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An optimal data hiding scheme
with tree-based parity check

Chung-Li Hou ChangChun Lu Shi-Chun Tsai Wen-Guey Tzeng

Abstract—Reducing distortion between the cover object and the stego
object is an important issue for steganography. The tree-based parity
check method is very efficient for hiding a message on image data due
to its simplicity. Based on this approach, we propose a majority vote
strategy that results in least distortion for finding a stegoobject. The
lower embedding efficiency of our method is better than that of previous
works when the hidden message length is relatively large.

I. I NTRODUCTION

Steganography studies the scheme to hide secrets into the commu-
nication between the sender and the receiver such that no other people
can detect the existence of the secrets. A steganographic method
consists of an embedding algorithm and an extraction algorithm.
The embedding algorithm describes how to hide a message into
the cover object and the extraction algorithm illustrates how to
extract the message from the stego object. A commonly used strategy
for steganography is to embed the message by slightly distorting
the cover object into the target stego object. If the distortion is
small enough, the stego object will be indistinguishable from the
noisy cover object. Therefore, reducing distortion is a crucial issue
for steganographic methods. In this paper, we propose an efficient
embedding scheme that uses the least number of changes over the
tree-based parity check model.

Crandall [4] first introduced the idea of matrix embedding, which
turns out to be very successful. Fridrich et al. [6] proposeda scheme,
called the wet paper code, for the situation that some positions in
the cover object are invariant. Fridrich and Soukal [8] discussed
the scenario when the relative payload (the ratio of the hidden
message length to the number of positions used for embeddingin
the cover object) is relatively large. Matrix embedding uses (n, k)
linear codes, which are also called syndrome coding (appears in [9]
by Khatirinejad and Lisoněk) or coset encoding ( [2] introduced by
G. Cohen et al.). It embeds and extracts a message by using the
parity check matrixH of an (n, k) linear code. Zhang and Li [13]
generalized the idea of matrix embedding and defined the codes with
the matrixH as steganographic codes (abbreviated stego-codes). For
matrix embedding, finding the stego object with least distortion is
hard in general. In some special cases, there exist constructive and
fast methods. Fridrich et al. [7] utilized LT codes to improve the
computational complexity of wet paper codes. Westfeld [12]derived
a hash function to efficiently obtain the stego object. Li et al. [10]
proposed a scheme calledtree based parity check(TBPC) to reduce
distortion on a cover object based on a tree structure. The TBPC
method can be formulated as a matrix embedding method, but is
more efficient than those based on linear codes. Due to its simplicity,
the TBPC method provides very efficient embedding and extraction
algorithms. Recently, Zhang et al. [14] proposed a systematic method
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to generate codes with an arbitrary small relative payload from any
code with a large relative payload. Since our method works naturally
with large relative payloads, the result of Zhang et al. [14]implies
that our method applies to small relative payloads as well.

We observe that the toggle criteria of a node in the TBPC method
can be relaxed by the strategy of majority vote. Our strategyinherits
the efficiency of the TBPC method and produces a stego object
with least distortion under the tree based parity check model. The
time complexity of our embedding (extraction as well) algorithm is
asymptotically optimal, that is, it is linearly bounded by the hidden
message length.

The embedding efficiencyis defined to be the number of hidden
message bits per embedding modification. Higher embedding effi-
ciency implies better undetectability for steganographicmethods. The
lower embedding efficiencyis defined to be the ratio of the number of
hidden message bits to the maximum embedding modifications.The
lower embedding efficiency is related to undetectability inthe worst
case. It implies steganographic security in the worst case.Thus, the
lower embedding efficiency is also an important security factor for
a steganographic system. In our method, it is2 − Θ(1/L), where
L is the hidden message length andΘ(1/L) is a set of functions
asymptotically bounded both above and below by1/L.

II. PRELIMINARY AND TBPCMETHOD

Before embedding and extraction, a location finding method deter-
mines a sequence of locations that point to elements in the cover
object. The embedding algorithm modifies the elements in these
locations to hide the message and the extraction algorithm can recover
the message by inspecting the same sequence of locations.

The TBPC method is a least significant bit (LSB) steganographic
method. Only the LSBs of the elements pointed by the determined
locations are used for embedding and extraction. The TBPC method
constructs a completeN -ary tree, called themaster tree, to represent
the LSBs of the cover object. Then it fills the nodes of the master
tree with the LSBs of the cover object level by level, from topto
bottom and left to right. Every node of the tree corresponds to an
LSB in the cover object. Denote the number of leaves of the master
tree byL. The TBPC embedding algorithm derives anL-bit binary
string, called themaster string, by performing parity check on the
master tree from the root to the leaves (e.g. see Figure 1.).

The embedding algorithm hides the message by modifying the bit
values of some nodes in the master tree. Assume that the length of
the message is alsoL. Performing the bitwise exclusive-or operation
between the message and the master string, we obtain atoggle string
(e.g. see Figure 1). Then the embedding algorithm constructs a new
completeN -ary tree, called thetoggle treein the bottom-up order
and fills the leaves with the bit values of the toggle string and the
other nodes with 0. Then level by level, from the bottom to theroot,
each non-leaf node together with its child nodes are flipped if all its
child nodes have bits 1 (e.g. see Figure 2). The embedding algorithm
obtains thestego treeby performing exclusive-or between the master
tree and the toggle tree (e.g. see Figure 3). The TBPC extraction
algorithm is simple. We can extract the message by performing parity
check on each root-leaf path of the stego tree from left to right.
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Fig. 1. Master and toggle strings of a master tree withL = 4 for LSBs 0,
1, 1, 0, 1, 0, 1 of the cover object.
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Fig. 2. The construction of a toggle tree withL = 4 for toggle string 0, 1,
1, 1.
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Fig. 3. Modify the master tree into the stego tree by the toggle tree
constructed from the toggle string 0, 1, 1, 1.

III. M AJORITY VOTE STRATEGY

Two critical issues for a steganographic method are: (1) reducing
distortion on cover objects, and (2) better efficiency for embedding
and extraction. We give a majority vote strategy on buildingthe toggle
tree. It uses the least number of1’s under the tree based parity check
model. Since the number of1’s in the toggle tree is the number of
modifications on the master tree (i.e., the cover object), the majority
vote strategy can produce a stego tree with least distortionon the
master tree.

A. Algorithm

Hereafter, we use MPC (majority-vote parity check) to denote our
method due to its use of majority vote in deriving the parity check
bit. We construct the toggle tree with the minimum number of 1’s
level by level in the bottom-up order as follows:

Algorithm MPC:
Input: a toggle string of lengthL;
1. Index the nodes of the initial toggle tree;
2. Set the leaves of the toggle tree from left to right and bit

by bit with the toggle string and the other nodes 0;
3. for i = 1 to h

for each internal node on leveli do
if the majority of its unmarked child nodes holds1
then flip the bit values of this node and its child nodes;
else if the numbers of0 and 1 in its unmarked child

nodes are the same
then mark this internal node;

4. if N is eventhen
for i = h− 1 to 1

for each marked internal node holding1 on level i do
flip the bit values of this node and its child nodes;

First, index all nodes of a completeN -ary tree withL leaves from
top to bottom and left to right. Set theL-bit toggle string bit by bit
into theL leaves from left to right and the other nodes 0. Assume that
the level of the tree ish. Traverse all non-leaf nodes from level1 to h.
A non-leaf node and its child nodes form a simple complete subtree.
For each simple complete subtree, if the majority of the child nodes
hold 1, then flip the bit values of all nodes in this subtree. Since
the construction is bottom-up, the bit values of the child nodes in
every simple complete subtree are set after step 3. Note thatmarking
a node at step 4 applies only forN being even. WhenN is even,
after step 3, there may exist a 2-level simple complete subtree with
N/2 1’s in the child nodes and 1 in its root. In this case flipping the
bit values in this simple complete subtree results in one fewer node
holding 1 and keeps the result of related root-leaf path parity check
unchanged. Step 4 takes care of this when the condition applies and
it is done level by level from top to bottom. Also note that forthe
root of the whole toggle tree, the bit value is always0 when half of
its child nodes hold1. Thus, after step 4, the bit values of the child
nodes in each simple complete subtree are determined.

The number of1’s in the toggle tree is the number of modifications.
When constructing the toggle tree, the original TBPC methodflips a
simple complete subtree only if all of child nodes have1. We prove
that the majority vote strategy actually obtains toggle trees with the
least number of1’s.

We call a toggle tree with the least number of1’s corresponding to
a toggle string anoptimal toggle tree. We say that a toggle tree is in
majority form if for each internal node at least half of its child nodes
have bit value 0 and the internal node holds0 when exactly half of
its child nodes holding1. The output of the algorithm is a toggle tree
in majority form. The majority vote guarantees that at leasthalf child
nodes of an internal node hold 0. Note that every optimal toggle tree
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can be transformed into majority form. It is obvious whenN is even.
WhenN is odd, we can check each 2-level simple complete subtree
level by level in the top-down order and flip the bit values of the
root node and itsN child nodes if exactly(N + 1)/2 of the child
nodes hold1. Note that when this situation applies, the root node
must hold 0 before flipping, otherwise the toggle tree is not optimal.
This rearrangement does not introduce an extra1 and the result of
each root-leaf path parity check is not affected.

Theorem III.1. Algorithm MPC generates an optimal toggle tree
with the least number of 1’s under the tree based parity checkmodel.

Proof: Let TM be theN -ary toggle tree obtained by MPC and
Topt (in majority form) be an optimalN -ary toggle tree, which
produces the same message bits as that ofTM by doing root-leaf
path parity check. Leth denote the tree level ofTopt andTM . We
prove by induction onh and show that both trees have the same
number of nodes holding 1 and both roots have the same bit value.

For h = 1, it is obvious thatTopt and TM have the same of
distributing 0-1 values to the nodes, because they are both in both in
majority form and generate the same message.

Assume our claim is true up toh = k, that is, for any optimal
toggle treeTopt of h levels, Algorithm MPC generates a toggle tree
that has the same number of nodes as inTopt holding 1 and produces
the same message bits. Forh = k+1, assumeTopt havek+1 levels.
Let r be its root andr1, . . . , rN be the child nodes ofr. Similarly,
we let r′ andr′i’s be the corresponding nodes ofTM .

Let m be the message produced byTM andTopt, wherem can be
partitioned intom1, . . . , mN , andmi can be obtained via the subtree
rooted atri. If the bit value ofr is 0, then the subtree rooted atri of
Topt is an optimal toggle tree that produces the messagemi; else it
is an optimal toggle tree producingmi, which is the complimentary
string of mi. Since the subtrees rooted atri’s have k levels, by
induction hypothesis, eachmi can also be obtained by ak-level tree
rooted atr′i from MPC. The subtrees rooted atri and r′i have the
same number of nodes holding 1 and both roots have the same bit
value. If r has bit value 0, then by making a majority vote over the
bit values ofr′i’s, we obtain an optimal toggle tree from MPC. Ifr
has 1, then it needs more works to prove the correctness.

Observe that if for any two optimal toggle trees that produces two
messages that are complimentary to each other, then the difference
on the number of nodes holding 1 in both trees is at most 1, since we
can always get a complimentary message by flipping the bit value of
the root node. Whenr has bit value 1, there are more child nodes
of r holding 0 and the optimal subtree rooted atr′i from MPC, by
induction hypothesis, actually producesmi. Note thatri andr′i have
the same bit value, fori = 1, . . . , N . If we flip the bit of r′i, then the
toggle tree rooted atr′i will producemi but it may not be an optimal
one formi. By the above observation, we know ifr′i had 1 before
flipping, then after flipping it, the tree rooted atr′i becomes optimal
for mi. On the other hand, ifr′i had 0 before flipping, then after
flipping it, the tree rooted atr′i may have one more node holding
1 than an optimal toggle tree that producesmi. Thus there will be
more than half ofr′i’s flipped from 0 to 1. Then by taking a majority
vote over flippedr′i’s, we flip them back and have a new root,r′,
holding 1. Therefore, the total number of nodes holding 1 is the same
asTopt, and it can be obtained by MPC. This completes the proof.

B. Binary linear stego-code

Before showing that our method is actually a special binary linear
stego-code, we briefly review the definition of linear stego-codes.
With matrix embedding, given any messagem ∈ F

(n−k)
2 and any

cover objectx ∈ F
n
2 , the problem is to find a vectorδ ∈ F

n
2 and

an (n − k) × n matrix H over F2 such thatwt(δ) is as small as
possible andHx′ = m, wherex′ = x+δ andwt(δ) is the Hamming
weight of δ. Zhang and Li [13] generalized this idea and defined the
stego-coding matrix and the linear stego-code as follows.

Definition III.1. An (n− k)×n matrix H overGF (q) is called an
(n, n− k, t) stego-coding matrix if for any giveny ∈ GF (n−k)(q),
there exists a vectorv ∈ GFn(q) such thatwt(v) ≤ t andHv = y.

Definition III.2. Let H be an(n, n− k, t) stego-coding matrix. For
all y ∈ GF (n−k)(q), let sy = {v : Hv = y, v ∈ GFn(q)}. An
(n, n− k, t) linear stego-code is defined byS = {sy : sy 6= ∅}.

In comparison with matrix embedding,v is the distortionδ and
y is m − Hx, wherem is the message andx is the cover object.
An (n, n− k, t) linear stego-code guarantees that the distortion is at
most t bits for any given message and cover object.

In practice, the sender and the receiver agree on a matrixH in
advance. The cover object is represented as a binary vectorx (e.g.
for an image, take the LSBs of all pixels) and the message is also
a binary vectorm. For embedding, the sender identifies a vectorx′

such thatHx′ = m. For extraction, the receiver extracts the hidden
messagem from the stego objectx′ by computingHx′ = m. Finding
x′ with least distortion is to solveHδ = m−Hx such thatwt(δ) is
minimum. Findingδ with least weight is the well known coset leader
problem [9]. It is equivalent to the nearest codeword problem (NCP)
for binary linear codes (see Section 2.4 in [11] by Roth). NCPis to
find a codewordc such thatwt(y − c) is minimum, given ak × n
matrix A over GF (2) and a vectory ∈ GFn(2). Arora et al. [1]
have proved that even approximating NCP within any constantfactor
is NP-hard. In general, NCP is extremely difficult. However under
the tree-based structure, we can efficiently solve it.

Hiding a message with the tree-based parity check structurecan
be treated as a kind of linear binary stego-codes. The paritycheck
operations on a tree can be formulated as a matrix operation.More
specifically, consider a completeN -ary complete tree withn nodes,
h levels andL = Nh leaves. There areL paths and each withh+1
nodes. Enumerate the paths from left to right. For pathi, we define an
n-dimensional binary vectorvi, where thej-th entry is 1 if and only
if path i has a node with indexj. DefineH to be theL× n matrix,
where thei-th row is vi, i = 1, 2, . . . , L. Use then-dimensional
binary vectorx to represent the cover object, wherexi is associated
with the node of the master tree with indexi. Therefore,Hx has the
result of tree-based parity check. In other words, the TBPC method
is simply a special case of linear binary stego-codes.

Theorem III.2. Given a cover objectx of lengthn, a messagey
with lengthL and anN -ary toggle tree, the tree based parity check
steganographic method with majority vote strategy is equivalent to
an (n,L, (L+ 1)/2) linear stego-code.

Proof: Let H be theL × n matrix corresponding to the tree
based structure, andx′ be then-dimensional vector corresponding to
the stego tree. Therefore,H×x′ = y. According to the definition of
linear stego-codes, the remaining is to analyze the distortion between
x and x′. The distortion is the number of1’s in the toggle tree.
Since the construction of the toggle tree is in the bottom-uporder,
only leaf nodes hold1 initially. For evenN , the majority vote always
reduces the number of1’s in the toggle tree while flipping. Therefore,
the worst case for evenN is that all the simple complete subtrees
with leaf nodes as child nodes haveN/2 child nodes holding1.
The maximum number of1’s in the toggle tree for evenN is
(L/N)(N/2) = L/2. WhenN is odd, every simple complete subtree
of the toggle tree in majority form has at most⌊N/2⌋ child nodes
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holding 1. Let K = ⌊N/2⌋. The worst case for oddN is that the
root holds1 and K child nodes of every simple complete subtree
hold 1. The maximum number of1’s in the toggle tree for oddN is

1 +

(logN L)−1
∑

i=0

N iK = 1 +K((L− 1)/(N − 1) = (L+ 1)/2.

Therefore, the distortion is at most(L + 1)/2. This completes the
proof of the theorem.

IV. A NALYSIS AND EXPERIMENTAL RESULTS

A. Average modifications per hidden bit

It is easy to construct a method that achieves the expected
embedding modifications per hidden bit being0.5. In other words,
if we try to embed anL-bit message into the cover object,0.5L
modifications will occur on average. We use

pToggle =
Da

L
(1)

to denote the expected embedding modifications per hidden bit, where
Da is the average number of embedding modifications for anL-bit
message.

Recall that the MPC method performs majority vote on every
simple complete subtree to construct the toggle tree in the bottom-
up order. Therefore, we are going to calculate the expected reduced
number of1’s for every simple complete subtree and sum up the
expected reduced number of1’s for all simple complete subtrees.

For convenience, we usei-level treeto denote a completeN -ary
tree ofi levels. Ani-level tree consists of one root andN (i−1)-level
trees. Ani-level simple complete subtree is a 2-level tree containing
a nodev at level i and all its child nodes.

For anh-level toggle tree, the level of the root ish and the level
of a leaf is0. Let P (i) be the probability that the root of ani-level
simple complete subtree holds1 after performing majority vote. For
the leaf nodes,P (0) is 1/2 because the leaf nodes are uniformly
filled with 0 or 1. For everyi-level simple complete subtree,P (i) is
the same by symmetry. Let⌊N/2⌋ = K. Since the toggle tree is an
N -ary complete tree constructed by the majority vote strategy, P (i)
can be expressed as follows:

P (i) =
N
∑

j=K+1

(

N

j

)

P (i− 1)j [1− P (i− 1)]N−j . (2)

Let R(t) be the reduced number of1’s after flipping the bit values
of a simple complete subtree that holdst 1’s. Therefore,R(t) =
t− (N +1− t) = 2t−N − 1. The expected reduced number of1’s
for an i-level simple complete subtree is as follows:

E(i) =
N
∑

j=K+1

R(j)

(

N

j

)

P (i− 1)j [1− P (i− 1)]N−j . (3)

For anL-bit toggle string, the expected number of1’s in the toggle
string is 0.5L. In the first step for the toggle tree construction, we
fill each leaf with one bit of the toggle string. Before majority vote,
the number of1’s in the toggle tree is0.5L. After majority vote, the
number of1’s in the toggle tree is0.5L −

∑h

i=1 N
h−iE(i). Since

the number of modifications is the number of1’s in the toggle tree,
we finally have the following equation:

pToggle= 0.5−
1

L

h
∑

i=1

Nh−iE(i). (4)

If N=2K + 1 is an odd integer, equation (3) can be further

simplified as

E(i) =
N
∑

j=K+1

R(j)

(

N

j

)

(
1

2
)N , (5)

since
K
∑

j=0

(

N

j

)

=
N
∑

j=K+1

(

N

j

)

= 2N−1,

and

P (i) =

N
∑

j=K+1

(

N

j

)

(
1

2
)N =

1

2
.

The pToggleof the TBPC method is

pToggle(i) = pToggle(i− 1)−
N − 1

C(i)L(i)
, (6)

whereL(i) is the number of leaves andC(i) is the number of possible
0-1 configurations in leaves for ani-level tree.

B. Time complexity of MPC

For embedding of the MPC method, the construction of anL-bit
master string from a master tree is to perform parity check onL
simple root-leaf paths. The number of parity check operations for
each simple root-leaf path is the number of edges in this path. Since
we perform parity check once for every edge, the total numberof
parity check operations is the number of edges in the master tree.
Since the number of nodes in the master tree is

logN L
∑

i=0

N i = (NL− 1)/(N − 1) = L+ (L− 1)/(N − 1),

the time complexity to obtain a master string isO(L). The time
complexity to obtain the toggle string isO(L) since the toggle
string is derived by performing bitwise exclusive-or between theL-bit
message and theL-bit master string. Thus, the total time complexity
of the embedding algorithm isO(L). For the extraction algorithm,
we perform parity check onL simple root-leaf paths in the stego
tree. Thus, the complexity of the extraction algorithm is alsoO(L).

C. Comparison for large payloads

Fridrich and Soukal [8] proposed two matrix embedding methods
based on random linear codes and simplex codes. The time com-
plexity of embedding algorithms for matrix embedding is bounded
by the complexity of the decoding algorithms for codes, i.e., the
complexity of finding the coset leader. The decoding algorithms for
(n, k) random linear codes and(n, k) simplex codes in [8] have time
complexityO(n2k) andO(n log n), respectively, wheren is the code
length andk is the dimension of the code. Both methods have the
hidden message lengthn−k. The time complexityO(L) = O(n−k)
of our method is much better.

Table I describes the experimental embedding time for our method
and the method based on simplex codes. For a fixed relative payload,
we compare the embedding time (in nanoseconds) per hidden mes-
sage bit. Our method is at least three times faster than the method
based on simplex codes. The experiment was run on a Windows XP
system with Athlon 2.21 GHz CPU, 1 GB RAM and implemented
in JAVA. Under the same experimental environment, we simulated
embedding for a1280× 1024 image. The comparison of embedding
time with a similar block length and relative payload is in Table II.
The embedding time of the MPC method is better. Fridrich and
Soukal [8] simulated embedding for a1280 × 1024 image using
(n, k) random codes with block lengthn = 100 andk = 10, 12, and
14. The experiment run by Fridrich and Soukal [8] was on a Linux
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TABLE I
COMPARISON OF EMBEDDING TIME FOR THEMPC METHOD AND THE

SIMPLEX CODE-BASED METHOD UNDER THE SAME RELATIVE PAYLOADα

embedding time(ns)
(2q − 1, q) (n,L) per hidden bit

α Simplex MPC Simplex MPC

0.73 (15,4) (85, 43) 433 138
0.83 (31,5) (259, 63) 365 96
0.9 (63,6) (1111, 103) 351 82

0.945 (127,7) (6175, 183) 377 75
0.99 (1023,10) (9901, 992) 604 64

TABLE II
COMPARISON OF EMBEDDING TIME FOR A1280× 1024 IMAGE WITH A

SIMILAR RELATIVE PAYLOAD α AND BLOCK LENGTH

embedding
time (ms, in JAVA) α

(100,10) 13536 0.9
(n, k) Random (100,12) 52297 0.88

(100,14) 207834 0.86
(2q − 1, q) Simplex (127,7) 471.64 0.94

(91, 92) 115.92 0.89
(n,L) MPC (111, 102) 113.62 0.9

(133, 112) 105.96 0.91

system with Pentium IV 3.4 GHz CPU, 1 GB RAM and implemented
in C++. The embedding time fork = 10, 12, and 14 is 0.82 seconds,
2.42 seconds, and 8.65 seconds, respectively. The embedding time
for the MPC method even implemented in JAVA is better than the
random code-based method implemented in C.

For extraction algorithms, both of simplex code-based and random
code-based methods need to calculateHy, whereH is the parity
check matrix andy is the stego object. The number of1’s in H
dominates the time complexity for extraction algorithms. For (n, k)
simplex codes (the dual of hamming codes), the generator matrix
Gk×n consists of all possible non-zerok-dimension column vectors.
The number of1’s in Gk×n is nk/2. Since the generator matrix
Gk×n can be rearranged in systematic form, sayGk×n = [Ik×k|A],
the parity check matrixH(n−k)×n is [AT |I(n−k)×(n−k)], whereAT

is the transpose ofA. Therefore, the number of1’s in H is nk/2−
k + (n − k) = nk/2 + n − 2k. The time complexity of extraction
algorithms based on simplex codes isO(nk/2+n−2k). For random
linear codes, the number of1’s in the parity check matrix,H =
[I(n−k)×(n−k)|D], depends on the distribution of the random source.
Therefore, for random linear codes, its time complexity isO(n−k+
k2) on average and for MPC its time complexity is simply bounded
by the hidden message length,O(L) = O(n− k).

Fridrich and Soukal [8] also considered the relative payload α =
L

Pcover
whereL is the number of hidden message bits andPcover is

the number of positions (e.g. pixels for an image) used for embedding
in the cover object. Letq ≥ 3 be integer. The relative payloads
for methods based on an(n, k) random linear code and a practical
(2q − 1, q) simplex code of dimensionq and code length2q − 1 are
(n−k)/n and(2q −1− q)/(2q −1) = 1− q/(2q −1), respectively.
The relative payload for MPC is

α =
L

NL−1
N−1

= 1−
L− 1

NL− 1
= 1−

Nh − 1

Nh+1 − 1
.

Recall thatDa is the average number of modifications for embed-

TABLE III
COMPARISON OF EMBEDDING EFFICIENCYe AND THE HIDDEN MESSAGE

LENGTH L FOR THEMPC METHOD AND THE AUGMENTED SIMPLEX
CODE-BASED METHOD UNDER SIMILAR EMBEDDING TIMEt

(2q − 1, q + 1)
t Augmented (n,L) e ; L

(103ns) Simplex MPC Simplex MPC

6 (15,5) (40, 33) 3 ; 10 2.63 ; 27
13 (31,6) (156, 53) 2.84 ; 25 2.55 ; 125
29 (63,7) (400, 73) 2.66 ; 56 2.49 ; 343
60 (127,8) (820, 93) 2.5 ; 119 2.45 ; 729

ding L bits. Theembedding efficiencyis defined as

e =
L

Da

= 1/pToggle.

By experiments, we observed that the embedding efficiency ofthe
MPC method is slightly smaller (within 0.5 whenα > 0.8) than
those of Fridrich and Soukal [8]. There is a tradeoff betweentime
complexity and embedding efficiency. Our method has lower time
complexity with slight sacrifice on embedding efficiency. Figure 4
shows the relation between embedding efficiency and the relative
payloads for MPC and the two methods of Fridrich and Soukal [8].
For simplex codes, we choose augmented simplex code (addingan
all 1’s row vector to the generator matrix) forq = 4, 5, . . . , 11. For
random linear codes, we only consider the codes withk = 14 and the
relative payloads which are close to simplex codes forq = 4, 5, 6.
For MPC, we calculate embedding efficiency for fixingh = 3 and
10 with the relative payloads1 − (Nh − 1)(Nh+1 − 1), where
N = 3, 4, . . . , 16. Table III describes the comparison of embedding
efficiency under similar embedding time. Recall that the hidden
message length isL for the MPC method and2q − 1 − (q + 1)
for the augmented simplex code-based method. Our method embeds
more bits with slight sacrifice on embedding efficiency undersimilar
embedding time.

The embedding efficiency focuses on the average modifications.
On the other hand, thelower embedding efficiencye concerns about
the maximum modifications. It is defined as

e =
L

D

whereD is the maximum modifications for embeddingL bits. The
covering radius of the codes used for matrix embedding determines
the maximum modifications. For(2q − 1, q) simplex codes, the
covering radius is2q−1 − 1 (see [3] in Appendix B proposed by
G. Cohen et al.). The lower embedding efficiency is

(2q − 1− q)/(2q−1 − 1) = 2−Θ(logn/n).

By Theorem III.2, MPC is equivalent to an(n, L, (L+ 1)/2) linear
stego-code. The maximum embedding modifications for MPC is(L+
1)/2 . The lower embedding efficiency for MPC is

L(L+ 1)/2 = 2− 2/(L+ 1) = 2−Θ(1/L) = 2−Θ(1/n)

when α = L/n → 1. Note that2 − Θ(1/n), is better than2 −
Θ(logn/n), whenL is relatively large.

Our method is a natural stego-code with a large relative payload.
For N -ary trees withN ≥ 2, the relative payload of our method
is 1 − Nh

−1
Nh+1−1

, larger than 0.5. Recently, Zhang [14] et al. gave
a construction (called the ZZW construction) to generate a family
of codes with arbitrary small relative payloads from any code with
a large relative payload. Fridrich [5] proved that the embedding
efficiency of the family of codes generated by the ZZW construction
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Fig. 4. Embedding efficiency vs. relative payload.

follows the upper bound on embedding efficiency. By applying
the ZZW construction, we can generate codes with small relative
payloads and good embedding efficiency. Table IV summarizesthe
comparison of our(n,L) stego-codes and the methods based on
(n, k) simplex codes and(n, k) random linear code.

TABLE IV
SUMMARY OF COMPARISON

e e(α ≈ 0.8) time complexity
MPC 2−Θ(1/n) 2.55 O(L) = O(n− k)

Simplex 2−Θ(log n/n) 2.84 O(n log n)

Random - 2.99 O(n2k)

D. Experimental results for MPC and TBPC

We implemented our MPC method and the TBPC method for
a comparison between theirpTogglevalues. We constructedN -ary
toggle trees with more than15000 leaf nodes forN = 2, 3, . . . , 15.
For eachN , we randomly generated200 distinct toggle strings. The
results are shown in Table V and Figure 5. The results show that
MPC is always better than TBPC forN ≥ 3. WhenN = 2, they are
the same.

To make it clear, we define the percentage of reduced modifications
as follows:

pReduce =
Rt

Dt

whereRt is the reduced number of1’s in the toggle tree andDt is
the number of1’s in the toggle string. ThepReducevalues of both
methods are shown in Table VI and Figure 6. The results show that
the MPC method significantly improves previous TBPC results.

E. Applications

Our method is based on anN -ary complete tree structure. Fixed
the level of the tree, given a largerN we can hide more message bits
and the relative payload is larger. Like the previous works proposed
by Fridrich and Soukal [8], our method can be applied to the situation
that the relative payload is large. On the other hand, since our method
is asymptotically optimal, the embedding and extraction algorithms
are efficient and can be used on online communications.

TABLE V
EXPERIMENTAL RESULTS OFpToggle

N TBPC MPC N TBPC MPC
2 0.3589 0.3589 9 0.4991 0.4071
3 0.4164 0.3744 10 0.4999 0.4108
4 0.4531 0.384 11 0.4998 0.4136
5 0.475 0.3908 12 0.4999 0.4187
6 0.4869 0.3967 13 0.4999 0.4212
7 0.4933 0.4007 14 0.4999 0.4229
8 0.4974 0.4047 15 0.4999 0.4228
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Fig. 5. pTogglecomparison of MPC and TBPC with different N and about
15000 leaf nodes.

TABLE VI
EXPERIMENTAL RESULTS OFpReduce

N MPC TBPC N MPC TBPC
2 28.21% 28.21% 9 18.57% 0.00%
3 25.11% 16.71% 10 17.83% 0.00%
4 23.19% 9.38% 11 17.29% 0.00%
5 21.84% 4.98% 12 16.69% 0.00%
6 20.66% 2.60% 13 16.26% 0.00%
7 19.85% 1.08% 14 15.75% 0.00%
8 19.07% 0.50% 15 15.43% 0.00%
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Fig. 6. Comparison ofpReduce.
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V. CONCLUSIONS

By introducing the majority vote strategy, we effectively construct
the stego object with least distortion under the tree structure model.
We also show that our method yields a binary linear stego-code. In
comparison with the TBPC method, our method significantly reduces
the number of modifications on average.
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