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Abstract

We consider the so called Magnus-Derek game, which is a two-person game played on a
round table with n positions. The two players are called Magnus and Derek. Initially there is
a token placed at position 0. In each round Magnus chooses a positive integer m ≤ n/2 as the
distance of the targeted position from his current position for the token to move, and Derek
decides a direction, clockwise or counterclockwise, to move the token. The goal of Magnus is
to maximize the total number of positions visited, while Derek’s is to minimize this number. If
both players play optimally, we prove that Magnus, the maximizer, can achieve his goal in O(n)
rounds, which improves a previous result with O(n logn) rounds. Then we consider a modified
version of Magnus-Derek game, where one of the players reveals his moves in advance and the
other player plays optimally. In this case we prove that it is NP-hard for Derek to achieve his
goal if Magnus reveals his moves in advance. On the other hand, Magnus has an advantage to
occupy all positions. We also consider the circumstance that both players play randomly, and
we show that the expected time to visit all positions is O(n log n).

Keywords: Two-person game, additive combinatorics

1 Introduction

Magnus-Derek game was first introduced by Nedev and Muthukrishnan [6]. The game is played
on a round table with n positions and a token is placed at position 0 initially. For convenience,
we label the positions with elements in Zn = {0, 1, . . . , n − 1}, clockwise consecutively. Suppose
the current position is i. In a round, Magnus chooses a positive integer m, where m ≤ n

2 for the
token to move, and Derek choose a direction, either +1 (clockwise) or −1 (counterclockwise) for the
token to move. Then the token is moved to position (i+m) mod n or (i −m) mod n according
to Derek’s decision. In the game, Magnus wants to visit as many positions as possible, while Derek
wants to minimize the number of positions visited. This game can be used to model a mobile
agent for distributed computing and network maintenance task. We refer to [6] for more related
references.

Nedev [5], and Nedev and Muthukrishnan [6] showed that Magnus could visit all positions in
n − 1 steps if n = 2k for some nonnegative integer k, and for other cases, Magnus could visit
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f∗(n) = (p − 1)n/p positions, where p is the smallest odd prime factor for n. The round numbers
needed for these cases are listed as follows:

• If n = 2kp, where p is a prime and k is a nonnegative integer, then Magnus needs O(p2 + n)
rounds.

• If n is a prime, then Magnus needs O(n2) rounds.

• Otherwise, Magnus needs O(n
2

p
) rounds, where p is the smallest odd prime factor for n.

Later, Hurkens et. al. [1] reduced the bound down to O(n log n) rounds and showed that Derek
could always limit the number of visited positions to f∗(n) = (p−1)n/p. In this paper, we improve
the bound on the rounds further to O(n).

Consider the situation in a ring network, Derek plays the role of an adversary and tries to reduce
the visited positions in order to perform some malicious acts in the network, and Magnus plays the
role of an agent in the network and tries to visit as many positions as possible to prevent malicious
acts. We can modify the game in two ways: (1) Magnus predetermines a sequence of magnitudes,
and Derek tries to design appropriate responses to minimize the number of positions that Magnus
can visit. This is an open problem asked by Nedev and Muthukrishnan [6]. (2) Derek predetermines
a sequence of directions, and Magnus tries to design appropriate response to visit as many positions
as possible. In the first case, we prove that it is NP-hard [7] for Derek to minimize the number of
positions that Magnus can visit and answer the above mentioned open question. For the second
case, we show that Magnus can visit all of the positions. Furthermore, we consider the case that
both players play randomly, that is, they choose their moves in every round uniformly at random.
In this case, both players have no effective strategy and just adopt the random strategy. This is
somewhat like performing a random walk on the n positions. We show that the expected number
of rounds to visit all of the n positions is O(n log n), which is similar to the Coupon collection
problem[4].

Throughout this paper, we assume that both players know the factors of n and all of the
arithmetic operations are under Zn unless stated otherwise. We organize the rest of the paper as
follows. In section 2, we prove that Magnus can visit the maximum number of possible positions in
O(n) rounds. In sections 3 and 4, we investigate how a player can achieve the best possible result
when he knows his rival’s moves beforehand. In section 5, we consider both players play randomly.

2 Visit f ∗(n) positions in O(n) rounds

In this section we give a new strategy for Magnus to visit f∗(n) positions in O(n) rounds. Previous
results show that when n is prime this problem can be the hardest. For this case, Nedev and
Muthukrishnan [6] showed that Magnus could visit f∗(n) positions in O(n2) rounds. Hurkens
et. al. [1] reduced it to O(n log n) rounds. We show that Magnus only needs O(n) rounds to visit
f∗(n) positions. We adopt the idea of Hurkens et. al. with some modification to obtain a better
bound. We first focus on the case when n is an odd prime and then extend it for general n.

Let A and B be two subsets of Zn, and define A+B = {a+ b | a ∈ A, b ∈ B}.

Definition 1 Let n ≥ 3 be an odd integer. For any two elements a, b ∈ Zn, the midpoint of a
and b, denoted as Mid(a, b), is (a + b)/2 if a + b is even; (a + b + n)/2 mod n otherwise. If
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S is a subset of Zn, define MID(S)={Mid(a, b) | a, b ∈ S}, SUM(S)={a + b | a, b ∈ S} and
SUM k(S) = {a+ b | a, b ∈ SUM k−1(S)}

By the definition we have the following immediate fact.

Fact 1 If S is a proper subset of Zn and SUM(S)=Zn, then any x ∈ Zn is the midpoint of some
elements a, b ∈ S, i.e., x = Mid(a, b) for a, b with a+ b = 2x.

The following theorem is a very useful tool in our proofs.

Theorem 2 (Cauchy-Davenport [2]) If p is a prime, and A, B are two non-empty subsets of Zp,
then

|A+B| ≥ min{p, |A|+ |B| − 1}.

Now we are ready to prove our result.

Lemma 3 Assume S0 is a subset of Zn and ⌈ n
2k−1

⌉ ≥ |S0| > ⌈ n
2k
⌉ for some k, where n is a prime

and 1 ≤ k ≤ log n. Let Si=SUM(Si−1) for i ≥ 1. Then Sk = SUM k(S0) = Zn.

Proof. We prove the lemma by induction on k, where k satisfies ⌈ n
2k−1

⌉ ≥ |S0| > ⌈ n
2k
⌉.

Basis: When k = 1, we have |S0| > ⌈n2 ⌉. By Theorem 2, we have |S0+S0| ≥ min{n, |S0|+|S0|−1} ≥
n, so S1=SUM(S0)=S0 + S0 = Zn.
Inductive Step: Assume the lemma is true for k = m − 1, that is, if S0 > ⌈ n

2k
⌉ = ⌈ n

2m−1 ⌉,
then Sm−1 = Zn. Now we consider the case for k = m. We have |S0| > ⌈ n

2m ⌉, which implies
|S0| ≥ ⌈ n

2m ⌉+1. Then |S1|= |SUM(S0)|. If S1 = Zn, then we are done. Suppose not. By Theorem
2, we have |S1| ≥ 2|S0| − 1 ≥ 2(⌈ n

2m ⌉+1)− 1 = 2⌈ n
2m ⌉+ 1 > ⌈ n

2m−1 ⌉. By the induction hypothesis,
we have Sm = SUMm−1(S1) = Zn. Thus, it holds for the case k = m. 2

Theorem 4 If n is a prime, then Magnus can visit f∗(n) = n− 1 positions in 2n rounds.

Proof. Let C0 be the set of unvisited positions, which is Zn initially. By Lemma 3, we know
SUM(C0)=Zn if |C0| > n/2. By Fact 1, it implies that any position can be the middle point of 2
unvisited positions in C0. Thus, as long as |C0| > n/2, Magnus can occupy a new position in each
round.

In general for ⌈ n
2k−1

⌉ ≥ |C0| > ⌈ n
2k
⌉, 1 ≤ k ≤ log n, we claim that Magnus can occupy a new

position in C0 in every k rounds. The theorem follows by the claim, since

logn
∑

k=1

k
⌊ n

2k

⌋

≤ 2n.

We have shown the basis case (k=1) of the claim. Now assume the claim holds up to k−1. Now
consider the case when ⌈ n

2k−1
⌉ ≥ |C0| > ⌈ n

2k
⌉. Let C1 =MID(C0). Note that |C1| = |C0 + C0| >

⌈ n
2k−1

⌉. It is clear that SUMk−1(C1)=Zn, by Lemma 3. By induction hypothesis, we know Magnus
can visit a new position in C1 in every k − 1 rounds. Then from a position in C1, Magnus can
visit a new position in C0 in another round, since every element in C1 is the middle point of two
elements a, b ∈ C0, where if a = b, then a, b ∈ C1, which implies Magnus may visit a new position
in C0 in at most k rounds. This completes the proof of the claim. The remaining one unvisited
position is not reachable for Magnus when Derek plays optimally. Thus the theorem holds. 2
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As in [6], we use C(l, d, s) = {s+ i · d | 0 ≤ i < l} to denote a set of l positions starting from s
and the distance between each pair of adjacent positions in the set is d.

Suppose that n = mp is an odd positive integer and p is the smallest prime factor of n. Let
Cj = C(m, p, j) ⊂ Zn, j ∈ Zp. We have the following general property.

Lemma 5 Let S0 = Ci ∪R for some i ∈ Zp, where R ⊂ Zn and R ∩ Ci = ∅, and Si =SUM(Si−1)
for i ≥ 1. If ⌈ p

2k−1
⌉ ≥ l > ⌈ p

2k
⌉ for some k, where 1 ≤ k ≤ log p and l is the number of Cj , j 6= i,

intersecting with R, then Sk+1 = Zn.

Proof. For convenience, let C be the collection {Cj |j 6= i, Cj ∩ R 6= ∅} and |C| = l. Let S′ =
{j | Cj ∈ C}. By Lemma 3, we have SUMk(S′) = Zp. Note that {a} + Ci = C(a+i) mod p ⊆

SUM({a} ∪Ci). SUM
k(S′) = Zp implies that Zn ⊆ SUMk+1(S0). Thus Sk+1=SUMk+1(S0)=Zn. 2

Let u be an odd integer. Hurkens et. al. [1] (Lemma 3.2) proved that: if Magnus has a strategy
to visit f∗(u) positions in g(u) rounds, then, for any integer n with u as its largest odd factor,
Magnus has a strategy to visit f∗(n) positions in g(u) + n − u rounds. Thus to prove a linear
upper bound on the round number, it suffices to focus on odd integers.

Theorem 6 Let n = mp be an odd integer, where p is the smallest prime factor of n. Then there
is a strategy for Magnus to visit f∗(n) = (p − 1)n/p positions in at most 3n rounds.

Proof. Let Ci = C(n/p, p, i), i ∈ Zp, and S0 be the unvisited positions, which is Zn initially. Note
that when Derek plays optimally, he can always keep one of Ci’s, say C0, from Magnus’ visiting[6].
By Lemma 5, we know SUMk+1(S0) = Zn as long as S0 intersects with t Ci’s other than C0 and
⌈ p

2k−1
⌉ ≥ t > ⌈ p

2k
⌉. As in the proof of Theorem 4, it implies Magnus can visit a new position in S0

within k + 1 rounds. The smaller the t is, the more rounds Magnus needs to visit a new position.
The best strategy for Derek is to force Magnus to visit Ci one after another in order to make t
smaller.

Therefore, it takes at most

log p
∑

k=1

(k + 1)
⌊ p

2k

⌋

(n/p) ≤
∑

k

(k + 1)
( n

2k

)

≤ 3n rounds.

2

3 When Derek knows the moves of Magnus

In this section we consider a variant of the game, where Magnus reveals all of his moves
m1,m2, . . . ,mr to Derek. The goal of Derek is to design a sequence of directions d1, d2, . . . , dr
such that the number of positions Magnus can visit is minimal. We prove that it is NP-hard for
Derek to obtain a sequence of directions to achieve his goal. The proof is done by reducing the
Partition problem, which is well-known NP-complete [7], to the decision version of this problem.
We give some helpful definitions as follows.

Definition 2 Partition problem:[7] Given a multi-set of positive integers S, determine whether
it can be partitioned into two disjoint subsets S1 and S2 such that

∑

x∈S1
x =

∑

y∈S2
y.
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Definition 3 Derek problem: Given two positive integers n and r, a sequence of r integers M =
(m1,m2, ...,mr) ∈ Zr

n and an integer K, determine whether there is a sequence D = (d1, d2, ..., dr) ∈
{−1, 1}r such that SD = {x|x ≡

∑j
i=1 dimi (mod n), 1 ≤ j ≤ r} has |{0}

⋃

SD| ≤ K.

The above decision problem implies that it is NP-hard for Derek to minimize the number positions
for Magnus to visit.

Theorem 7 Derek problem is NP-complete.

Proof. It is clear that the Derek problem is in NP, since we can verify the answer in polynomial
time. Next we give a reduction from the Partition problem to the Derek problem.

Consider an instance of the Partition problem with a multiset S = {x1, x2, . . . , xt}. Let L =
1 +

∑

x∈S x, pi = 2iL and qi = pi + xi, for 1 ≤ i ≤ t. Then to construct an instance of the Derek
problem, we let M = (2t+2L, q1, q2, . . . , qt, 2

t+2L, p1, p2, . . . , pt) = (m1,m2, . . . ,m2t+2), n = 2t+5L
and r = K = 2t+ 2.

Note that the reduction can be done in polynomial time in terms of the size of S. Observe that
∑t

i=1(pi + qi) < 2t+2L,
∑k

i=1 pi < pk+1 and
∑k

i=1 qi < qk+1, for 1 ≤ k < t. Since
∑

i |mi| < n/2,
we can ignore the modular operation of Zn in our proof. WLOG, Derek can always set d1 = 1.

If S can be partitioned into two disjoint sets with equal sum, it implies that there is a se-
quence D′ = (d′1, d

′

2, ..., d
′

t) ∈ {−1, 1}t such that
∑t

i=1 d
′

ixi = 0. Then we can find a vector
D = (d1, d2, ..., dr) ∈ {−1, 1}r , with d1 = 1, di+1 = d′i for 1 ≤ i ≤ t and dj = −dj−t−1 for
t + 2 ≤ j ≤ 2t + 2. Thus we have

∑2t+2
i=1 dimi =

∑t
i=1 (pi − pi) +

∑t
i=1 d

′

ixi = 0, and it implies
|{0}

⋃

SD| ≤ 2t+ 2, since there are at most 2t+ 2 distinct prefix sums.

Conversly, if S cannot be partitioned into two subsets of equal sum, that is, for arbitrary
D′ ∈ {−1, 1}t,

∑t
i=1 d

′

ixi 6= 0. We claim that there are 2t+ 2 distinct prefix sums for M . Suppose

there are integers k′ and k such that 1 ≤ k′ < k ≤ 2t + 2 and
∑k′

i=1 dimi =
∑k

i=1 dimi. It implies
∑k

i=k′+1 dimi = 0, which is impossible by the above observations. I.e. there always exists an mj ,

k′ < k ≤ k, appearing in the summation
∑k

i=k′+1 dimi such that 2mj >
∑k

i=k′+1 mi. Thus we
conclude that all the prefix sums are distinct.

Next we show that
∑r

i=1 dimi 6= 0. Note that
∑r

i=1 dimi ≡
∑t

i=1 di+1xi (mod L) 6≡ 0,
since S cannot be partitioned evenly and −L <

∑t
i=1 di+1xi < L. This fact implies that

(d1m1, . . . , d2t+2m2t+2) has distinct prefix sums and none of the them is 0. So we know that
for any D we have |SD| = 2t+ 2 and 0 6∈ SD. Therefore, |{0}

⋃

SD| = 2t+ 3. 2

4 When Magnus knows Derek’s moves

In this case, Magnus actually has an advantage over Derek. Derek gives all his moves first, and
Magnus will try to find a set of magnitudes such that he can visit as many positions as possible.
Assume there are n positions on the round table. Let d1, d2, . . . , dk be the sequence given by Derek.
For all 1 ≤ i ≤ k, di will be either +1 (clockwise) or -1 (counterclockwise). The sequence of
magnitudes from Magnus is denoted as m1,m2, . . . ,mk. Let k = n− 1 and we have the following:

Proposition 1

(a) If n is even, Magnus can always occupy all n positions regardless of d1, d2, . . . , dn−1.
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(b) If n is odd and Magnus can choose any magnitude in the set {1, . . . , ⌈n2 ⌉}, then Magnus can visit
all n positions regardless of d1, d2, . . . , dn−1.

We give two different strategies for even n and odd n, respectively. We determine the moves
m1,m2, . . . ,mn−1 by observing the pattern of occupied positions.

Definition 4 We call the occupied positions on the round table k-balanced, if the occupied po-
sitions consist of two disjoint sets of consecutive positions, i.e., S0 = {j, . . . , j + k − 1} and
S1 = {j + n/2, . . . , j + n/2 + k − 1} for some k and j ∈ Zn, and the token is sitting at one
of the four end positions: j, j + k − 1, j + n/2 and j + n/2 + k − 1.

0

1

2

3

4

5

6

7

Figure 1: An example for 3-balanced with n = 8, where the gray nodes are occupied.

Without loss of generality, we assume position 0 is in S0. The strategy is: at round i, if i is
odd, then mi = n/2; otherwise, if the position at (current position + di) is not occupied then
mi = 1, else mi = i/2. During the even rounds, the set of occupied positions holding the token
will be extended with a newly occupied position. While during the odd rounds, the set of occupied
positions without the token will be extended with a newly occupied position and thus the balanced
invariant property is maintained. It is clear that Magnus can occupy all positions.

For odd n, the strategy is even simpler. Here Magnus is allowed to choose magnitude from
{1, . . . , ⌈n2 ⌉}. The pattern of occupied positions is slightly different. The strategy is: at round i,
if di = +1, then mi = ⌊n/2⌋; otherwise mi = ⌈n/2⌉. In fact, independent of di, it moves to the
same position from the current position. Starting from position 0, it moves to positions (i ∗ ⌊n/2⌋
mod n), in order i = 1, . . . , n − 1, where all positions are distinct. Thus, Magnus can occupy all
positions in this case as well.

5 When Derek and Magnus play randomly

Here, we consider the case when both players play randomly. The token will visit the positions
on the circle randomly. Assume that the token is at position i, Magnus chooses m uniformly from
{1, . . . , ⌊n2 ⌋}, and Derek chooses the direction d uniformly from {1,−1}. Let pi,j be the probability
that the token is moved from position i to position j. For any i, j ∈ Zn and i 6= j, let ℓ ≤ ⌊n/2⌋ be
the distance between i and j. Then Pr[m = ℓ] = 1/⌊n2 ⌋ and Pr[d = the direction from i to j] =
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1/2. If n is odd, then pi,j = 1/⌊n2 ⌋ × 1/2 = 1/n−1
2 × 1/2 = 1/(n − 1). Thus, for odd n, we have:

pi,j :=

{

0 if i = j,
1

n−1 otherwise.

Similarly, for even n, we have:

pi,j :=







0 if i = j,
2/n if j ≡ i+ n

2 mod n,
1/n otherwise.

We are interested in the cover time, which is the number of rounds needed to visit all positions. We
show that the number of rounds needed is Θ(n log n). Define c(i,i+1), i ∈ Zn, to be the number of
rounds needed to change from a state with i positions visited to a state with i+1 positions visited.
Since the token is at position 0 initially, we denote the cover time Cn as

Cn =
n−1
∑

i=1

c(i,i+1),

and the expected cover time is

E[Cn] =

n−1
∑

i=1

E[c(i,i+1)].

Lemma 8 (a) When n is odd, E[c(i,i+1)] =
n−1
n−i

; (b) When n is even, n
n−i+1 ≤ E[c(i,i+1)] ≤

n
n−i

.

Proof.

(a) Suppose that there are n− i unvisited positions. The probability to visit one of the unvisited
positions is pi =

n−i
n−1 . Note that c(i,i+1) is a geometric random variable with parameter pi,

and thus

E[c(i,i+1)] =
1

pi
=

n− 1

n− i
.

(b) Assume the token is at position x. For even n, position x+ n
2 mod n has a greater chance to

be visited. If x+ n
2 mod n has been visited, then the probability to visit a new position is

pi =
n− i

n
.

If x+ n
2 mod n hasn’t been visited, then the probability to visit a new position is

pi =
1

n
× (n− i− 1) +

2

n
=

n− i+ 1

n
.

To bound the value of E[c(i,i+1)], we know that the above cases can happen, and we let p∗i be

the probability to visit a new position, where n−i
n

≤ p∗i ≤ n−i+1
n

. Note that pi∗ depends on
the current position and is well bounded. Let c′ and c′′ be two geometric random variables
with parameter n−i

n
and n−i+1

n
, respectively. Then we have

n

n− i+ 1
= E[c′′] ≤ E[c(i,i+1)] ≤ E[c′] =

n

n− i
.
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2

Since we know the range of E[ci,i+1] for all i ∈ {1, . . . , n− 1}, we can bound the expected cover
time. We show that E[Cn] = Θ(n log n) with the following theorem.

Theorem 9 (a) When n is odd, E[Cn] = (n− 1)Hn−1, where Hn =
∑n

i=1
1
i
; (b) When n is even,

nHn − n ≤ E[Cn] ≤ nHn − 1.

Proof.

(a) From part (a) of Lemma 8, E[c(i,i+1)] =
n−1
n−i

. Hence,

E[Cn] =
n−1
∑

i=1

E[c(i,i+1)] =
n−1
∑

i=1

n− 1

n− i
= (n− 1)

n−1
∑

i=1

1

i
= (n− 1)Hn−1.

(b) From part (b) of Lemma 8, n
n−i+1 ≤ E[c(i,i+1)] ≤

n
n−i

and c1,2 = 1. Hence,

n−1
∑

i=1

n

n− i+ 1
≤ E[Cn] ≤

n−1
∑

i=1

n

n− i
.

We know that
n−1
∑

i=1

n

n− i+ 1
= n

n
∑

i=2

1

i
= n

(

n
∑

i=1

1

i
− 1

)

= nHn − n,

and
n−1
∑

i=1

n

n− i
=

n−1
∑

i=1

n

i
= n

n
∑

i=1

1

i
−

n

n
= nHn − 1.

Since Hn = Θ(log n), we know that the expected cover time is Θ(n log n). 2

6 Concluding remarks

In this paper we have answered two open questions in [6, 1], i.e. we prove that (1) Magnus can
visit the maximum number of positions in O(n) rounds; (2) It is NP-hard for Derek to find an
optimal strategy with Magnus’ moves revealed in advance. Several other questions raised in [6]
remain open.
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