

T4: await not (I->wait)

E7: next->wait := false

yes

yes

no

no

R region

R region

C region

C region

process cannot be bypassed by any certain process in
entering critical region for more than b times, we say b-
bounded bypass for C region is assured. Likewise, if the
algorithm guarantees that an exiting process cannot be
bypassed by any certain process in entering remainder
region for more than b times, we say b-bounded bypass
for R region is assured. For many mutual exclusion al-
gorithms, the logical structures in exit regions are quite
trivial, and therefore only bounded bypass for C region
is discussed in some literature. This article particularly
defines bounded bypass for R region since we found that
almost all fast algorithms using RMW primitives have
non-trivial logical structures in exit regions.
There are algorithms that cannot guarantee any

bounded value on the number of bypasses, but are nev-
ertheless lockout free: they guarantee that, assuming a
low-level fair execution, no process can be kept waiting
indefinitely either for C region or for R region.
The worst kind of fairness is no fairness at all (better

known as starvation.) That is, an individual process may
be kept waiting indefinitely for either C region or for R
region.

3 The algorithms

Most optimal mutual exclusion algorithms aim at min-
imizing the size of the shared variables or minimizing
the number of shared variables. Burns and Lynch [13]
showed that n binary shared variables are necessary
and sufficient to solve n-process mutual exclusion using
only atomic read/write shared variables. Lycklama and
Hadzilacos [14] presented an algorithm that satisfies the
“first-come-first-served” property and requires only five
shared bits per process. Styer and Peterson [15] estab-
lished some tight bounds on the number of variables re-
quired for symmetric mutual exclusion problems. Few
studies aim at minimizing the number of memory refer-
ences. Yang and Anderson [16] gave an algorithm that
assumes no read-modify-write primitives and therefore
requires much more remote memory references. Lam-
port [9] tried to minimize the number of references in a
period of no competing requests. We try to minimize
the number of references in a period of frequent com-
peting requests. We also take into account the differ-
ence between local memory and remote memory. Local
memory access does not incur memory contention, while
remote memory access does. Therefore, we count only
the number of remote memory references. Minimizing
remote references in a period of frequent competing re-
quests serves a good purpose since memory contention
in large shared-memory multiprocessor in such periods
can lead to bad performance and remote memory access
is a key factor of memory contention.
Figure 2 shows the data structure of the memory space

that are allocated for each process in the mutual exclu-
sion algorithm. The CL algorithm actually uses only one
bit (the boolean wait) for the q-node. Permission-word
is used by the permission word algorithms.

3.1 The CL algorithm without deadlock

type q-node = record
wait : Boolean

——————————
type permission-word = fullword

head : halfword
tail : halfword

Figure 2: Per process data structures for the algorithms.

Figure 3: The CL mutual exclusion algorithm with dead-
lock error removed.

start

T1:
 I := address of my-full-word;
 change the incarnation bit of I;
 *I := 0;

T2: next := fetch&store(L, I)

T3: next = nil ?

E1: next := compare&swap(L, I, nil)

E2: next = I?

T4: await not (*I = 0)

yes

yes

no

no

E3: *next := pack(I, next)

E4: next = head(*I) ?
yes no

E6: *next := *IE5: I := tail(*I)

R region

R region

R region

C region

C region

Figure 3 is the circular list-based mutual exclusion algo-
rithm with the original deadlock error removed. Expla-
nation of the algorithm follows.
Initial state is such that (1) the RMW variable L has

the nil value; (2) each process is allocated a data struc-
ture (called q-node) the address of which is stored in the
private variable I; and (3) the value of the wait variable
in each q-node is true.
Suppose process P starts to execute the algorithm. T1

is to set the wait bit true, as is required for each new
life cycle. T2 is to make public the address of P’s q-
node via the shared RMW variable L, and to obtain the
address of the q-node which will be needed for P to wake
up the next process when P is through with its critical
section. The fetch&store primitive is defined in Figure 1.
T3 checks whether P is the first process that references
L, either since system start-up or since the last event
that the value nil was written back to L. If T3 answers
“yes”, P is entitled to enter critical section and all other
competing processes are now waiting at T4 node.
The swap&compare primitive is defined in Figure 1. E1,

E2 and E3 together take care of the followings. Two pos-
sibilities exist. If L is still pointing at P’s q-node (“yes”
after E3), no other processes are interested in entering
critical section. P writes nil to L and moves to remainder
region. If L is pointing to some other q-node (“no” after
E3), there are some other processes that are waiting. P
stores the value of L to the private variable next (as a
result of E2) and will use a remote write to wake up that
process at E5.
E4 is to make sure that P cannot pass E6 until some

other process writes to P’s q-node. E4 should precede
E5 in execution, or deadlock may occur. Details of the
deadlock error can be found in [3].
After passing E6, several processes had been granted

permission to enter critical section but more processes
may have arrived and have been kept waiting. P is the
sole controller among the competing processes and there-
fore should go back to E1 to prepare for the next run of
playing controller. P will be kept in this potentially un-
bounded number of runs of playing controller as long as
there are processes interested in entering critical section.
Later, we will show that the two new algorithms suffer
from no such severe unfairness.
E7 is to wake up the next process that either is waiting

at T4 for permission to enter critical section or is waiting
at E6 for the role of playing controller.

3.2 The permission word algorithms

The main idea of the algorithms, see Figure 4 and Fig-
ure 6, is to write a fullword in each remote write, in-
stead of writing a single bit. The fullword, called per-
mission word, consists of a pair of non-zero halfwords,
(head,tail), each being the address of a permission word.
The permission word not only serves as permission to en-
ter critical section, but also carries enough information
for processes to maintain proper control of role playing,
without using any other control message. The scheme is
simple, but the encoding of the permission word may be
confusing at first glance. Figure 5 is an example to help
explain how it works.

Figure 4: The permission word mutual exclusion algo-
rithm using fetch&store and compare&swap.

30

10

nil

(30+,40+)

50

40

40

30

70

60

(40+,40-)

40

70

10

(40-,10-)

+

-

+

+

+

+

-

+

-

+

-

30 +

run 1

run 2

run 3

Figure 5: An example of a busy period consisting of 3
runs.

Figure 4 is used to explain how the permission word
algorithms work. The other algorithm in Figure 6 works
similarly. A busy period is an execution sequence that
starts with a state in which the RMW variable L has
the nil value, and ends with a later state in which L has
the nil value, with at least one process enters and leaves
critical section and no states with nil in L in between.
A run in a busy period is an execution sequence that
starts with a process executing E1 and ends with some
process executing E1, with no such events and at least
one process enters and leaves critical section in between.
The set of processes permitted to enter critical section
(passing T4) in a run is called the relay of that run. The
process that executes E1 defining a new run is called the
controller of the new run. One process in the relay of
the old run is to be selected as the controller for the new
run. Exactly how the controller is selected is explained
later. A controller cannot also be in the relay of the new
run because when it executes E1, all members of the
relay must be somewhere between T2 and T4, waiting
for permission. In Figure 5, process 30 is the controller
for relay of run 1; process 10 for relay of run 2; process
60 for relay of run 3; and process 70 defines the end of
the whole busy period since L does not change (still is
10-) during the whole run. Process 70 puts nil in L when
it executes E1.
Since the least significant bit of an address is not used

in most computer architectures, we can use that bit as
the incarnation bit to avoid a subtle situation. Although
a process cannot appear more than once in a relay, it

may appear in both relays of two neighboring runs. A
process’s incarnation bit (indicated as “+” or “-” in the
circles) from one incarnation to the next must be differ-
ent since a process always flips its incarnation bit at T1.
Therefore, no two incarnation bits of the same process
in two consecutive runs are the same. This is impor-
tant for a process to determine whether it should act as
the controller for the next run. A process executing E4,
which is to check whether the value of next equals the
head halfword in the permission message it receives, will
identify itself as the controller if the result (taking into
account the incarnation bit) is “yes”. For example, pro-
cess 30 in run 3 would not be able to tell the difference
between 40+ in run 3 and 40- in run 2 without the in-
carnation bit. With the difference of the bit, process 30
should pass the permission message to process 40, rather
than taking up the role of controller. Process 70 in run 3
should be the controller since it receives (40-,10-) as the
(head,tail) pair and its next has value 40-. (It will get
“yes” result at E4.) Therefore, it should go to E5 to take
up the role of controller. The subtlety occurs whenever
the next process of E3 after having been given permission
to enter critical section, quickly makes a new request (at
T2) in the next run. Fortunately, the subtlety needs to
be resolved only between two neighboring runs, thus a
single bit suffices.

4 Impossibility results

The permission word algorithm is considered the best
among a set of possible solutions to an extended mutual
exclusion problem that aims to eliminate the overhead
of link re-directions. A link re-direction is the synchro-
nization mechanism that establishes a privilege passing
chain among the processes in an order that respects the
actual first-in-first-out (FIFO) order of the process re-
quest. The CL algorithm specifically seeks to avoid such
link re-direction, since the FIFO order is not only non-
essential in fairness requirements but also the cause of
too high a cost in terms of remote memory access when
link re-direction is implemented. The permission word
contains enough information for a controller to identify
itself as such and to take on the role without using ex-
tra synchronization messages. Past experiences showed
that avoiding link re-direction save significant amount of
remote references while fairness can still be kept at an
acceptable level. The following definition captures the
salient feature of the set of possible solutions that avoid
link re-directions.

Definition 1 (decisiveness) A mutual exclusion algo-
rithm is decisive if no more than one remote reference
is required in the trying region to determine whether the
process should enter immediately or it should wait.

In the algorithms using fetch&store, decisiveness can be
expressed as a state formula:

(L = nil) =⇒ (no process is in critical region.)

Thus, a requesting process is able to decide, using one
reference to L, whether it is allowed to enter critical re-
gion right away or it should spin on a local variable whose
value clearly indicates whether permission has arrived.

start

T1: I := address of my-full-word;
 change the incarnation bit of I;
 *I := 0;

T2: next := fetch&store(L, I)

T3:next=nil ?
C region

T4: await not (*I = 0)

yes

yes

no

no

E1: tail := fetch&store(L,nil)

E2:tail=I?

E4: next := fetch&store(L,tail)

E5:next=nil?

no
yes

E7: await not (*I = 0)

E3: *I := 0

R region

R region

C region

R region

E10:next=head(*I)?

no
yes

R region

E11: *next := *I

E12: I := tail(*I)

E8: *next := *I

E9: *tail := pack(I,tail)

Figure 6: The permission word mutual exclusion algo-
rithm using fetch&store only.

Definition 2 (cluster) A cluster is the set of distinct
processes that have made requests at about the same time
and are hence scheduled by the same controller.

A cluster is a self-scheduling unit in the decisive mutual
exclusion algorithms that allow no link re-directions. A
leader among the cluster must be selected to act as the
controller for the cluster. Such controller inevitably uses
some remote access overhead in its controlling task. The
following is to establish a lower bound on the number of
remote references required for a cluster controller to act
properly.

4.1 Impossibility results assuming read-
modify-write primitives

To prove that the permission word algorithm is opti-
mal, we must prove that there is no algorithm that re-
quires less remote references than our algorithm does.
The proof is informal in nature. More rigorous proof is
possible, but should convey similar ideas as what we now
provide.

Theorem 1 (0-overhead impossibility) There is no
decisive mutual exclusion algorithm using RMW registers
and atomic read/write registers that requires less than
2K+1 remote references for any cluster of K processes.

Proof. The K life cycles within a busy period entails a
chain of privilege passing from the first exit region to the
K-th exit region. By way of contradiction, assumes that
only 2K remote references are needed for the complete
chain of K cycles. One life cycle requires at least 2 re-
mote writes: one in the trying region and another in the
exit region. Under the constraint of 2 remote writes for
one life cycle, a process must have announced its q-node
address when it access the RMW register in the trying
region, and it must have used a remote write to wake up
its successor in the chain. Let P be a process that is the
first one to access the RMW register making public its
address and trying to pick up an address of others. P
is destined to fail in getting any address in that access
since no one has put address in the RMW register, yet.
For P to be able to wake up some one, it must use an
extra (besides the 2K references aforementioned) remote
access to the RMW register in order to obtain the ad-
dress. If P wakes up no one, then the system will be
deadlock since every process is held waiting. Q.E.D.

Conjecture 1 (FIFO impossibility) There is no de-
cisive mutual exclusion algorithm using RMW registers
and atomic read/write registers that requires no link re-
direction and guarantees first-in-first-out fairness.

Observation. It seems that link re-direction
is inevitable in order to maintain FIFO order
and to be decisive in entering critical section at
the same time. There are algorithms [4] that
maintain FIFO order at the expense of high
overhead either in deciding the winner in the
trying region or in complicated scheme of link
re-directions.

Theorem 2 The permission word algorithm which uses
both compare&swap and fetch&store requires 2K+1 re-
mote references for a cluster of K processes and guaran-
tees 1-bounded bypass.

Proof. In an interval within a busy period with K life
cycles among which no process completes more than one
life cycle, the algorithm requires 2K + 1 remote writes:
one at T2 for announcing the q-node address and one at
either E3 or E6 to wake up some successor. Only one
process needs to use an extra remote reference at E1:
the controller.
Note that there exists no blocking statement in E re-

gion. After P enters E region, no other process can
bypass P in passing E region more than once; thus 1-
bounded bypass is guaranteed. Q.E.D.

4.2 Impossibility results when only
fetch&store is available

Theorem 3 (1-overhead impossibility) There is no
decisive mutual exclusion algorithm using fetch&store
primitives and atomic read/write registers that requires
less than 2K+2 remote references for any cluster of K
processes.

Proof. There is no algorithm that requires less than
2K + 1 remote references due to the 0-overhead impos-
sibility result which was proved.
By way of contradiction, assumes that only 2K + 1 re-

mote references are needed for the complete chain of the
K cycles in the cluster. The extra remote reference to the
RMW register in the previous argument should now be
examined in more detail since now we don’t have the full
power of general read-modify-write primitive. Rather,
what is available is fetch&store only. The smallest num-
ber of remote references overhead for a controller of a
self-scheduling cluster in the exit region is two, explained
in the followings.
Case (1): If no fetch&store is used, then at least two
ordinary references are needed. One is to obtain the ad-
dress of some q-node from L, the other is to set L as
nil. The controller cannot finish its controlling task us-
ing only the two ordinary references since there may or
may not be requesting processes in the cluster that need
to be scheduled. To handle them correctly in two refer-
ences requires read-modify-write primitives.
Case (2): If fetch&store is used, then the first one must
be of the form

tail := fetch&store(L,nil),

and if the variable tail does not have the same value as I
(meaning there are requesting processes to be handled,)
one more fetch&store is required in order to schedule the
requesting processes properly. Note that the controller
cannot foretell whether there will be requesting processes
or not. It should anticipate both outcomes properly.
This cannot be accomplished by using less than two re-
mote references. Since these two references are control
overhead, one more remote reference is still needed to
actually wake up one process that is waiting. In total,
we know at least three remote references are needed for

the cluster controller in its exit region. Therefore, we
need at least 2K + 2 remote references for the complete
chain of K cycles in the cluster. Q.E.D.

Theorem 4 (Bounded bypass impossibility)
There is no decisive mutual exclusion algorithm using
only the fetch&store primitives and atomic read/write
registers that guarantees bounded bypass.

Proof. Suppose there is one such algorithm that guar-
antees a bounded bypass value B. We are to construct a
“bad” sequence of events that leads to a contradiction.
Let p1, p2, p3 be the three processes that are about to
request. Process p1 requests and enters first while no one
is requesting. When it is in exit region, it must set L as
nil since no one is requesting. Then it enters remainder
region. The system stays idle for a while. Then p2 re-
quests and enters critical section, and then leaves. The
system stays idle for a while, again. Then p3 requests
and enters while no one is requesting. Since the algo-
rithm is deadlock free, p3 should be able to repeatedly
enter and leave critical section for an unbounded number
of times. Certainly it can enter and leave critical section
for B + 1 times.

However, the sequence of events can be turned “bad” at
the point just before p1 sets L as nil. Since there is only
fetch&store available, p1 has no way of telling whether
there is any process requesting at the point. It is per-
fectly legal to insert to this point a sequence of events
that p2 is requesting by accessing L. After setting L as
nil, p1 will be able to detect that there is some one re-
questing, and that it should try to reclaim the privilege
in order to wake up some process that is waiting. How-
ever, once L has become nil, a decisive mutual exclusion
algorithm should allow some other process to cut in im-
mediately. And since the fair access to L only guarantees
eventual access, there is no way to assure that p1 will be
able to access L before the B + 1 consecutive entering
and leaving critical section has completed. A “bad” se-
quence that p2 is bypassed by p3 for more than B times
can be constructed. Q.E.D.

Theorem 5 The permission word algorithm which uses
only fetch&store requires 2K+2 remote references for a
cluster of K processes and guarantees lockout freedom for
fairness.

Proof. Observe that at most three remote writes are
required for a controller to complete the exit region be-
fore it enters the next remainder region: path (E1), path
(E1, E4, E8), or path (E1, E4, E9). The cost of E8 and
E9 can be considered as the inherent cost to wake up
some other process. Hence, only two remote references
are control overhead for the cluster.

Observe that a process executing in the exit region is
bound to enter remainder region since all the await state-
ments are terminating. Hence, lockout freedom is guar-
anteed. Q.E.D.

5 Conclusions

5.1 Related work

Dwork et al. [7] gave a formal model of memory con-
tention and established a tight bound Θ(1) on memory
contention incurred by one life cycle for a sub-problem
of mutual exclusion called one-shot mutual exclusion.
Our algorithms, like MCS and CL algorithms, are in the
same complexity class. Asymptotically, all these algo-
rithms are optimal since a lower bound of a sub-problem
must be a lower bound of the full problem. The measure
of memory contention is very similar to the measure of
counting remote memory references, but not exactly the
same. For the same execution, the measure of memory
contention is less than or equal to the measure of remote
references. In this sense, our measure is more stringent
than memory contention. Our lower bounds in the im-
possibility results are exact. Theirs are asymptotic.
Yang and Anderson [16] gave a O(log n) time mutual

exclusion algorithm without using any read-modify-write
primitive. If the bound can be proved tight, read-modify-
write primitives are instrumental in cutting down mem-
ory access requirement.

5.2 Our contribution

The two algorithms presented, with or without com-
pare&swap, are optimal in terms of remote references
and of fairness. We show that lack of compare&swap
causes the degradation from 1-bounded bypass to lock-
out freedom in fairness.
The algorithms did not include software combining

trees but can be easily modified to do so, in a manner
similar to what the original CL algorithm did. While
it is believed that combining tree helps reduce hot spot
contention, it nevertheless adds more steps in the trying
region and therefore may introduce contention along the
way. It remains unclear whether adding combining trees
actually results in better performance in practice.

References

[1] T. L. Huang. Letter(Correction to the array-link-
based distributed lock). IEEE Parallel and Dis-
tributed Technology, 2(3): 3–4, Fall 1994.

[2] J.M. Mellor-Crummey and M.L. Scott. Algorithms
for scalable synchronization on shared-Memory mul-
tiprocessors. ACM Transactions on Computer Sys-
tems, 9(1): 21–65, Feb. 1991.

[3] T. L. Huang and C. H. Shann. A comment on
A circular list-based mutual exclusion scheme for
large shared-memory multiprocessors. IEEE Trans-
actions on Parallel and Distributed Systems, 9(4):
414–415, April 1998.

[4] T. L. Huang and J. H. Lin. An assertional
proof of a lock synchronization algorithm using
fetch and store atomic instructions. In Proceedings
of the 1994 International Conference on Parallel

and Distributed Systems, Dec. 1994, pp. 759–768.
IEEE Computer Society.

[5] Nancy A. Lynch. Distributed Algorithms, Morgan
Kaufmann Publishers, 1996.

[6] X. Zhang, R. Castaneda, and E. W. Chan. Spin-lock
synchronization on the Butterfly and KSR1. IEEE
Parallel and Distributed Technology, 2(1): 51–63,
Spring 1994.

[7] Cynthia Dwork, Maurice Herlihy and Orli Waarts.
Contention in shared memory algorithms. Journal
of the ACM, 44(6): 779–805, November 1997.

[8] Leslie Lamport. The mutual exclusion problem –
Part I and II. Journal of the ACM, 33(2): 313–348,
April 1986.

[9] Leslie Lamport. A fast mutual exclusion algorithm.
ACM Transactions on Computer Systems, 5(1): 1–
11, Feb. 1987.

[10] S. S. Fu and N.-F. Tzeng, “A circular list-based mu-
tual exclusion scheme for large shared-memory mul-
tiprocessors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 6, no. 6, pp. 628-639, June
1997.

[11] Maurice Herlihy, Beng-Hong Lim and Nir Shavit.
Scalable concurrent counting. ACM Transactions
on Computer Systems, 13(4): 343–364, Nov. 1995.

[12] Brian N. Bershad. Practical considerations for lock-
free concurrent objects. Technical report CMU-
CS-91-183, School of Computer Science, Carnegie-
Mellon University, Pittsburg, PA 15213, U.S.A, Sep.
1991.

[13] James Burns and Nancy Lynch. Bounds on shared
memory for mutual exclusion. Information and
Computation, 107(2): 171–184, December 1993.

[14] Edward Lycklama and Vassos Hadzilacos. A first-
come-first-served mutual-exclusion algorithm with
small communication variables. ACM Transactions
on Programming Languages and Systems, 13(4):
558–576, October 1991.

[15] Eugene Styler and Gary L. Peterson. Tight bounds
for shared memory symmetric mutual exclusion
problems. In Proceedings of the Eight Annual ACM
symposium on principles of distributed computing,
pp. 177–191, The ACM SIGACT, ACM Press, 1989.

[16] Jae-Heon Yang and James H. Anderson. Fast, scal-
able synchronization with minimal hardware sup-
port. In Proceedings of the 12th Annual ACM sym-
posium on principles of distributed computing, pp.
171–182, The ACM SIGACT, ACM Press, 1993.

