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Abstract

We study the task of transforming a hard function f, with which any small circuit disagrees
on (1 — 4)/2 fraction of the input, into a harder function f’, with which any small circuit
disagrees on (1 — 6*)/2 fraction of the input, for § € (0,1) and k € N. We show that this

process can not be carried out in a black-box way by a circuit of depth d and size 0k %)
or by a nondeterministic circuit of size o(k/logk) (and arbitrary depth). In particular, for
kE = 290 such hardness amplification can not be done in ATIME(O(1),2°(™). Therefore,
hardness amplification in general requires a high complexity. Furthermore, we show that even
without any restriction on the complexity of the amplification procedure, such a black-box
hardness amplification must be inherently non-uniform in the following sense. Given as an
oracle any algorithm which agrees with f’ on (1 — §*)/2 fraction of the input, we still need an
additional advice of length Q(klog(1/9)) in order to compute f correctly on (1 —9)/2 fraction of
the input. Therefore, to guarantee the hardness, even against uniform machines, of the function
/', one has to start with a function f which is hard against non-uniform circuits. Finally, we
derive similar lower bounds for any black-box construction of pseudorandom generators from
hard functions.

1 Introduction

1.1 Background

Understanding the power of randomness in computation is one of the central topics in theoretical
computer science. A major open question is the BPP versus P question, asking whether or not all
randomized polynomial-time algorithms can be converted into deterministic polynomial-time ones.
A standard approach to derandomizing BPP relies on constructing the so-called pseudorandom
generators (PRG), which stretch a short random seed into a long pseudorandom string that looks
random to circuits of polynomial size. So far, all known constructions of PRG are based on unproven
assumptions of the nature that certain functions are hard to compute. The idea of converting
hardness into pseudorandomness first appeared implicitly in the work of Blum and Micali [2] and
Yao [24]. This was made explicit by Nisan and Wigderson [14], who showed how to construct a
PRG based on a Boolean function which is hard in an average-case sense. To get a stronger result,
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one would like to relax the hardness assumption, and a series of research [14, 1, 8] then worked on
how to transform a function into a harder one. Finally, Impagliazzo and Wigderson [10] were able
to convert a function in E that is hard in worst case into one that is hard in average case, both
against circuits of exponential size. As a result, they obtained BPP = P under the assumption that
some function in E can not be computed by a circuit of sub-exponential size. Simpler proofs and
better trade-offs have been obtained since then [18, 9, 17, 21].

Note that hardness amplification is the major step in derandomizing BPP in the research dis-
cussed above, as the step from an average-case hard function to a PRG is relatively simple and has
low complexity. We say that a Boolean function f is a—hard (or has hardness «) against circuits
of size s if any such circuit attempting to compute f must make errors on at least « fraction of
the input. The error bound « is the main parameter characterizing the hardness; the size bound
s also reflects the hardness, but it plays a lesser role in our study. Formally, the task of hardness
amplification is to transform a function f : {0,1}" — {0,1} which is a~hard against circuits of
size s(n) into a function f’:{0,1}" — {0,1} which is o/~hard against circuits of size s'(m), with
a < o and §'(m) close to (usually slightly smaller than) s(n). Normally, one would like to have
m as close to n as possible, preferably with m = poly(n), so that one could have s’(m) close to
s(m); otherwise, one would only be able to have the hardness of f’ against much smaller circuits.
Furthermore, one would like f’ to stay in the same complexity class of f, so that one could establish
the relation among hardness assumptions within the same complexity class.

Two issues come up from those works on hardness amplification. The first is on the complexity of
the amplification procedure. All previous amplification procedures going from worst-case hardness
(v = 27™) to average-case hardness (o/ = 1/2—274")) need exponential time [1, 10, 18] (or slightly
better, in linear space [12] or @ATIME(O(1),n) [22]). As a result, such a hardness amplification is
only known for functions in high complexity classes. Then a natural question is: can it be done
for functions in lower complexity classes? For example, given a function in NP which is worst-case
hard, can we transform it into another function in NP which is average-case hard? Only for some
range of hardness (e.g. starting from mild hardness, with @ = 1/poly(n)) is this known to be
possible [24, 14, 10, 15, 7].

The second issue is that hardness amplification typically involves non-uniformity in the sense
that hardness is usually measured against non-uniform circuits. In fact, one usually needs to start
from a function which is hard against non-uniform circuits, even if one only wants to produce a
function which is hard against uniform Turing machines. This is why most results on derandomizing
BPP are based on non-uniform assumptions (except [11, 20]).

1.2 Black-Box Hardness Amplification

In light of the discussion above, one would hope to show that some hardness amplification is indeed
impossible. However, it is not clear what this means, especially given the possibility (in which
many people believe) that average-case hard functions may indeed exist.

One important type of hardness amplification is called black-boxr hardness amplification. First,
the initial function f is only given as a black-box to construct the new function f’. That is, there
is an oracle Turing machine AMP such that f/ = AMP7, so f’ only uses f as an oracle and does
not depend on the internal structure of f. Second, the hardness of the new function f’ is proved
in a black-box way. That is, there is an oracle Turing machine DEC, such that if some algorithm
A computes f’ correctly on o/ fraction of the input, then DEC using A as an oracle can compute f
correctly on « fraction of the input. Again, DEC only uses A as an oracle and does not depend on



the internal structure of A. We call AMP the encoding procedure and DEC the decoding procedure.
In fact, almost all previous constructions of hardness amplification (except [11, 20]) are done in a
black-box way, so it is nice to establish impossibility results for such type of hardness amplification.

1.3 Previous Lower Bound Results

Viola [22] gave the first lower bound on the complexity required for black-box hardness amplifica-
tion. He showed that to transform a worst-case hard function f into a mildly hard function f’, both
against circuits of size 2°(")| the encoding procedure AMP can not possibly belong to the complexity
class ATIME(O(1),2°(™)). This rules out the possibility of doing such hardness amplification in PH,
which explains why previous such procedures all require a high computational complexity. He also
showed a similar lower bound for black-box construction of PRG from a worst-case hard function.

Trevisan and Vadhan [20] observed that a black-box hardness amplification from worst-case
hardness corresponds to an error-correcting code with some list-decoding property. Then results
from coding theory can be used to show that for any such amplification from worst-case hardness
to hardness (1 — €)/2, the decoding procedure DEC must need Q(log(1/¢)) bits of advice in order
to compute f. This explains why almost all previous hardness amplification results were done in a
non-uniform setting, except [11, 20] which did not work in a black-box way.

There were also impossibility results on weaker types of hardness amplification, from worst-case
hardness to average-case hardness. Bogdanov and Trevisan [3] considered hardness amplification
for functions in NP in which the black-box requirement on the encoding procedure is dropped.
They showed that the decoding procedure can not be computed non-adaptively in polynomial
time unless PH collapses. Viola, in another recent paper [23], considered hardness amplification
in which the black-box requirement on the decoding procedure is dropped. He showed that if the
encoding procedure can be computed in PH, then there exists an average-case hard function in PH
unconditionally. We will not consider such weaker types of hardness amplification in this paper,
and hereafter when we refer to hardness amplification, we always mean the black-box one.

1.4 Our Results

Unlike previous results which only focus on specific range of hardness, we consider amplifying
hardness in a much broader spectrum: from hardness (1 — §)/2 to hardness (1 — 6¥)/2, for general
6 €(0,1) and k € N.

Our first two results address both the complexity issue and the non-uniformity issue in the same
framework, showing how complexity constraints on the encoding procedure result in the inherent
non-uniformity of the decoding procedure. Formally, we prove that if the encoding procedure
AwMP for such a hardness amplification is computed by a circuit of depth d and size 20k ) oy
by a nondeterministic circuit of size o(k/logk) (and arbitrary depth), the decoding procedure
DEC must need an advice of length 2. As a result, with AMP € PH when k = n*(!) or with
AmP € ATIME(O(1),2°") when k = 290" such a hardness amplification is impossible if the
hardness is measured against circuits of size 20(n) " In fact in either case, it is impossible to produce
a function which is (1 —6%)/2-hard against a uniform low complexity class, say DTIME(O(1)), even
if we start from a function which is (1—¢)/2-hard against a uniform but arbitrarily high complexity
class equipped with an advice of length 2°") | say DTIME(22")/2°(") 1 This demonstrates one severe

'Note that hard functions against DTIME(O(1)) do exist. For example, the parity function is (1/2 —2~())-hard
against DTIME(O(1)), but according to our result, its hardness cannot be shown in such a black-box way.



weakness of black-box hardness amplifications. Another interesting fact from our results is the
following. When amplifying hardness from (1 —4)/2 to (1 —d%)/2, what determines the complexity
of such amplification is the parameter k; a large k forces a high complexity requirement, for typical
values of 0. This has Viola’s result in [22] as a special case, which addresses only the specific
case with (1 — §)/2 = 27 and (1 — 6¥)/2 = 1/poly(n) (or equivalently, 6 = 1 — 27! and
k = 2%0M). Our lower bound is tight since the well known XOR lemma [24] indeed can achieve
such a hardness amplification. Note that our result, when restricted to worst-case to average-case
hardness amplification, is incomparable to those of [3] and [23].2

Our third result shows that even without any complexity constraint on the encoding or decoding
procedure, amplification between certain range of hardness is still inherently non-uniform. One can
derive this for the case of amplifying hardness beyond 1/4, using Plotkin Bound [16] from coding
theory. We obtain a quantitative bound on the non-uniformity for a general range of hardness
amplification. We show that to amplify from hardness (1 —4)/2 to hardness (1 —¢)/2, the decoding
procedure DEC must need an advice of Q(log(62/¢)) bits. Thus, when € = 6*, an advice of length
Q(klog(1/6)) is necessary, and when e < cd? for some constant ¢, such hardness amplification must
be inherently non-uniform. Our result generalizes that of Trevisan and Vadhan [20].

Finally, we derive similar lower bounds on black-box constructions of PRG from any function
with a given hardness.

1.5 Our Techniques

Our results are obtained via a connection between black-box hardness amplifications and some
type of “error-reduction” codes, which generalizes the connection given by Trevisan and Vadhan
[20] and Viola [22]. A similar observation was also made by Trevisan [19]. Formally, a black-box
amplification from hardness (1 — §)/2 to hardness (1 — £)/2 induces a code with the following
list-decoding property. Given a corrupted codeword with a fraction of less than (1 — £)/2 errors,
we can always find a small list of candidate messages such that one of them is close to the original
message, with their relative Hamming distance less than (1 — §)/2. Therefore, we can focus our
attention on such codes, as lower bounds on such codes immediately translate to lower bounds on
the corresponding hardness amplification.

Our first two results are based on the following idea. A code with such a list-decoding property
can only have a small number of codewords close to any codeword, so a random perturbation on
an input message is unlikely to result in a close codeword. On the other hand, if such a code is
computed by an algorithm which is insensitive to noise on the input, then a random perturbation
on an input message is likely to result in a close codeword, and we reach a contradiction. Circuits
of small size, or circuits of small depth and moderate size can be shown to be insensitive to
noise on their input. Thus, they can not be used to compute such a code and the corresponding
hardness amplification. This basically follows Viola’s idea in [22], but since we consider hardness
amplification in a much broader spectrum, a more involved analysis is required. For example, we
need to prove a new upper bound on noise sensitivity, because Viola’s bound does not work well
for us when we consider amplifying hardness from (1 —6)/2 to (1 — 6¥)/2, for general § € (0,1) and
k e N.

*In [3], the complexity lower bound is placed on the decoding procedure instead, under the unproven (though
widely believed) assumption that PH does not collapse. In [23], a more general type of hardness amplification than
ours is considered, but the possibility of such hardness amplification is not ruled out as we do; instead, it was shown
that if the encoding procedure can be computed in PH, a hard function in PH exists unconditionally.




For the non-uniformity of hardness amplification, we show that given a corrupted codeword with
a high fraction (1 —¢)/2 (for a small ¢) of errors, one may need a long list of candidate messages in
order to have one of them within a small relative distance (1 — d)/2 (for a large J) to the original
message. To show this, we would like to find a set of messages such that some ball of relative radius
(1 —€)/2 in the codeword space contains many of their corresponding codewords, but any ball of
relative radius (1 — J)/2 in the message space contains only a small number of messages from that
set. We choose these messages randomly and show that they have some chance of satisfying the
condition above when (1 —¢)/2 is larger than (1 — ¢)/2 to some extent.

The methods described above can be easily modified to prove the corresponding lower bounds for
black-box constructions of PRG from hard functions. Note that lower bounds for PRG in fact imply
lower bounds for hardness amplification. However, we choose to present the proofs for hardness
amplification in detail and then indicate the changes needed for PRG. Our reason is that the proofs
for hardness amplification are simpler so it is easier to get a good picture. Furthermore, there
is a natural connection between hardness amplification and some list-decodable code as discussed
before, and establishing such lower bounds for these codes may have interests of their own, so it
may still be nice to have more direct proofs for them.

1.6 Organization of this paper

First, some preliminaries are given in Section 2. Then in Section 3 and Section 4, we prove the
impossibility results of hardness amplification by constant-depth circuits and non-deterministic
circuits respectively. In Section 5, we show that hardness amplification in general is inherently
non-uniform. Finally, we show the impossibility results for black-box construction of pseudorandom
generators from hard functions in Section 6.

2 Preliminaries

For any n € N, let [n] denote the set {1,2,...,n} and let U,, denote the uniform distribution over
the set {0,1}". For a string z, let z; denote the i’th bit of z. All the logarithms in this paper will
have base two. Define the binary entropy function H(z) = —zlogx — (1 — z)log (1 — x).

We need some standard complexity classes. Let ATIME(d,t) denote the class of functions com-
puted by alternating Turing machines in time ¢ with d alternations. Let PH denote the polynomial-
time hierarchy, which is ATIME(O(1),poly(n)). Let NTIME(¢) denote the class of functions com-
puted by nondeterministic Turing machines in time ¢. For our convenience, we also introduce some
slightly unconventional complexity classes defined in terms of Boolean circuits. The circuits we
consider consist of AND/OR/NOT gates, allowing unbounded fan-in for AND/OR gates. The size
of a circuit is the number of gates it has and the depth of circuit is the number of gates on the
longest path from an input bit to the output gate. We call such circuits AC circuits.

Definition 1. Let AC(s) be the class of functions computed by AC circuits of size s. Let AC(d, s)
denote the class of functions computed by AC circuits of depth d and size s.

Note that the standard complexity class AC® corresponds to our class AC(O(1), poly(n)). We
also introduce the nondeterministic version of AC circuits. An NAC circuit C' has two parts of
inputs: the real input z and the witness input y. The Boolean function f computed by such a
circuit C' is defined as f(z) = 1 if and only if there exists a y such that C(z,y) = 1.



Definition 2. Let NAC(s) be the class of functions computed by NAC circuits of size s.

A function with more than one output bits is said to be computed by some type of circuits (e.g.
AC(d, s) or NAC(s)) if each output bit can be computed by one such circuit.

2.1 Black-Box Hardness Amplification and Pseudorandom Generators

Informally speaking, a function is hard if any algorithm without enough complexity must make
some mistakes.

Definition 3. We say that a function f : {0,1}" — {0,1} has hardness § against circuits of size
s if for any circuit C : {0,1}" — {0,1} of size s, Pryey, [f(x) # C(x)] > 4.

Note that we use the error bound § to characterize the hardness of a function, and we pay less
(sometimes no) attention to the size bound s. For hardness amplification, we want to transform a
function f: {0,1}" — {0,1} with a smaller hardness 0 into a function f": {0,1}™ — {0,1} with a
larger hardness €. Next, we define what we mean by a black-box hardness amplification.

Definition 4. We say that an oracle algorithm AMPY) : {0,1}™ — {0,1} realizes a black-box
(n,d,e,€) hardness amplification if there exists a (non-uniform) oracle Turing machine DEC with
¢ bits of advice satisfying the following. For any f :{0,1}" — {0,1} and any A : {0,1}"" — {0, 1},
if Pr.epy,,[A(z) # AMP/(2)] < €, then Prycy, [DECH(2) # f(x)] < 6 for some £-bit advice o.

Here, the transformation of the initial function f into a harder function is done in a black-
box way, as the harder function AMP/ only uses f as an oracle. Moreover, the hardness of the
new function AMP/ is also guaranteed in a black-box way. Namely, any algorithm A breaking the
hardness condition of AMP/ can be used as an oracle for a machine DEC to break the hardness
condition of f. Note that neither of the hardness refers to circuit size, and no constraint is placed on
the complexity of the procedure DEC and the complexity of the function A. This freedom makes
our impossibility results stronger. The parameter ¢ characterizes the amount of non-uniformity
associated with this process. When £ > 1, we say the hardness amplification is non-uniform.

Similarly, we can define the notion of black-box construction of pseudo-random generators from
hard functions.

Definition 5. We say that an oracle algorithm G : {0,1}" — {0,1}™ realizes a black-bozx
(n,d,e,0)-PRG if there exists a (non-uniform) oracle Turing machine DEC with ¢ bits of ad-
vice satisfying the following. For any f : {0,1}" — {0,1} and any D : {0,1}M — {0,1}, if
| Prycr, [D(GY (2)) = 1] — Pryer,, [D(y) = 1]| > €, then Pryep, [DECP(2) # f(2)] < 6, for some
0-bit advice o

2.2 Codes and Correspondence to Hardness Amplification

The distance between two strings we adopt is their relative Hamming distance.

Definition 6. For u,v € {0,1}M, define their distance A(u,v) as their relative Hamming distance,
namely A(u,v) = 25 |{i € [M] : u; # v}

According to this distance, we define open balls of radius ¢ in the space {0, 1}".



Definition 7. For any N € N, § € (0,1), and z € {0,1}", let BALL,(6, N) = {2’ € {0,1}V :
A(z,2") < 8}, which is the open ball in {0,1}" of radius & centered at x. Let BALL(S, N) denote
the set containing all such balls.

The following fact gives an upper bound on the size of such a Hamming ball.
Fact 1. The size of any ball in BALL(S, N) is at most 27N,

We borrow the notion of list-decodable codes, but we extend it in a way that leads to some
natural correspondence with black-box hardness amplifications.

Definition 8. We call C : {0,1}Y — {0,1}M a (6,¢, L)-list code if for any z € {0,1}M, there
are L balls from BALL(0, N) such that if a codeword C(z) is contained in BALL,(e, M), then x is
contained in one of those L balls.

A (0,e,L)-list code is related to a standard list-decodable code in the way that each ball in
BALL (g, M) contains at most L-27 (N codewords. Next, we show how such a code arises naturally
from a black-box hardness amplification. Let N = 2" and M = 2™. Given any oracle algorithm
Amp®) : {0,1}™ — {0, 1}, let us define the corresponding code C : {0,1}V — {0,1}M as C(f) =
AmP/. That is, seeing any function f : {0,1}"* — {0,1} as a vector in {0,1}", C(f) produces
as output the function AMP/, which is seen as a vector in {0,1}*. The following is a simple
generalization of an observation by Viola [22].

Lemma 1. If Amp®) : {0,1}™ — {0, 1} realizes a black-box (n,d,e,£) hardness amplification, then
C:{0,1}N — {0,1}M, defined as C(f) = AMP/, is a (0, ¢, 2°)-list code.

Proof. Suppose AMP realizes a black-box (n,d, e, ) hardness amplification and DEC is the corre-
sponding decoding procedure, which is an oracle Turing machine with an ¢-bit advice. Consider
any A € {0,1}M, seen as A : {0,1}" — {0,1}. For any codeword C(f) with A(A,C(f)) =
Pr.[A(z) # AMP/(2)] < e, by Definition 4, there exists an o € {0,1}¢ such that A(DEc?®, f) =
Pr,[DEC™?(y) # f(y)] < . That is, if C(f) is in BALLA(e, M), then f is contained in one of the
2¢ balls of radius § centered at DECA® for o € {0,1}¢. Therefore, C' is a (4, ¢, 2%)-list code.

O

2.3 Noise Sensitivity

Following [15, 22], we apply Fourier analysis on Boolean functions. For any g : {0,1}" — {0,1}
and for any J C [N], let §(J) = Ey [(—1)9(9) TTic (—1)¥] . Here is a simple fact.

Fact 2. For any g : {0,1}¥ — {0,1}, ZJQ[N] 9(J)* = 1.

It is known that for AC circuits of small depths, the main contribution to the above sum comes
from the low-order terms.

Lemma 2. [13] For any g : {0,1}Y — {0,1} € AC(d,s) and for any t € [N], Eubtg(J)Q <
5. 2D,

This can be used to show that AC circuits of small depth are insensitive to noise on their input.
We will need the following more precise relation between the noise sensitivity of a Boolean function
and its Fourier coefficients.



Lemma 3. Suppose x is sampled from the uniform distribution over {0,1}Y and % is obtained by
flipping each bit of x independently with probability I_TO‘ Then for any g : {0,1}Y — {0,1} and for
any 1 € N, Preslgle) # 9(2)] < (1~ (1= 33,10, 6(7)%)

Proof. We know from [15] that Pr, z[g(z) # g()] = (1 — 2 JCIN] al’l§(7)?). Note that

> dlg)?= Y allgn)? = ot Y g(a)%

JC[N] [J]<t |J|<t

Then the lemma follows from Fact 2. O

3 Impossibility of Amplification by Small-Depth Circuits

We will show that any AC circuit of small depth realizing a black-box hardness amplification
requires a large size. Let N = 2" and M = 2™. Recall from Lemma 1 that any Amp®) : {0,1}" —
{0, 1} realizing a black-box (n, 1—55, %, ¢) hardness amplification induces a (12;‘5, #, 26)-list code
C :{0,1}¥ — {0,1}M. Suppose AMP is realized by an AC(d,s) circuit, with oracle answers as
part of the input. Then for each i € [M], the i’th output bit of C' can be seen as a function
C()i : {0,1}¥ — {0,1} computable by an AC(d, s) circuit. So it suffices to prove that no AC(d, s)
circuits with small d and s can compute such a code.

Let  be sampled from the uniform distribution over {0, 1}V and let # be the random variable
obtained by flipping each bit of x independently with some probability I_To‘ We set a = 61! so that
11—« 1-6 3

<5< is only slightly larger than <5>.° We call any two codewords close if their (relative) distance is

less than %. The next lemma gives a lower bound on the probability that C'(z) is close to C(z).
The idea is that an AC circuit of small depth and small size is insensitive to noise on the input, so
a random perturbation on an input message is likely to result in a close codeword.

Lemma 4. For some constant c, for any t,d € N with of < 1 — 2_Ctl/d, and for any C €
AC(d, 2Ct1/d), Pr, :[C(z) is close to C(%)] > a? — o*.

Proof. From Lemma 2 and Lemma 3, we know that for each i € [M],

2t

' . 1 (1 octth o/ 11—«
5;[0(96)2#0(:6)1]%(1 af (128" 2 ) < —5—
2t

for some constant c¢. Therefore, E,z[A(C(z),C(2))] < 1=2—, and from Markov’s inequality,

Prz,i[C(x) is not close to C(Z)] < 11__%?. Thus

1—042t a?t_5k> 2t75k:
1_okF = 1_g0 = ¢ ‘

Pr[C(x) is close to C(z)] > 1 —

O]

Next, we give an upper bound on this probability. The idea is that if C' is a code with each
codeword only close to a small number of other codewords, then a random perturbation on an input
message is unlikely to result in a close codeword.

3We do not attempt to optimize parameters here, and in fact it suffices to set o = §(1 — 0(1)).



Lemma 5. For any (1%5, %, 2%)-list code C, Pr, z[C(x) is close to C(z)] < 2¢- 9~ QN

Proof. Consider any fixed € {0,1}". Since C is a (17_5, %,26)-11813 code, there are at most

9HHHSON different y’s such that C(y) is close to C'(x). The lemma would follow easily if each
such y had a very small probability to occur. However, this may not be the case in general. We will
show that although some y’s may occur with higher probability, there are not too many of them,

so their overall contribution is still tolerable.

For any y € {0,1}V, Prz [z =y = (%)A(x’yw (HTC“)(lfA(z’y))N, which decreases as A(z,y)
increases. Let 3 = a%%1 = §10914 Call y € {0, 1}V good for z if A(z,y) > % and call y bad for

x otherwise. Note that for any y which is good for x,

1

-8B
1—a\ 2z [(1+a\ 2
z 2 2

Prlz = y]
9(+57 log 152+ 152 log L2 )N

IN

< o H(F)N,

On the other hand, Z is only bad for  with a small probability. This is because Z is obtained by
flipping each bit of z independently with probability 1_7“, so Bz [A(z,z)] = 1_?0‘, and by Chernoff
bound,

1—
Pr [ is bad for 2] = Pr [A(a:,;z) < 2[1 < 27BN
Thus, Pr; [C(Z) is close to C(x)] is at most
Pr[C() is close to C(z) A & is good for z| 4+ Pr [z is bad for z]
HH(IFP)N  o=H(F2)N | 9-Q(5*N)

9l . 9(1=B(E))N  o—(1-6(F)N | 9—Q(B>N)
ol . 9—Qs%N)

Since this holds for every x, the lemma follows. O

Combing Lemma 4 and Lemma 5, we have

o —§% < Pr[C(x) is close to C(z)] < 2°- 9~ Q*N),

T,z
Choose t = O(k) such that a® — ¥ = §°%) and we have the following.

Lemma 6. For some constant ¢, for any 6 € (0,1), and for any d,k € N with §* < 1 — g—ckt/?
if C:{0,1}N — {0,1}M is a (132, 1_25k,L)—list code computable by an AC(d, QCkl/d) circuit, then
I = 2Q8*N) 50(k)

From Lemma 1, we obtain the following impossibility result for hardness amplification.

4 Again, we make no attempt on optimizing the parameter here. In fact it suffices to set 8 = a(1+ o(1)) while still
maintaining 8 = 6(1 — o(1)).



Theorem 1. Suppose 270" < § < 1 (mdk2_261n <ok <1-— 2_02k1/d, for some suitable constants
co,c1,c2. Then any black-box (n, 1%5, %,E) hardness amplification in AC(d, 262k1/d) must have

¢ = 2%n)

The condition on § and 6% in the theorem above is natural in the following sense. When
§ < 279" the initial function is already hard enough, so hardness amplification is usually not
needed. When 6% > 1 — Q*Q(kl/d), the resulting function only has a very small hardness, which
is rarely what hardness amplification is used to achieve. Finally, as discussed in the introduction,
hardness amplifications normally have m close to n (preferably with m = poly(n)), therefore §*,
which is at least 27™, would be much larger that 929",

Corollary 1. Under the same condition as in Theorem 1, no black-box (n, 1—55, %, 20(")) hardness
amplification can be realized in ATIME(O(1),k°M). In particular, no such hardness amplification

is possible in PH when k = n*(M) or in ATIME(O(1), 2°™) when k = 290,

Proof. Tt is known (e.g. from [4]) that any ATIME(d, t) computation with an oracle can be simulated
by an AC(d + 1, QO(dt)) circuit with oracle answers as part of its input. Then the corollary follows
from Theorem 1. O

Our bound is tight as it can be achieved by the well-known XOR lemma [24].

Theorem 2. For any 6 € (0,1) and any k,d € N, a black-box (n, 1%5, —1_26k,£) hardness amplifica-
tion can be realized in AC(d, 2O(k1/d)) with £ = k - poly (%)

Proof. The XOR of k bits can be computed by an AC(d, 2O(k1/d)) circuit (c.f. [6]), and note that
the proof of XOR lemma in [5] shows that ¢ < k - poly (%) suffices. O

4 Impossibility of Amplification by Nondeterministic Circuits

The bound in the previous section vanishes when d = Q(log k). In this section, we show that even
without any restriction on the circuit depth, there still exists a lower bound on the circuit size.

We use the method of random restriction. A restriction on a set of variables V = {z; : i € [N]}
is a mapping p : V — {0, 1, x}, which either fixes the value of a variable x; with p(x;) € {0,1} or
leaves z; free with p(x;) = +. For p € (0,1), let R, denote the distribution on such restrictions
such that each variable x; is mapped independently with Pr,cpr, [p(z;) = *] = p and Pr,cg, [p(z;) =
0] = Prper,[p(xi) = 1] = (1 — p)/2. For a Boolean function g and a restriction p, let g, denote the
function obtained from g by applying the restriction p to its variables. That is, g,(x1,...,2n) =
9(y1, ..., yn) with y; = z; if p(x;) = * and y; = p(x;) otherwise.

Define the degree of a function g as deg(g) = max;{|J|: §(J) # 0}. It is not hard to see that a
constant function has degree 0 and a function depending on only ¢ input bits has degree at most ¢.
We need the following lemma which bounds the contribution of higher-order Fourier coefficients.

Lemma 7. [13] Let t be an integer and p with pt > 8. For any Boolean function g, Z|J|>t g(J)? <
2 Prpeg,|deg(g,) = pt/2].

The following is the key lemma in this section, which gives a concrete bound on the sum above
for NAC circuits.
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Lemma 8. For any g : {0,1}" — {0,1} € NAC(s), 21|t G(J)? < s-279/5) when 9 <t < N.

Proof. Suppose g is computed by an NAC circuit of size s, which divides its input into the real part
and the witness part. Let B be the set of gates which receive real input variables directly. Consider
applying a random restriction p € R, on the real input variables. We say a gate in B is killed if it
is an AND gate and receives a real input variable which is fixed to 0 by p, or if it is an OR gate
and receives a real input variable which is fixed to 1 by p. For a gate A € B, let #(A) denote the
number of real input variables it receives. For a restriction p, let #(A,) denote the the number of
remaining real input variables it receives if A is not killed by p, and let #(A,) = 0 otherwise. Set
p to be any constant in (0, 1) so that pt > 8. Then

Pr [deg(g,) > pt/2] < Pr [Ae B:#(A,) > pt/(2s)]
pPERy pPER,

s max Pr [#(Ap) = pt/(25)].

IN

Any A € B with #(A) < pt/(2s) clearly has Prper, [#(A,) > pt/(2s)] = 0. On the other hand,
any A € B with #(A) > pt/(2s) is likely to be killed, so that

Pr [#(A,) > pt/(25)] < Pr [A is not killed by p] = (1 — (1 — p)/2)P/ ) = 2=t/s),
pPERy pER,

From Lemma 7, we have Z|J|>t§(J)2 < 25.27Ut/s) — 5. 9= 1/s) 0

Then the rest follows the same line of arguments in the previous section. Suppose 9 <t < N

and C € NAC(CIZEg ;) for some large enough constant c. Lemma 8 implies that for each i € [M],

PriC() £ 0@ < - (1-at (1- 1 g-otwsn)) < L=
3 ! ) clogt - 2 7

when of <1 —¢¢ for some constant ¢. Note that larger ¢ gives larger ¢/. As in Lemma 4, one
can then show that Pr, z[C(z) is close to C(Z)] > «? — §¥. This combined with Lemma 5 gives
the following.

Lemma 9. For some constant co,c1, for any 6 € (0,1), and for any k € N with 6% < 1 — k=,
if C: {0,1}Y — {0,1}M s a (1775, %,L}—list code computable by an NAC(%) circuit, then
I = 29(62N)5O(k)'

Then as in the previous section, we get the following impossibility result.

Theorem 3. Suppose 27" < § < 1 and 272" < 5k < 1 — k=<2, for some suitable con-

stants cg,c1,co. Then any black-box (n,l—g‘s,%,ﬁ) hardness amplification in NAC(@) or

NTIME(@), for some constant ¢z, must have ¢ = 24"

5 Inherent Non-uniformity of Hardness Amplification

In the previous two sections, we have shown that any black-box hardness amplification must be very
non-uniform when the computational complexity of the amplification procedure AMP is bounded
in certain ways. In this section, we show that even without any such complexity bound, there still

11



exists some inherent non-uniformity. This reduces to the coding-theoretical question: for which
values of « and 8 do we have a («, 3, 1)-list code?

We call O : {0, 1} — {0,1}M an [N, M, o] code if the (relative) distance of any two codewords is
at least a. We need the following good code, which can be constructed using, say, the concatenation
of Reed-Solomon code with Hadamard code.

Fact 3. [N,O((%)Q), 2] codes exist for any v € (0,1).

This says that unique decoding is possible if the fraction of error is slightly smaller than i. On
the other hand, according to the following Plotkin bound, unique decoding is basically impossible
if the fraction of error grows beyond %.

Fact 4. (Plotkin Bound [16]) An [N, M, ] code with o > 3 must have N < log(2M).
Combining the two facts above, we have the following impossibility result.

Lemma 10. For some constant ¢ and for any v € (0,1), any (ITT“’, 1. L)-list code C : {0,1} —
{0, 1M with cyvV/'N > log(2M) must have L > 2.

Proof. From Fact 3, there exists an [K, N, 17TAY] code ¢! with K > ¢yV/N for some constant c.
Suppose that C is a (1TT7, %, L)-list code with ¢yv/N > log(2M). If L =1, then C o C” : {0,1}¥ —
{0,1}M is a [K, M, ] code with K > log(2M), which is impossible according to Fact 4. O

Then from Lemma 1, we have the following.

Theorem 4. For some constant ¢ and for any v € (0,1), no oracle algorithm Amp() {0,1}™ —

{0,1} can realize a black-box (n, =2, 1, 0) hardness amplification with ¢y2™? > m + 1.

44

As discussed in the introduction, hardness amplifications normally have m = poly(n). Thus,
the theorem basically says that amplifying hardness beyond % must introduce non-uniformity in
general. However, the theorem does not provide a quantitative bound on the non-uniformity. This
will be addressed next.

5.1 Lower Bounds on Non-uniformity

1-§ 1-6%

Next, we will show that any black-box (n, 5%, ~5—,¢) hardness-amplification must have £ =

Q(klog 1). Consider an arbitrary (152, 1_5/6, L)-list code C : {0, 1} — {0, 1}, for some suitable

constant c¢. We would like to find z € {0,1} and a large enough set S C {0, 1}V such that:

e for every z € S, C(z) is contained in the ball BALLZ(I_S/C, M), and

e S needs many balls in BALL(I—E‘S7 N) to cover with.

Choose z!,..., 2! uniformly and independently from {0,1}" to form the set R, for some t =

O(E%) Call the set R 6-good if |R| =t (i.e. 2° # 2/ for any i # j) and any ball in BALL(I—E‘;,N)
contains 0(6%) elements of R. Later, we will derive the set S from a J-good R.

Lemma 11. When N = w(éi2 log %), R is §-good with probability 1 — 272N,

12



Proof. Clearly, the probability that 2 = 27 for some i # j is at most (;) 297N < 92logt=N = Alg0,
the probability that some ball in BALL(%,N ) contains r elements of R is at most 2% - (ﬁ) .

9(H(F) DNt < oN+710gt=Q(6*)rN For some 7 = 0(5%), both probabilities above are 27W) when

N = w(z logt). O

We want to choose a string z € {0,1}™ such that the ball BALL,(152, M) contains a lot of
codewords coming from a d-good R. We will fix some of z’s bits first.

Definition 9. For each y € [M], let by be the bit such that Prycig1yn [C(2)y # byl < i Call R
(0,€)-good fory if R is 6-good and Pryer [C(x), # by] < 1%8

Lemma 12. Suppose N = w(%2 log %) Then for any y € [M], R is (6,€)-good for y with probability
Q(1).

Proof. From Lemma 11, R is not d-good with probability 2=*(N). Now fix any y € [M]. Let I,
for i € [t], be the random variable such that I; = 1 if C(z%), # b, and I; = 0 otherwise. Note that

I, ..., I; form a sequence of i.i.d., with E [[;] < % for each 7. Then
1—¢ 1 1—-¢
Pr| P by < = P — I; <
Rr mEI;f [C(.T)y 7 y] - 2 :| xl,...r,mt t Z T2
i€]t]
>

> P Y L=}

1—2 . 1— geeny .
122y ingy 1€[t]

= %t <12t25t> 27
— et oH(1525)t—t
0
_ Q(eﬁ) . 2—0(521&)
= Q1)
ast = O(E%) Then R is (6, ¢)-good for y with probability at least Q(1) — 272(0) = Q(1). O

An averaging argument immediately gives the following.

Corollary 2. Suppose N = w(é%log 1). Then there exist a set R C {0,1} with |R| = Q(g%) and
a set A C [M] with |A| = Q(M) such that for any y € A, R is (d,¢)-good for y.

Let us fix the sets R and A guaranteed by the corollary above. Next, we want to show that
many z’s from R satisfy the property that the codeword C(x) has enough agreement with the
vector b on those dimensions in A.

Lemma 13. There exists R’ C R with |R'| = Q(L) such that for any x € R, Pryca [C(z)y # by] <
1—¢/2
5.
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Proof. For any y € A, R is (,¢)-good for y, so

RER L}zi [C(z)y # by]] = B [Pr [C(x), # by]} < 1;5_

By Markov’s inequality,

1—¢/2 1= £
<1-—-.
S R A=

Thus, there exists R’ C R of size §|R| = Q(2) such that for any z € R/, Pryea [C(z), # b,] <

1—¢/2
2L O

We let the vector z inherit from the vector b those bits indexed by A, and it remains to set the
values for the remaining bits. It is easy to show that there exist v € {0,1} (in fact, v can be
either 0M or 1M) and S C R’ with |S| > 3|R| such that for any € S, Pryg, [C(z)y # v,] < 3.
So we just define z € {0,1}M as zy = by if y € A and zy = vy otherwise. Then, for any z € S,

AC@).2) = PrlyeA]- Pr[C@), #b)+ Prly¢ Al Pr(C), # v
A 1—¢/2 M—|A] 1
S VA M2
_ 1<1_\A|<s/2>>
2 M
< 1—5/07
- 2

for some constant c.

Furthermore, as S C R and R is d-good, any ball in BALL(lT_(S,N) contains only O(1/6%)
elements of S. Thus, S must need % = Q(%) such balls to cover with. Replace the parameter

e/c by €, and we have the following.

Lemma 14. Suppose € < % for some suitable constant ¢, and suppose N = w((%2 log %) Then any

(152,155, L)-list code must have L = Q(%)

This, combined with Lemma 1, implies the following.
Theorem 5. Suppose € < % for some suitable constant ¢, and suppose 2" = w((%2 log %) Then any
black-boz (n, 12;5, 152 0) hardness amplification must have ¢ = Q(log %)

Thus, any such hardness amplification, even without any complexity constraint, must be inher-
ently non-uniform, with £ > 1 when £ < ¢/62 for some constant ¢/, or with £ = Q(klog ) when
e = ok
6 Impossibility Results on Constructing PRG

In this section we modify the methods developed in previous sections to prove impossibility results
for black-box constructions of pseudo-random generators from hard functions.
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6.1 Impossibility of Constructing PRG by Constant-Depth Circuits

Consider an oracle algorithm G¢) : {0,1}" — {0,1}™ which realizes a black-box (n, 1%5, %,5)—
PRG. We write G € AC(d, s) to mean that for each u € {0,1}" and each i € [M], the function from
x to G*(u); is computed by an AC(d, s) circuit. Assume all the convention in Section 3. Now we

T . T _5k
call two generators G® and GY close if E,[A(G®(u),GY(u))] < L 5

Lemma 15. For some constant ¢, for any t,d € N with of < 1 — 2*Ct1/d, and for any G €
AC(d, 2Ctl/d), Pr, :[G® is close to GT| > a2t — &*.

2t

and Prz x[G is not close to G¥] g %
— ", O

Proof. As in Lemma 4, Ey 3 u[A(G%(u), G%(u))] < 122
by Markov’s inequality. Thus Pr, [G* is close to G‘”] >1-—

5k_

Lemma 16. For any black-bozx (n, 1;6, 9 0)-PRG G, Pry 3[G" is close to G¥] < 2°- 9~ QUEN) i

k
5k > 92+r—cd*M for some large enough constant c.

Proof. Consider any fixed z € {0,1}". Now it suffices to bound the number of y’s such that GY
is close to G*. Note that for any such y, E,[A(G*(u), GY(u))] < i, so by Markov’s inequality,
Pro[A(GT(u), G (u) > 52 <1 — &

Define the distinguisher D : {0,1}* — {0,1} as D%(z) = 1 if and only if A(G*(u), 2) < #
for some u € {0,1}". Clearly, Pr.cy,, [D¥(2) =1] < 2" - 2-20*)M  On the other hand, for any y
such that GY is close to G, Pry[D*(GY(u)) = 1] > Pry[A(G*(u), GY(u)) < 17(;k/2] > %. So for
any such y,

Do) = 1] — Pr [D7() = 1] > & = -0 5 &
uEIIJ‘r Y a zeUps 2= 2 — 4 '

Because G is a black-box (n, 155, > 0)-PRG, there are only 9HH(FIN guch y’s. Then the rest of

the proof follows that of Lemma 5. O
Choose t = O(k) such that o — §* = §°%*) and we have the following.

Lemma 17. For some constants cy, c1, for any § € (0,1), and for any d, k € N with 92Hr—cod®* M <
—c1 ke ) . r c1kl/d ; -5 o

oF <127k ir GO 0,1} — {0,1}M € AC(d, 2¢F'%) realizes a black-box (n, 152, %, ¢)-PRG,

then 2¢ = 293*N) §O(k)

Theorem 6. Suppose 270" < § < 1 and 27 < §F <1 — 2_02k1/d, for some suitable constants
co, c1,c2. Then any black-box (n, 2‘5, 8, 0)-PRG GV : {0,1}" — {0,1}M realized in AC(d, 202k1/d)
must have £ = 2% or M = O(52)-

The theorem says that when realizing a black-box PRG using such an AC circuit, either a large
amount of non-uniformity must be introduced or the output of the generator cannot be too long.

Corollary 3. Under the same condition as in Theorem 6, no black-box (n ,1_ ,52,20(")) PRG
GO 1 {0,1}" — {0, 1}M with M = w(5zr) can be realized in ATIME(O(1), kW), In particular, no

such PRG is possible in PH when k = n*M) or in ATIME(O(1),2°0) when k = 2%,
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6.2 Impossibility of Constructing PRG by Nondeterministic Circuits

The previous argument can also be applied to NAC circuits to get the following.

Theorem 7. Suppose 270" < § < 1 aknd 27ar < 6k < 1 — k2, for some suitable constants
co, €1, C2. Then any black-box (n, 52,2 0)-PRG GU) : {0,1}" — {0,1}M in NAC( or

s 9 9 4
NTIME(_ 5 ), for some constant c3, must have £ = 24 or M = O(52r)-

c3 logk)

12k

6.3 Inherent Non-uniformity of Constructing PRG

Consider an arbitrary black-box (n,15%,£,0)-PRG GO : {0,1}" — {0,1}M, for some suitable
constant c. Assume all the convention in Section 5.1 unless stated otherwise. Now we would like
to find a distinguisher D : {0,1}™ — {0,1} and a large enough set S C {0,1}"V such that:

e for every x € S, | Pr,[D(G"(u)) = 1] — Pr.[D(2) = 1]| > £, and
e S needs many balls in BALL(%‘S, N) to cover with.

As in Section 5.1, we sample z!, ..., 2! from {0,1}" to form the set R, for some t = O(E%)

Definition 10. For (y,u) € [M] x {0,1}", let B(u)y be the bit with Pr,cro 13 [G¥(u)y # B(u)y] <
3. Call R (8,)-good for (y,u) if R is 6-good and Prycp [G*(u)y # B(u),] < 15=.

Similar to Lemma 12, we have the following.

Lemma 18. Suppose N = w(zzlogl). Then for any (y,u) € [M] x {0,1}", R is (6,)-good for
(y,u) with probability Q(1).

An averaging argument immediately gives the following.

Corollary 4. Suppose N = w(5ylog1). Then there exist a set R C {0,1}" with |R| = Q(%) and
a set A C [M]x{0,1}" with |A| = Q(M2") such that for any (y,u) € A, R is (6,€)-good for (y,u).

Let us fix the sets R and A guaranteed by the corollary above. As in Lemma 13, we have the
following.

Lemma 19. There ezists a subset R C R with |R'| = Q%) such that for any z € R/,
Pre, wea [G"(u)y # B(u),] < <52

It is easy to show that there exists V : {0,1}" — {0, 1} (in fact, for any u, V' (u) can be either
0™ or 1M) and S C R’ with |S| > J|R/| such that for any z € 5, Pr(yu)gA[ (u)y # V(u)y] <
Now, for any u € {0,1}", define Z(u) € {0,1} as Z(u), = B(u)y if (y,u) € A and Z(u), = V(u )

otherwise. Then as in Section 5.1, one can show that for any = € S,

BIAG (), Z(w)] < -,

Thus, by Markov’s inequality, there exists some constant ¢ such that

v | AGE (), Z(u)) < 1_225/6 > 2?5
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Define the distinguisher D : {0,1}™ — {0,1} as D(z) = 1 if and only if A(z,Z(u)) < %E/C
Then we have Pr,[D(G*(u)) = 1] > 2. On the other hand, a union bound gives Pr.[D(z) = 1] <

or+(H(5=) =DM _ or—Q(*)M | Thjs is at most ¢ when M = w(%) = w(Z).? In this case, for
any © € S,

f;r [D(G*(u)) =1] — P;r [D(z) = 1]| >

Q1 Mm

Furthermore, as S C R and R is d-good, any ball in BALL(IT_(S,N) contains only O(1/6%)
elements of S. Thus, S must need % = Q(%) such balls to cover with. Replacing £ by ¢, we

have the following.

Theorem 8. Suppose ¢ < % for some suitable constant c, and suppose N = w(s%log ). Then

1
any black-box (n, 152, e, €) pseudo-random generator G*) : {0,1}" — {0, 1}M with M = w(Z) must
have £ = Q(log %)

Therefore, any such construction of pseudo-random generators, even without any complexity
constraint, must be inherently non-uniform, with ¢ > 1 when e < ¢/§? for some constant ¢/, or with
¢ = Q(klog }) when e = 6.
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