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A protocol for causally ordered message delivery in mobile
computing systems ∗

Li-Hsing Yen, Ting-Lu Huang and Shu-Yuen Hwang
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There is a growing trend in developing applications for mobile computing systems in which mobile host computers retain their
network connections while in transit. This paper proposes an algorithm that enforces a useful property, namely, causal ordering, that
delivers messages among mobile hosts. This property ensures that causally related messages directed to the same destination will be
delivered in an order consistent with their causality, which is important in applications that involve human interaction such as mobile
e-mail and mobile teleconferencing. Such applications are envisioned by the proponents of Personal Communications Services (PCS).
Without this property, users may receive and read original messages and the corresponding replies out of order. Our algorithm, when
compared with previous proposals, provides an alternative with a low handoff cost, medium message overhead, and low probability of
unnecessary inhibition in delivering messages.

1. Introduction

There has been considerable interest recently in adapt-
ing algorithms designed for conventional distributed sys-
tems to mobile computing environments. This work is not
trivial because the designs of conventional distributed sys-
tems do not take into account many characteristics of mo-
bile systems such as changeable physical network connec-
tions, resource constraints on mobile hosts, and the limited
bandwidth of wireless links [6]. To cope with changeable
physical network connections, there should be some ap-
propriate way of handling host migrations and disconnec-
tions; to overcome resource constraints and limited band-
width, the computation load and communication overhead
on mobile hosts should be kept low [6,10]. Reported con-
tributions toward this research direction include distributed
mutual exclusion algorithms [7], checkpointing algorithms
[2,19], atomic multicast protocol [1,5], and causally or-
dered message-delivery (COMD) algorithms [3]. In this
paper, we consider the problem of preserving the COMD
property among mobile hosts.

In systems in which the COMD property is preserved,
messages directed to the same destination are delivered in
an order consistent with their causality. The causality under
consideration is determined by the happens-before relation-
ship [12] but restricted to message sending and receiving
events. In other words, if the sending event of a message
happens before that of another message, the former message
should be received before the latter message is. Causally
ordered communication is considered an important facility
for constructing reliable distributed systems [4,8,9,15]. It
can also be used to maintain consistency among replicated
data located at different sites [8]. For a clear understanding
of the importance of COMD in mobile environments, con-
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sider a teleconferencing application in which two or more
persons can hold a conversation via their mobile comput-
ers. We assume that each participant in the conversation
can send messages and respond to others at any time, and
also that an original message and its responses may be sent
to a number of participants. Suppose now that user A sends
out a message and that, after receiving this message, user B
issues a response. The COMD property ensures that no par-
ticipant can receive the response from B before receiving
the original message from A. Without COMD, a third party
may receive a comment on some idea before receiving the
message expressing the original idea. In that case, the idea
behind the conversation can be misinterpreted.1

Personal Communications Services (PCS) has the ulti-
mate goal to provide truly personal, timely communication
services to users through portable handsets.2 Information
being exchanged in a PCS network includes voice, data, im-
age, and even video [13]. COMD property is not only im-
portant in teleconferencing applications, but also a commu-
nication primitive for computation tasks that involve more
than two mobile hosts. These applications, which are en-
visioned by the proponents of PCS, should be attractive to
users of cellular phone systems.

Many COMD algorithms have been designed for station-
ary distributed systems (e.g., [8,16,20–22]). Alagar and
Venkatesan [3] proposed three extensions of the COMD
algorithm in [20] for mobile computing systems. In their
first algorithm, the COMD property is explicitly maintained
among all mobile hosts (MHs). To reduce computation and
communication loads on mobile hosts, this algorithm stores
data structures relevant to causal ordering in mobile sup-

1 Most existing teleconferencing programs are structured on the client-
server model, where one server serializes all conversations among clients.
Here we assume a peer-to-peer model, where one mobile host can com-
municate directly with all others.

2 Portable handsets in this paper are referred to as mobile hosts to empha-
size their ability of computing.
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port stations (MSSs), and the algorithm is executed by the
MSSs on behalf of the MHs. The message overhead is pro-
portional to the square of the number of mobile hosts, and
the algorithm is not graceful in handling host disconnec-
tions/connections. The advantage of this algorithm is that
the procedure for handling host migrations is simple.

In their second algorithm, the COMD property is explic-
itly maintained among MSSs, which is sufficient to enforce
the COMD property among MHs if each communication
channel between an MSS and an MH in the MSS’s cell
provides FIFO-order delivery and no MH ever moves. To
deal with problems associated with mobility, this algorithm
is equipped with a complicated module for handling host
migrations. Message overhead in this algorithm is propor-
tional to the square of the number of MSSs, and host discon-
nections/connections do not pose any problem. However,
this approach enforces a stronger ordering of messages so
that occasional unnecessary delays in delivering messages
may occur. To reduce this probability, Alagar and Venkate-
san proposed a third algorithm, which is a variant of the
second one. Each MSS is partitioned into k logical MSSs.
When an MH enters the cell of a physical MSS, it is al-
located to one of the k MSSs, and the COMD property is
maintained among all logical MSSs. As k increases, the
possibility of unnecessary delays decreases, but the mes-
sage overhead and the cost in handling host migrations in-
creases.

The computation load and the communication overhead
on mobile hosts are both low in all these algorithms, though
the message overhead varies. However, none of these al-
gorithms handles both mobility and disconnection in an ef-
ficient way. The first algorithm is not scalable for frequent
disconnections, while the second and the third algorithms
require a time-consuming procedure to handle host migra-
tions.

In this paper, we propose another COMD algorithm for
mobile computing systems. This algorithm is basically a
compromise between the first and the second algorithms
mentioned above. Message overhead in our algorithm is
proportional to the product of the number of MHs times
the number of MSSs. Generally, this overhead is lower
than that of the first algorithm and higher than that of the
second algorithm. It is easier to handle host migrations
using our algorithm than when using either of the others.
Our algorithm is more scalable than the first when con-
sidering host disconnections, and it can also reduce the
probability of unnecessary inhibition inherent in the second
algorithm.

2. Problem definition

2.1. Model of a mobile computing system

We adopt the model given in [6] as the extraction of
the underlying execution environment for our algorithm.
This model consists of three major components: a wired

Figure 1. The model of a mobile computing system.

network, mobile hosts (MHs), and mobile support stations
(MSSs). They are discussed in detail as follows (see also
figure 1).

• Wired network: A data network that connects all MSSs.
Every node in this network can communicate with any
other through wired channels.

• MHs: An MH is a computer that can move while re-
taining communication with other computers by sending
and receiving messages through wireless channels. An
MH can disconnect itself from the network at any time
and reconnect at a later time.

• MSSs: MSSs form the infrastructure of this system
model and can communicate directly with MHs over
wireless channels. Due to physical constraints, the ge-
ographical area an MSS’s wireless signal can cover is
limited. We call such a geographical area the cell of the
MSS. Only MHs resident in an MSS’s cell can directly
communicate with that MSS. At any given time, an MH
is assumed to be within the cell of at most one MSS,
which is called its local MSS while it remains there. All
messages directed to an MH h are first routed through
nodes in the wired network to h’s local MSS, then sent
to h via a wireless channel. Similarly, all wireless mes-
sages transmitted by an MH are first received by the
MH’s local MSS, and then routed to their destinations.
Thus an MSS serves as an access point to the wired
network for all MHs currently in its cell.

Every MSS periodically broadcasts a beacon signal [11],
which carries the MSS’s identification, to all the MHs in its
cell. Upon receiving the beacon, an MH determines which
MSS it should communicate with at that time. However,
an MH can receive more than one beacon signal at the
same time when it is crossing the boundary between two
or more cells. Nevertheless, we assume that an MH can
always choose one (and only one) MSS as its local MSS.
The MH can accomplish this by collecting and measuring
the quality (such as signal strength) of received beacons.
Thus, when an MH switches from one MSS to another,
a hand-off procedure is performed. The MH first sends
a register message, which carries the identification of the
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previous local MSS, to the new local MSS. On receiving
this message, the new local MSS informs the previous local
one of the migration of this MH. In response to this mes-
sage the previous MSS will transmit relevant information
associated with the MH to the current MSS.

2.2. Causal ordering of message delivery

The atomic operation that changes the state of a process
is defined as an event. Three types of events are considered
to occur in traditional distributed systems: the sending of
messages, the receipt of messages, and internal events [14].
What constitutes an internal event depends on the context
of systems and is irrelevant to the definition of the COMD
property. We assume that there is no perfectly accurate
clock available in any MH. With such a premise, the tem-
poral ordering of events occurring in MHs can only be a
partial relation. One of such is the “happens-before” rela-
tion defined by Lamport [12]. The “happens-before” rela-
tion (denoted by →) on the set of events is the smallest
transitive relation satisfying the following conditions:

(1) if a and b occur in the same process and if a comes
before b then a→ b;

(2) if a is the sending of message m and b is the receipt
of m, then a→ b.

Let sent(m) be the event that corresponds to the send-
ing of message m and recv(m) be the event that corre-
sponds to the receipt of m. The causal ordering of mes-
sage delivery is obeyed if, for any two messages m and m′

that have the same destination, sent(m)→sent(m′) implies
recv(m)→recv(m′).

3. The algorithm

3.1. Preliminaries

Our COMD algorithm for mobile computing systems
is based on the contribution of Raynal et al. [20]. Their
algorithm, hereafter referred to as the RST algorithm, is
based on message counting and relies on a deferred receiv-
ing technique that defers the receiving of a message from
the delivering of the same message. A message is said to
be received by a site when it arrives at that site. A mes-
sage is said to be delivered by a site when it is formally
accepted and disposed of by the associated application run-
ning at that site. All received but undelivered messages
are buffered in a message queue. A distributed comput-
ing system, in which the COMD property does not hold
with respect to sending and receiving events, can employ a
COMD algorithm to enforce the COMD property with re-
spect to sending and delivering events. That is, let deliv(m)
represent the event of delivering message m, a COMD al-
gorithm can ensure that sent(m)→ sent(m′) always implies
that deliv(m)→deliv(m′).

The operation of the RST algorithm is as follows. Sup-
pose that there are n sites in a distributed computing system.
Each site Si maintains an n×n matrix SENTi. The jth row
of SENTi, SENTi[j, k], in which 1 6 k 6 n, represents
the number of messages site Sj has sent to site Sk, and is
known by Si. Every message transmitted by Si is tagged
with the content of SENTi when it is issued. SENTi[i, j]
is also incremented by one after a message directed to Sj
has been sent by Si.

Each site Si in the system also maintains an n-entry
vector DELIVi. The jth entry of DELIVi represents the
number of messages sent by Sj that have been delivered
by Si. When a message m is received at Si, Si com-
pares the content of DELIVi with the content of the matrix
tagged m. Suppose that, without loss of generality, m was
sent by Sj and received at Si. Let m.S represent the ma-
trix content tagging message m, m will then be delivered if
DELIVi[k] > m.S[k, i] for all k. A message m satisfying
this condition means that all causally preceding messages,
mentioned in m.S, have been delivered to Si, so m can
be delivered without violating the COMD property. After
m is delivered, DELIVi[j] as well as SENTi[j, i] is incre-
mented by one, and then each element in SENTi is set to
the maximum of its original value and the value of the cor-
responding element in m.S. So the delivery of a message
effectively informs the receiving site about the content of
the sending site’s SENT matrix.

3.2. Restructuring the RST algorithm used in mobile
systems

We now review the RST algorithm for mobile comput-
ing systems. A straightforward approach is to have each
MH involved in the execution of the RST algorithm (actu-
ally, the first algorithm proposed by Alagar and Venkatesan
takes this approach). Although this approach is feasible, it
requires that each message carries a header whose size is
O(n2

h), where nh is the number of MHs in the system. This
overhead is costly since the number of MHs in a mobile en-
vironment is typically enormous. Furthermore, due to the
disconnections and reconnections of MHs, either the asso-
ciated arrays and vectors should all be of maximal size, or
there should be a way to dynamically change the structure
of the associated data. Neither approach is scalable when
the number of MHs is enormous and the frequency of dis-
connections and reconnections is high. For these reasons,
we take a variant approach that only records the number of
messages sent from each MSS to each MH. The message
overhead in our approach is thus only O(ns × nh), where
ns is the number of MSSs.

Our approach involves using three modules. The main
module is presented in this subsection. The handoff mod-
ule, which handles handoff procedures, is discussed in the
next subsection. Finally, in section 3.4, we introduce our
method for handling MH’s disconnections. We assume that
there is already a reliable routing protocol that eventually
routes each message m destined for MH hi to his cur-
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rently local MSS. Such a protocol can be found in [11,17].
We do not assume that this protocol provides FIFO-order
message delivery between pairs of MSSs. However, the
wireless communication channel between each MH and its
local MSS is assumed FIFO-ordered.

Let ns be the number of MSSs and nh be the num-
ber of MHs in a mobile computing system. We assume
that each MH as well as each MSS has a unique identifier
and, without loss of generality, that {h1,h2, . . . ,hnh} and
{s1, s2, . . . , sns} represent the set of all MHs and the set of
all MSSs, respectively. Each MSS si maintains an ns×nh
matrix called MSS SENTi. The jth row of MSS SENTi,
MSS SENTi[j, k], in which 1 6 k 6 nh, denotes the num-
ber of messages si knows to have been sent by MSS sj
to MH hk. Initially, all entries in the MSS SENTi arrays
are set to zeros for all i. Each message m transmitted by
MH hi is first received by hi’s local MSS, say, sl. sl then
tags m with sl’s sending matrix, MSS SENTl, and directs
m to its destination, say, MH hj . Each MSS does such a
forwarding service in a first-come-first-serve manner. After
doing that, MSS SENTl[l, j] is incremented by one.

Each MH hi in the system is associated with an ns-
entry vector, MH DELIVi. The jth entry in MH DELIVi,
MH DELIVi[j], denotes the number of messages sent
by MSS sj that have been delivered to hi. Initially,
MH DELIVi[j] = 0 for all i, j. To reduce communication
and computation loads on mobile hosts, each MH DELIVi
is stored in and maintained by MH hi’s local MSS. When a
message m destined for hj is received by hj’s local MSS,
say, sl, sl compares the content of MH DELIVj (which
is stored at sl) with the contents of the matrix tagging m
to decide whether m is now deliverable or not. Message
m is deliverable if MH DELIVj[k] > m.S[k, j] for all
k ∈ {1, . . . ,ns}, where m.S denotes the matrix tagging m.

In addition to vector MH DELIVi, each MSS maintains
two message queues for each MH hi resident in its cell:
WAIT ACKi and PENDi. When sl decides that a received
message m is deliverable, sl appendsm to the WAIT ACKi
queue associated with destination hi. At that time we con-
sider m to have been delivered to hi. MH DELIVi[j] is
then incremented by one, where j is the identifier of the
MSS that sent m. Messages stored in WAIT ACKi are
sent, in sequence, to hi over a wireless link without any
loss. This property can be ensured if a link layer proto-
col providing orderly and reliable message delivery, such
as a sliding window protocol [23], is involved. All deliv-
ered messages are thus sent to mobile hosts in the order
as they are delivered. When hi receives m, it sends back
an acknowledge message, ack(m), to sl. When sl receives
ack(m), it does the following actions in sequence. First,
MSS SENTl[j, i] is incremented by one. Second, each el-
ement in MSS SENTl is set to the maximum of its original
value and the value of the corresponding element in m.S.
Finally, m is deleted from WAIT ACKi.

If a received message is not currently deliverable, sl ap-
pends this message to the PENDi queue associated with hi.
Later, when some message, either a new arrival or a pending

one, becomes deliverable and is delivered to hi, the con-
tents of MH DELIVi are updated. This action may make
one of the messages in PENDi deliverable. If so, the mes-
sage is then delivered to hi. The process continues until
there is no deliverable message in PENDi.

Note that unlike Alagar and Venkatesan’s algorithms,
MH DELIVi[j] is incremented by one when message m,
sent from MSS sj , is appended to WAIT ACKi at MSS sl,
while MSS SENTl is updated after ack(m) sent from hi is
received by sl. This separated updating is intended since
if MSS SENTl were updated as soon as m is appended to
WAIT ACKi, m will be mistakenly considered as causally
preceded any outgoing message from hi to sl that is re-
ceived after the updating of MSS SENTl but sent before the
arrival of m at hi. Our scheme therefore avoids a stronger
but unnecessary ordering which Alagar and Venkatesan’s
algorithms may suffer from.

3.3. The handoff module

We assume that hi resides in MSS sp’s cell. Suppose
now hi moves to MSS sn’s cell, which requires initiation
of a handoff procedure. The first step that hi must take
is to send the message register(hi, sp) to sn. This mes-
sage informs sn of hi’s arrival and identifies hi’s previous
local MSS. In response to this message, sn will send the
message migrate(hi) to sp.

On receiving migrate(hi) from sn, sp transmits its send-
ing matrix, MSS SENTp, and other relevant information
associated with hi, including MH DELIVi, WAIT ACKi,
and PENDi, to sn. The transmission of MSS SENTp is
to update MSS SENTn – when MSS SENTp is received
by sn, sn updates MSS SENTn as if a message had been
delivered and MSS SENTp were the sending matrix associ-
ated with the message. This action effectively maintains a
monotonically-increasing sending matrix for messages orig-
inating from hi so that their causality can be sufficiently
revealed. The transmission of other data is necessary to
ensure that all the messages hi received, before or after
it moved, will be delivered without violating the COMD
property. After the transmission of hi’s information, if a
message destined for hi is received by sp, it will be for-
warded by sp to sn without modifying its contents.

The handoff procedure is completed when sn has re-
ceived all the data transmitted by sp. From then on, sn
takes over the work of maintaining the causal ordering of
messages directed to hi. If hi switches to another MSS, sq,
before the current handoff procedure has been completed,
the migrate message issued by sq will not be handled until
the current handoff procedure is completed.

3.4. Handling disconnections

If hi is disconnected from the mobile network while
resident in sl’s cell, or after it leaves sl’s cell but before
it enters any other cell, sl will continue as the MSS main-
taining hi’s COMD property while hi is disconnected. All
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messages destined for hi are processed as if hi were still
connected to sl, except that during this period, messages
in WAIT ACKi can no longer be sent to hi. Later, when
hi is connected to the network again, messages pending at
WAIT ACKi can then be sent to hi. If hi has migrated to
the cell of another MSS, sn, before being reconnected, a
handoff procedure between sl and sn must be performed
before hi can receive or send any messages.

If hi is permanently disconnected from the system, sl
removes MH DELIVi, WAIT ACKi, and PENDi from its
storage. The ith column of MSS SENTl can also be deleted
since these entries are no longer needed. This removal can
be propagated to other MSSs asynchronously by piggyback-
ing the information about hi’s disconnection on messages
sent to other MSSs.

When an MH hi that was not previously involved in
computation is connected to some MSS, sl, and applies
for participation, sl takes the following actions for hi:
First, it creates necessary data (MH DELIVi, WAIT ACKi,
and PENDi). Second, it inserts an associated column in
MSS SENTl. This insertion can be propagated to other
MSSs asynchronously in the same way as the removal is.

4. Correctness proof

Let m and m′ be two messages. Let m.S and m′.S rep-
resent the sending matrices tagging m and m′, respectively.
We define two relations, < and >, between m.S and m′.S,
as follows.

Definition 1. m.S < m′.S if m.S[i, j] 6 m′.S[i, j] for all
i, j, and ∃i′, j′, such that m.S[i′, j′] < m′.S[i′, j′].

Definition 2. m.S > m′.S if m′.S < m.S or m.S[i, j] =
m′.S[i, j] for all i, j.

The following lemmas are intermediate results necessary
for our proof.

Lemma 1. If messages m and m′ are sent by the same
MH hx, then sent(m)→ sent(m′)⇒ m.S < m′.S.

Proof. Two cases are possible.

• Case 1: hx does not move into any other cell after send-
ing m and before sending m′. Let sα be hx’s logical
MSS during this period of time. Let MH hk be m’s des-
tination. The content of m.S is set to as MSS SENTα
when m is sent, and after which, MSS SENTα[α, k]
is incremented by one. Since MSS SENTα never de-
creases, when m′ is sent, we have m′.S set to as
MSS SENTα and thus m.S < m′.S.

• Case 2: hx moves into other cells after sending m and
before sending m′. Consider each handoff. Let hx
move from MSS sα’s cell into MSS sβ’s cell. Accord-
ing to the handoff module, MSS SENTβ will be set to

as MSS SENTα after handoff procedure is completed.
Therefore, no matter how many handoffs are initiated
during the time between the sendings of m and m′, we
obtain the same result as in case 1.

�

Lemma 2. If messagem andm′ are sent by different MHs,
then sent(m)→ sent(m′)⇒ m.S < m′.S.

Proof. Suppose that sent(m)→ sent(m′) holds, it follows
that there must exists a chain of messages m1,m2, . . . ,mt

(t > 2) such that m and m1 are sent from the same MH
(m1 might be m), mt ≡ m′, and mi (1 6 i 6 t − 1) is
delivered to the same MH as mi+1 is sent from. Consider
each message mi. Suppose that mi is sent from MH hx
and is delivered to MH hy. Let sα be hx’s local MSS
when mi is sent and let sβ be hy’s local MSS when mi is
delivered. From our protocol,

mi.S = MSS SENTα (1)

when mi is sent, and

mi.S < MSS SENTβ (2)

after mi has been delivered (since after the delivery of mi,
MSS SENTβ[α, y] is incremented by one and each other el-
ement in MSS SENTβ is set to the maximum of its original
value and the value of the corresponding element in mi.S).
If hy does not move outside sβ’s cell before sending mi+1,
we have

mi+1.S > MSS SENTβ; (3)

otherwise, if hy migrates to other cells before sending
mi+1, our handoff procedure ensures that MSS SENT ma-
trix in the new MSS is never smaller than that in the old
MSS. Hence we obtain the same result as in (3). It fol-
lows from (1)–(3) that mi.S[ ] < mi+1.S[ ] for all i,
1 6 i 6 t−1. By transitivity, we have m.S[ ] < m′.S[ ]. �

Lemma 3. Suppose n messages (n is finite) have been sent
by MSS sα and are destined for MH hx. Let mi (1 6 i 6
n) denote the ith message. If mi has not been delivered to
hx, MH DELIVx[α] 6 mi.S[α,x].

Proof. By our protocol, mi.S[α,x] = i − 1. By way
of contradiction, suppose that mi has not been deliv-
ered but MH DELIVx[α] > mi.S[α,x] = i − 1. Since
MH DELIVx[α] is incremented by one only when a mes-
sage sent by sα is delivered to hx, MH DELIVx[α] > i−1
implies that more than i− 1 messages have been delivered
to hx, therefore, some message mj , where j > i, must have
been delivered. According to our algorithm, the premise to
deliver mj is that MH DELIVx[α] > mj .S[α,x] = j − 1,
which implies that at least j − 1 messages must have
been delivered before the delivery of mj . Since at least
one message that was sent before mj has not been de-
livered (i.e., hi), some message mk (k > j) must have
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been delivered before the delivery of mj . The same ar-
gument applied to mj can apply to mk, and so on. Since
n is finite, eventually we will end up with the condition
MH DELIVx[α] > n, which is impossible and therefore a
contradiction. �

The following theorem shows the correctness of our al-
gorithm.

Theorem 1. Let m and m′ be two messages. sent(m) →
sent(m′)⇒ deliv(m)→ deliv(m′).

Proof. Let m be sent from MH hx and m′ be sent from
MH hy. Let sα be hx’s local MSS when m is sent and sβ
be hy’s local MSS when m′ is sent. Let m and m′ be both
destined for MH hz. Suppose that m′ has been delivered
but m has not, we have MH DELIVk[α] > m′.S[α, z].
Since m.S[α, z] < m′.S[α, z] (from lemmas 1 and 2),
it follows that MH DELIVk[α] > m.S[α, z]. Therefore,
from lemma 3, m must have been delivered, which is a
contradiction. �

5. Comparisons

We compare our algorithm with the three counterparts
proposed by Alagar and Venkatesan along three dimensions:
message overhead, handoff cost, and the probability of un-
necessary inhibition in delivering messages. For abbrevi-
ation, we denote our algorithm and the first, the second,
and the third algorithms as YHH, AV94-1, AV94-2, and
AV94-3, respectively.

5.1. Message overhead

All these algorithms need to add extra bits to the header
of each message. These bits are essentially overhead that
will increase message transmission delay when the mes-
sages pass along the wired network. However, the amount
of overhead each of these algorithms adds to messages
varies. The needed header sizes per message are O(n2

h) in
AV94-1, O(n2

s) in AV94-2, and O(k2 n2
s) in AV94-3, where

k is a predetermined integer parameter. Our algorithm re-
quires a header size of O(ns × nh) in each message. Let
p = nh/ns. Typically, p is greater than one, in which case
AV94-2 has the lowest message overhead. The message
overheads of the others, when p is greater than one, are
shown in table 1. In this table it can be seen that our al-
gorithm outperforms the other two with respect to message
overhead when p < k2.

5.2. Handoff cost

The handoff cost can be measured by the length of time
a handoff procedure takes. This measure is directly pro-
portional to the amount of information transmitted by the
handoff procedure. The kind of information sent by AV94-1

Table 1
Comparison of message overheads among YHH, AV94-1, and AV94-3.

The range of p Order of overheads

1 < p 6 k YHH < AV94-1 6 AV94-3
k < p 6 k2 YHH 6 AV94-3 < AV94-1
k2 < p AV94-3 < YHH < AV94-1

Table 2
Comparison of handoff costs among all algorithms.

(a) When ns > k3

The range of p Order of costs

1 < p 6 √ns YHH < AV94-1 6 AV94-2 < AV94-3√
ns < p 6 k3/2√ns YHH < AV94-2 < AV94-1 6 AV94-3

k3/2√ns < p 6 ns YHH 6 AV94-2 < AV94-3 < AV94-1
ns < p 6 k3ns AV94-2 < YHH 6 AV94-3 < AV94-1
k3ns < p AV94-2 < AV94-3 < YHH < AV94-1

(b) When ns 6 k3

The range of p Order of costs

1 < p 6 √ns YHH < AV94-1 6 AV94-2 < AV94-3√
ns < p 6 ns YHH 6 AV94-2 < AV94-1 6 AV94-3

ns < p 6 k3/2√ns AV94-2 < YHH < AV94-1 6 AV94-3
k3/2√ns < p 6 k3ns AV94-2 < YHH 6 AV94-3 < AV94-1
k3ns < p AV94-2 < AV94-3 < YHH < AV94-1

is the same as that sent by YHH: the SEND matrix, the
DELIV vector, and the WAIT ACK and PEND message
queues. However, the sizes of matrix SEND and vector
DELIV are O(ns×nh) and O(ns), respectively, in the YHH
algorithm, while AV94-1 needs O(n2

h) and O(nh) to trans-
mit the same information. AV94-2 and AV94-3 do not send
information associated with the migrating MH in the hand-
off procedure. They use, however, O(k ns) control mes-
sages, each of which has a header size of O(k2 n2

s) (k = 1
in AV94-2). Therefore, the handoff costs are O(n2

h) + O(q)
in AV94-1, O(ns)× O(n2

s) in AV94-2, O(k ns)× O(k2 n2
s)

in AV94-3, and O(ns × nh) + O(q) in YHH, where q rep-
resents the number of messages pending in the message
queues when the handoff procedure begins. We assume
that O(q) < O(ns × nh). The comparisons of the handoff
costs, with various ranges of p, are shown in table 2. In
this table it is easy to see that our algorithm has the lowest
handoff cost of all when p 6 ns.

There is another factor that makes the handoff costs even
higher in AV94-2 and AV94-3. In these two algorithms, all
MSSs (more precisely, all k × ns MSSs) are involved in
the handoff procedure. The handoff procedure can not be
completed until all MSSs, in response to a notify message
broadcast by a certain MSS, have sent back their acknowl-
edgments, and all the acknowledgments have been received
by the MSS that issued the original notify message. All the
notify messages and the associated acknowledgments must
be causally ordered, meaning that extra delays in delivering
these messages may be needed to maintain their causality.
This penalty is greater than expected when the possibility
of unnecessary inhibition is also considered.
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Figure 2. An example of unnecessary inhibition.

5.3. Unnecessary delivery inhibition

Before we compare the probability of unnecessary deliv-
ery inhibition among all algorithms, we illustrate the phe-
nomenon of unnecessary inhibition with an example. Con-
sider the system configuration shown in figure 2. Suppose
that MSS s1 sends message m1 to MSS s2 and then sends
message m2 to MSS s3. After delivering m2, s3 sends
message m3 to s2. If m3 is received by s2 before m1 ar-
rives, AV94-2 inhibits delivery of m3 until m1 has been
delivered, since, with respect to the MSSs’ point of view,
send(m1)→send(m3) holds and thus, m3 should not be de-
livered before the delivery of m1. However, this inhibition
is only necessary when send(m1)→send(m3) also holds at
the MH level. In this example, the necessary conditions
are as follows:

• Messages m1 and m2 originate from the same MH.

• Message m3 originates from the same MH m2 is des-
tined for.

• Messages m3 and m1 are destined for the same MH.

If these conditions do not all hold simultaneously, the inhi-
bition is unnecessary.

Unnecessary inhibition does not exist at all in AV94-1.
On the other hand, AV94-2 has the highest probability of
unnecessary inhibition since it only maintains the COMD
property at the MSS level. AV94-3 tries to reduce the
probability of unnecessary inhibition by allocating MHs in
cells to different logical MSSs, and maintaining the COMD
property among logical MSSs. Consequently, messages to
MHs belonging to different logical MSSs will not inhibit
each other even though these MHs may be in the same
cell. Our algorithm also deals with the problem of unneces-
sary inhibition by confining the enforcement of the COMD
property to messages that are destined for the same MH.
As in AV94-2, a message sent by an MSS is considered
to be causally related to all messages that have been sent
or delivered by the same MSS. However, only messages
directed to the same MH will be considered for inhibition
to maintain COMD. Messages to different MHs will not
inhibit each other even though they may be directed to the
same MSS. Hence the probability of unnecessary inhibition
can be reduced.

To compare the probability of inhibition in AV94-3 with
that in YHH, consider the example shown in figure 2 again.
Let each MSS be partitioned into k logical MSSs, where
k > 2. Suppose that the following conditions hold:

• The originators of messages issued from a cell and the
destinations of messages delivered to a cell are both
uniformly distributed over all MHs in that cell.

• MHs are uniformly distributed over all cells.

• MHs in a cell are uniformly distributed over all logical
MSSs.

In AV94-3, when m3 arrives at s2 before m1 arrives, the
delivery of m3 will be temporarily inhibited only if all the
following conditions hold:

(C1) Messages m1 and m2 were sent by the same logical
MSS.

(C2) Message m3 was sent by the same logical MSS m2

is delivered to.

(C3) Messages m3 and m1 are directed to the same logical
MSS.

It is easy to see that the probabilities of (C1), (C2) and
(C3) are all 1/k. So, the probability of inhibition will be
1/k3 of that in AV94-2. In our approach, when m3 arrives
at s2 before m1 arrives, the delivery of m3 is temporarily
inhibited only if m3 and m1 are destined for the same MH.
The probability of inhibition will be 1/p of that in AV94-2,
where p = nh/ns is the expected number of MHs resident
in a cell. This degree of probability will be lower than
AV94-3 when p > k3, and higher than that otherwise.

Both AV94-3 and our algorithm reduce the probability
of unnecessary inhibition inherent in AV94-2. The perfor-
mance of AV94-3 depends on the value of k. As k in-
creases, unnecessary delays in delivering messages to MHs
decrease. However, as k increases message overheads and
handoff costs also increase. So the optimal setting of k
must be evaluated by simulation or experiment. In con-
trast, our approach provides an alternative whose behavior
is more deterministic.

6. Conclusions

We propose an algorithm that provides causally ordered
message delivery for mobile computing systems. This al-
gorithm is mainly executed by MSSs, and thus reduces both
the amount of computation performed by mobile hosts and
the communication overhead in wireless channels. Previ-
ous solutions of the same problem either incur high mes-
sage overheads or suffer from high hand-off costs. Our ap-
proach makes a compromise between these two extremes:
the hand-off cost is low while the message overhead is me-
dian. In addition, our approach reduces the probability of
unnecessary inhibition in delivering messages that conven-
tional low-message-overhead approaches incur.

Prakash et al. [18] have proposed another causal order-
ing algorithm for mobile computing environment. In their
algorithm, each message needs to carry information only
about its direct predecessor message, with respect to each
destination MH, and most recent mutually concurrent mes-
sage delivered to its sender. This strategy usually can re-
duce message overhead. However, the worst-case message
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overhead is still O(n2
h). Moreover, since this algorithm is

implemented on each MH, it suffers from the same disad-
vantages as AV94-1 does. Nevertheless, we think that if the
strategy applied in this algorithm is adapted and integrated
into our approach, the message overhead of our algorithm
might be further reduced.
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