Jug measuring: algorithms and complexity

Min-Zheng Shich Shi-Chun Tsai*

January 8, 2008

Abstract

We study the hardness of the optimal jug measuring problem. By proving tight lower
and upper bounds on the minimum number of measuring steps required, we reduce an
inapproximable NP-hard problem (i.e., the shortest GCD multiplier problem [6]) to it. 1t
follows that the optimal jug measuring problem problem is NI>-hard and so is the problem of
approximating the minimum number of measuring steps within a constant factor. Along the
way, we give a polynomial time approximation algorithm with an exponential crror based on
the well-known LLL basis reduction algorithm.

Keywords: Jug measuring problem, inapproximability, LLL algorithm, lattice problem

1 Introduction

Let @ and 3 be two positive integers. You arc given an a-liter jug, a G-liter jug, an unlimited
source of water and a drain. You can fill a jug full of water from the source, empty water in a jug
into the drain, or pour the water from onc jug to another. How do you measure x liters of water?
This measuring problem is the so called water jug problem, which has been studied for a long
time and is a popular problem for programming contests, a frequent heuristic scarch cexercise
in artificial intelligence and algorithms, cte. The water jug problem has scveral variants, such
as the problem of sharing jugs of wine [5], i.c., given an x-liter jug full of wine and two empty
jugs of capacity o and 3 where x = a + 3, what is the quickest way to divide the wine equally
by pouring the wine among the jugs? This problem can be reduced to the water jug problem,
since we can replace “pouring from the x-liter jug to any other jug” by the filling operation, and
“pouring from any jug to the z-liter jug” by the emptying operation. In [3], a problem proposed
by Ehrlich asks: for two relatively prime integers oo and 3 and an integer m with 1 <m < 3, is
it possible to measure m liters?

Boldi et al. [4] generalized the water jug problem by considering a set of jugs of fixed capacitics
and they found out which quantitics arc measurable and proved upper and lower bounds on the
number of steps nccessary for measuring a specified amount of water. Here a quantity = is
called measurable if after scveral steps onc of the jugs holds the quantity z. In other words,
the gencralized water jug problem is: given a set of jugs of fized capacilies, find out which
quantities are measurable. Morc specifically, supposc we arc given n jugs with positive integral

*Department of Computer Science, National Chiao-Tung University, Hsinchu 30050, Taiwan, LSmail: {mzhsieh,
sctsai}@csie.nctu.edu.tw. The work was supported in part by the National Science Council of Talwan under
contract NSC 91-2213-F-009-057, 95-2221-F-009-091-MY3 and in part by a MediaTek grant, 2003.

capacities ¢;, i € [n], where [n] denotes the set {1,--- ,n}.! Without loss of generality, we assume
c1 <cg <o <g¢y. Let z be a positive integer < ¢,. Boldi ¢t al. proved that x is mecasurable if
and only if it is a multiple of the greatest common divisor of ¢;’s. Define pie(z) = ming_g.c |21,
where @ = (z1,-+- ,2,) € Z™ and ||x||; = Y./, |#;]. They also proved that, for every measurable
z, (1) = can be measured in at most §pe(r) steps. (2) No algorithm can measure z in less than

r;

Ste(z) steps.

In this paper we deal with the optimal jug measuring problem, which considers the mini-
mum number of mecasuring steps. We gencralize measurability by defining that a quantity = is
additively measurable if there is a sequence of operations such that the sum of the final con-
tents in the jugs is equal to z. We prove that z is additively measurable if and only if it is a
multiple of the greatest common divisor of ¢;’s. For every additively measurable integer x, we
obtain a lower bound 2u(z) — n., where n, is the number of non-empty jugs. Conscquently,
we have that: a measurable integer x cannot be measured in less than max{2puc(x) — n, pre(x)}
steps. Furthermore, all the measurable quantitics can be measured in at most 2ucq(z) steps
such that the largest jug contains the quantity = and the others are empty. With the tight
lower and upper bounds, we can reduce the problem of computing pie(x) to the optimal jug
measuring problem. Mcanwhile, Havas and Scifert [6] proved that a special case of computing
te() is inapproximable in polynomial time within a factor of k, where k > 1 is an arbitrary
constant. This implies that the optimal jug measuring problem is inapproximable in polynomial
time within a constant factor. Morcover, we can reduce the problem of computing pe(x) to the
closest lattice vector problem. Finally, we propose a polynomial time approximation algorithm
with exponential errors for computing pie(z) based on the famous LLL (Lenstra-Lenstra-Lovasz)
basis reduction algorithm.

The rest of the paper is organized as follows. In scction 2, we give some notation and
definitions. In scction 3, we characterize additive measurability and prove the lower and upper
bounds for the number of non-pour operations. In section 4, we prove the lower and upper
bounds for the number of minimum measuring steps. In section 5, we show that computing
tte(x) is inapproximable and give a polynomial time approximation algorithm with exponential
crrors. Inapproximable results on the jug measuring problem arc also addressed. Section 6
concludes the paper.

2 Notation and definitions

Following Boldi ct al. [4], we define three types of clementary operations on the jugs.

Definition 1 Elementary jug operalions:
(1) | i: fill the ith jug (from the source) up to its capacity, and we call it the fill operation;
(2) i1:cmpty the ith jug (into the drain) completely, and we call it the cmpty operation;
(3) i — j: pour the contents of the ith jug to the jth jug, i # j, and we call it the pour

operation. Note that pour operation never changes the total sum of the contents, and at
the end of this operation, the ith jug is empty or the jth jug is full.

Let O denotes the set of all possible clementary operations, that is, O = {] i|Vi € [n]}U{i |
Vi e [n]} Ui — j|Vi,j € [n],i# j}. Wesay o € O is a sequence of operations, and use |o] to

"For convenience we use [n] to denote {1,2,---,n}, although [n] stands for {0,1, - ,n — 1} under von Neu-
mann’s delinition ol natural numbers.

denote the length of o (number of operations in o). We usc € to denote the empty sequence, i.c.,
le| = 0. Let N be the set of non-negative integers. A state is a vector s € N, where s; denotes
the amount contained in jug ¢. We define the state-transition function as follows.

Definition 2 A function § : N™ x O — N" is a state transition function if:
(1) (s, e) =s;
(2) (S(S, i 7) = (Sl, ey 815Gy Sit 1y ey Sn),'
(f))) (3(8,7: T) = (Sl, cee s Si—1, U, Sitlye--s Sn),'
(4) O(s,i — j) = (t1,...,tn), where t = si for all k ¢ {i,j}, t; = max{0,s; — (¢; — s5)},
and t; = min{c;j, s; + s5};
(5) for|o|>1 and o€ O, 6(s,00) = 0(d(s,0),0).

We say a state s is reachable if (0, 0) = s by some scquence o € O*. Furthermore, we say o
is optimal if it is the shortest one that reaches s. §;(s, o) denotes the i-th entry of §(s, o). ¢; (o)
denotes the number of i T operations in o and (o) = 3¢, ¢i(0). fi(o) denotes the number of
| i operations in o and f(o) = Zie[”] fi(o). pi(o) denotes the number of pour operations applied
to jug i and p(o) = %Zie[n} pi(o). A quantity x € N is measurable via scquence o iff there
exists ¢ € [n] such that 0;(0,0) = . For convenience, let € = {c1,-++ ,¢,} and ged(e) denote
the greatest common divisor of ¢q,--- ,¢,. The sct of quantitics that arc measurable using the
capacitics in ¢ is denoted as M (¢). Boldi et al.[4] proved that all of the measurable quantitics
arc multiples of the greatest common divisor of the capacitics as stated in the following.

Proposition 1 [// M(c) = {m - ged(c)| for all non-negative integer m < ¢,/ ged(c)}.

We extend the measurability by defining that a quantity z € N is additively measurable
via sequence o iff the sum of the contents in 6(0,0) is cqual to z, i.c., Zie[”] 0;(0,0) =
z. The sct of quantitics that arc additively measurable using the capacitics in ¢ is de-
noted by M™(c). Obviously, this is more general than M(c) and can measure larger
quantitics up to >." ,¢. We prove that all of the additively measurable quantitics
again are multiples of the greatest common divisor of the capacities, that is, M*(c) =

n
i

{m - ged(e)| for all non-negative integer m <> " | ¢;/ged(e)}.

Each 2 € M " (¢) has one (or more) vector representation & = (xy,--- ,) € Z" with respect
to ¢, such that . = @ -¢ = Y. | zj¢;. Morcover, we say a vector representation @ is optimal
ift ||z|; is minimum. We denote pe(r) = ming_g.c |l]1. We will use a representation @ to

construct a scquence of operations achicving the quantity x, and vice versa.

3 Measurability and standard sequences

3.1 Measurability

First we show that the additively measurable quantities arc multiples of ged(e), which form
a subgroup of (Z,,+) with ged(e) as a gencrator, where ¢ = 37 | ¢;. It can be proved by
induction on the number of jugs.

Theorem 1 M (c) = {m-ged(c)| for all non-negative integer m <Y I | ¢;/ged(e)}, forc €

n
+5

Proof. There arc two parts to be proved. First we show that any additively measurable
quantity is a multiple of ged(e). Secondly, we prove that every non-negative multiple of ged(e),
bounded by > | ¢, is additively measurable.

The first part is simple. Assume z is additively measurable with e. Let (s1,--- ,s,) be a
3 - n - .-
reachable state with 2 = > | s;. Note that cach s; is measurable. By proposition 1, we know
cach s; is a multiple of ged(e) and thus 2 is a multiple of ged(c).

We prove the sccond part by induction on n, the number of jugs. It is trivial when n = 1.
Assume that the theorem holds up to n — 1. Assume 2z = m - ged(e) and 2 < 377 | ¢, for
some m € N. Since ¢; < ¢a < ¢3-+- < ¢, we have that ¢, > ged(er,co,c3...,00-1). If
T < Z;’;ll ¢, then let y = x mod ged(eq,¢o,¢3...,¢,-1). We know that z — y is a multiple of
ged(er, e2,¢3..., ¢—1) and thus a multiple of ged(e). We alrcady know z is a multiple of ged(c)
by assumption, and then so is y. By proposition 1, we have y € M (¢). This implics that we
can reach (0,0,0,...,y) first. By induction hypothesis, 2 —y € M (c1,¢o,...,¢n1). So we

can reach a state s by using the first n — 1 jugs, where the sum of its contents is equal to x — y.
Together with the quantity y in jug n, we can achieve the total sum .

If z > 27;11 ¢, then let y = = — 27;11 ¢ < ¢,. We know that y is a multiple of
ged(e), since x and Z;L;l] ¢; are both multiples of ged(c), and thus by proposition 1 we have
y € M(c). This implies that we can reach (0,0,0,..., 2 — Z?;l ¢;) first, and then we can

rcach a statc s with the sum of the quantity in cach jug equal to z, by filling all of the jugs
other than jug n. From the above, we know that M (¢) = 0,31 | ¢;| N {m-ged(e)|¥Ym € N}. O

3.2 Standard sequences

A sequence of operations is called a standard sequence if fill operations are always applied to
cmpty jugs, and empty opcrations to full jugs. Formally, a standard scquence o = o1 :--0py,

satisfies:
N 0 , if &) :l 1
Yo, € 1,1 ,0;(0,01---01_1) = T .

el iiTh oo, 1) ¢ ,ifo=1i7
The total amount of water in the jugs can be changed only by non-pour opcrations. Since cvery
fill operation is applied to an empty jug and cvery empty operation is applied to a full jug in a
standard scquence, cach step changing the total mount of water in the sequence cither increcases
or decreascs ¢; liters for some 4. Therefore, if o is standard, then (f1(o)—e1(0), -, fu(o)—en(0))
1@ ¢ - Q a11 n g -
is a vector representation of » 7 0;(0,0).

In this subscction, we show that for every recachable state s, there exists an optimal standard
scquence o such that §(0,0) = s. According to this fact, we prove that a sequence that additively
measures x has at least p(2) non-pour operations. We also give an algorithm outputs a scquence
that additively measures x with exactly pe(r) non-pour operations. The bounds for the number
of pour operations will be discussed in scection 4.

The existence of optimal standard scquences is crucial. We show that any sequence of
opcrations can be transformed into standard onc without increasing length.

Lemma 2 Let o = 0103+ 0oy, € O be an arbitrary sequence of m operations such that 6(0,0) =
t = (t1,to, -+ ,tn). Then for every i € [nl], there exists a sequence of m operations p such that
(5(0, [)) 75 (tl, te ,tifl, U,ti+1, te ,tn) 7;77?,])/7;65 (5(0 [)) = (tl, ce ,tjfl, Ci,ti+1, ce ,tn)‘

Proof. Let ¢ € [n]. We prove the lemma by induction on m. The basc casc m = 0 is
straightforward. Assume the lemma holds for m < k and let o; be the last operation involving
jugi. Let tf = (th,--- #L) = 6(0,01 -+ 0). If tL = 0 or t} = ¢; then the lemma holds. Otherwise,
o; must be ¢ — j or j — i for some j. Moreover, after applying o --- oy, t[] =c¢jif o =i — 7,
else 0. Now let '
Ly it =i—g
ql_{ j1 L ifo=j—i

Lot w = (uy1,- -+ ,un) = 0(0,01 ---0;—1). By the induction hypothesis, there exists a sequence
q1...q—1 such that if 6(0,q1---q—1) # (u1,--+ ,ui—1,0,%iq1, -+ ,uy) then 0(0,q1 -+ 1) =
(wp, -+ w1, ¢ Uiy, -+ ,u,). Observe that o only affects jugs i and j. Therefore u, = t.
for every r € [n] — {i,j}. We have that if 6(0,q,---q) # (¢4, - ,t,[ifl,(),th], o th) then
5(0,q1---qp) = (t4,--- ,t,[ifl,ci,t,lﬁl, -, th). Since o1, -+, 0p do not involve jug i, we have
that if 0(0,q1 - qoj41---0x) # (t1,--+ ,tio1,0, 8541,) then 0(0,q1 - qope1---0p) =
(Frooo- s tiotsCintipr, oo o ty). O

The following lemma states that for every sequence o, we can construct a standard scquence
o which reaches the same state as ¢’ does without length overhead.

Lemma 3 For any reachable state s = (s1,-++ ,$n), if 6(0,0") = (0,0} ---0},) = s, then there

5

exists a standard sequence o = o1 -+ o, with k < m and 3(0,0) = s.

5

Proof. We prove the lemma by induction on |¢’|. The base case |o'| = 0 is trivial. Assumec
the lemma is true for |o| < r. Consider o' = 0} ---0l.. If 0] is a pour operation, then by the
induction hypothesis, we arc done. Thus we can assume o) is a non-pour operation. Assume

o). is applied to jug i and £ = (t1,--- ,t,) = 0(0,0] ---0,.). By lemma 2, there is a scquence
p=py---pl_ such that 8(0,p") = (¢4, . tio1, 85, 801, -+,) where ¢ # 0 implics ¢ = ¢;. By

the induction hypothesis, there exists a standard scquence p, where |p| < r — 1 and 6(0,p) =
(tla e 1ti711t;7 ti+17 e *tn)

For the case o], =] i: if s; = 0 then po). is a standard sequence and 6(0, pol.) = s; clse if
s; # 0 then s; = ¢; and it means o). is a redundant operation and hence p satisfies the lemma.
Similarly, for the casc o =i 1: it s; = 0 then p satisfics the lemma; otherwise pol docs. O

Lemma 3 implies that for cvery reachable state s, there exists an optimal standard scquence
of operations for it. Now we can derive the lower bound of non-pour operations.

Lemma 4 For any reachable state s with x = Y 7" | s;, there exists an optimal sequence of

operations o = 01+ 0, with 0(0,0) = s, such that the number of non-pour operations in o is
at least pe(x).

Proof. DBy Lemma 3, there exists an optimal standard scquence of operations ¢ reaching
s. Since o is standard, the total amount of water in the jugs is increased or decrcased by
the amount ¢; after | i or i T operation for cach i € [n]. Note that pour operations do
not change the sum. There are fi(o) (| i)-operations and e;(o) (i T)-operations. We have
z = >." (filo) — ei(o))e; and thus D7 | |fi(0) — ei(o)] > pe(x). From the above we have
S0 (Ril0) +eile) > Y 1filo) — cilo)| > pue(w). O

Now we introduce the basic idea of our algorithm that achieves the lower bound. Assume that

there is an extra jug with infinite capacity and z = Y | ¢;2;. Then the following operations can
measure x: (1) for cach x; > 0 repeat {] 454 — (n+ 1)} for z; times; (2) for cach x; < 0 repeat
{(n+1) — 4;4 1} for |z;| times. The total number of non-pour operations is exactly | |#;| and
the total number of measuring steps is 231 2] steps. With the above observation, given the
optimal representation of 2, we obtain an algorithm as in Figure 1, which additively measures z
by jie(x) non-pour operations and at most pe(x)+/—1 pour opcrations, where / is the minimum
number of jugs needed to hold the quantity . The key idea is simply simulate the imaginary
jug of infinite capacity with the n jugs. However, it is not clear how to compute pe(z) and the
optimal representation cfficiently.

Before we prove the correctness of the algorithm, we give a small execution example of the
algorithm. Assume ¢ = (3,15, 16) and we want to additively measure # = 5 corresponding to
the representation (2,1, —1). The algorithm MEASURE(e, z, @) outputs a scquence o =| 1o |
202—301 —>303 70l — 30| 1. The state transitions of ¢ arc shown in the following table.

1st loop (0,0,0) =5 (3,0,0) = (3,15, 0)
ond loop | (3,15,0) 22 (3,0,15) =2 (2,0,16) 25 (2,0,0)
3rd loop (2,0,0) =2 (0,0,2) =5 (3,0,2)

We prove the correctness in this section and leave the analysis on the number of operations
in the output sequence in section 4. We prove the correctness with the following lemma.

Lemma 5 Let @ be an optimal representation of v with capacity c¢. The algorithm MEASURE
outputs a sequence of operations o such that §(0,0) = s and > | s; = .

Proof. Let #' = {i|z; > 0} and £ = {i|z; < 0}. The integer variables v;’s arc used to track
the number of empty and fill operations performed. Initially, v; = z; for i € [n]. After cach
fill operation some v; with ¢ € F will decrease by 1, and after cach empty operation some v;
with j € F will increasc by 1. Observe that during the exccution the number of fill and empty
opcrations performed on jug i is (z; — v;) for i € F and (v; — x;) for i € E, respectively. Thus
the total quantity in the jugs is > ;o (2 — vi)er — Y e (vi — 23)¢; during the operations.

After the first loop (in line 2), s; = ¢ for all ¢ € . Next we show that after an iteration of
the sccond loop (in lines 3-7), if there still exists a v; < 0, then we can always find j in line 4.
There arc two possibilities after pour(j, i) is executed in line 5, i.c., jug j can become non-empty
or empty.

e (Casc 1: Jug j is still non-cmpty.) If the loop condition holds, we can always find j in line
4, since s; > 0 and v; > 0.

e (Casc 2: Jug j becomes cmpty.) If v; > 0, then jug j will be refilled immediately and s; > 0.
If v; = 0, supposc that linc 4 fails to find a j in the subsequent iteration, then it implics
that for all vy > 0, s, = 0. However, there does not exist such v, > 0 since jug k& would be
refilled right after line 6. Thus v, must be O for all £ € F. Line 7 shows that for all i € F, if
v; < 0 then s; < ¢; and thus the amount of water in the jugs is less than Zie 10,0 Ci- Since
we have done), x; fill operations and >, ,-(v; — x;) empty operations, the quantity of
water left in the jugs is exactly > . pcai + > cpci(ey — v)=2 - ¢ — Yo vy, which is

greater than Zie v <0 Ci a contradiction!
31U

Algorithm MEASURE(e, x,)

Input: ¢ = (¢, ,), the capacity of jugs.
2, the quantity to be measured.
x = (r1, -+, %), the optimal representation of that achicves pie().

Output: a scquence o, such that 6°(0,0) achicves the quantity x.
Variable: s, the state of jugs, which is initialized to be zcro state.

v = (v, - ,vp), initialized to be .
begin
l. o:=¢
2. for all i if (s; = 0 and v; > 0) do fili(i);
3. while(3i s.t. v; < 0) do
4. Find j s.t. s; > 0 and v; > 0;
5. pour(j,1);
6. if (s; = 0 and v; > 0) then fill(j);
7. if (s; = ¢;) then cmpty(i);
8. while(dv; > 0) do
9. Find j > n —1 with v; = 0 and s; # ¢;;

10. pour(i,j);
if s; = 0 then fill(i);

—
—

end

Procedure fill(i)

begin o := oo (] 1); 8; :=¢;; v; :=v; — 1; end

Procedure empty(i)
begin o :=c0 (i 1); s; :==0; v; :=v; + 1; end

Procedure pour(i, j)

begin

1. o=00(i—j);

2. if (s; + 55 > ¢;) then {s; := s, + 55 — ¢;1 55 .= ¢53}
3. else {s; :=s; + s;5: 5, :=0:}

end

Figure 1: Measuring algorithm given pe(z).

Thus, as long as the loop condition in line 3 holds, one can always find (in linc 4) a jug to
perform the pour opcration.

After the second loop (lines 3-7), no more empty operation will be performed. For all i € E,
v; = 0 and for all i € F with v; > 0, we have s; > 0 by linc 6. Notc that the quantity of water
left in the jugs is 37, (2 —vi)ei — X jep(vy — 3j)ej=0 — > ;cp vy > 0. Iffor all i € I, v; = 0,
then we are done.

By the assumption, the largest [jugs are sufficient to contain the quantity z. Thus,
> jon—16 > z. Note that we always fill jug ¢ at linc 6 and at linc 11 when »; > 0 and
s; = 0. We have that for every k € [n] if vp > 0 then s; > 0 at line 8. This implies there must
be some jug j > n — [with s; # ¢; and v; = 0. Otherwise Vj > n —[we have s; = ¢; or v; > 0,
which implies the quantity @ = >0, (s; +vje;) = si + 32,0, ;¢ > x (note that v; > 0 and
s; > 0), a contradiction. Thus, w h(‘novor the loop condition at line 8 holds (i.c., v; > 0), onc
can always find a suitable jug for pouring at linc 9.

Finally, when the algorithm terminates, it actually performed - 2; fill operations and
— ZJGF x; empty operations and the net quantity is Zaef ciri + ZJGF cyry=x.0

We remark that the output scquence of the MEASURE algorithm is a standard scquence
achicving the quantity z. It matches the lower bound of non-pour operations when we use the
optimal representation as input.

4 Lower and upper bounds of measuring steps

4.1 Bounds for additively measurable quantities

In this subsecction, we give the lower and upper bounds for additively measuring. First, we prove
the following theorem as a conscquence of the lower bound on the number of pour operations in
an optimal standard sequence.

n
Theorem 6 Let s = (s1,-++,8,) be a reachable state, x =" | 8; and npe be the number of
non-zero entries of s, then no sequence of operations can reach s in less than 24ie(x) — nype steps.

We prove the lower bound for pour operations by inspecting a graph G, corresponding to a
standard scquence of operations o = oy -+ 0,. Recall that 0;(s, p) is the quantity in jug i after
applying a scquence of operations p to state s. We denote the number of operations making jug
i cmpty in o as z;(0), i.c., zi(o) = {k: k> 0,0;(0,01---0r) =0, and 6;(0,01---0,_1) > 0}/
Note that z;(o) can be larger than e;(o).

For jug i, we define vertices vy, 5y, where i € [77] and j = 0,---,z(0) if 6;(0,0) # 0, clsc
j =0, ,(z(0)—1). Let V, be the sct of all v(; jy’s. For cach vertex vy 5 € V5, we associate it
with cvery operation oy satisfying: (1) oy is apphﬁd to jug i. (2) There are exactly j operations
making jug i emply before og. More preciscly, we associate v ;) with the following set of
operations:

,4)

{ok. : 0p involves jug ¢ and Hok/ kK < k,6;(0,01--0p) =0 and §;(0,01 -0 1) > 0}‘ = j} :

Note that in a standard sequence each vy; ;) is associated with at most one empty and one

i.J
fill operation. Now we define the corresponding graph G, = (V,, E,) of o, where V,, is the sct

of all v ;y's and {v(jy, v ;) € By if and only if both v ;) and vy ;1 are associated with a

common opcration o;. Thercfore, |E,| is the number of pour operations. If every operation in
the set associated with v(; ;) does not make jug ¢ empty, then we color v; 5y gray, otherwise we
color it white.

There are some interesting propertics about the first and last operations associated with a
vertex. Let og and o, be the first and last operations associated with vertex Vi) € V,. We have
0;(0,01 -+ 05-1) = 0, since if there exists an operation applied to jug @ before og, then it must
make jug ¢ empty (note that if o4 is the first operation applied to jug i then prior to og jug i is
cmpty). Also 6;(0,01 -+ 0.) = 0 if and only if v; ;) is white (note that a gray vertex cannot be
associated with an operation making it empty).

i.9)

For example, we consider an instance with ¢ = (14,28,31) and x = 20. Let o =
0109014 =]10 |301—20 |[101—=202T0]|101—=203—-20203—20 [303—2027T.
It can be justified that §(0,0’) = (0,0,20), but ¢’ is not an optimal scquence. The detailed

transitions by o’ arc: (0,0,0) N (14,0,0) L (14,0,31) =2 (0,14,31) N (14,14, 31) =2
(0,28,31) =5 (0,0,31) =5 (14,0,31) =2 (0,14,31) 22 (0.28,17) =5 (0,0,17) 22

(0,17,0) N (0,17,31) e (0,28,20) 2, (0,0,20). We construct the corresponding graph

in figure 2, where cach vertex v is associated with a set of operations O, (denoted as v < O, in
a rectangle) and z1(0') = z9(0’) = 3, 23(c’) = 1.

U(LU) — {()1,()3} 1)(171) — {04,()5} ’()(172) A {()7,()8}
V(2,0) < 103, 05,06} v(2,1) < {08, 00,010} V(2,2) < {011,013, 014}

Figure 2: G, the corresponding graph of o'.

We now prove the following crucial lemma, which is a key tool to prove the lower bound of
pour operations.

Lemma 7 Let G, = (V,, E,) be the corresponding graph of o = o1---0p,. If a connected
component G = (VI,EL) of G, contains no gray vertez, then 6(0,0) = 6(0,0"), where o’ is
obtained from o by removing all operations in the scts associated with the vertices in V..

Proof. Supposc o’ = 0| ---0 ,. Since o’ is obtained by removing some operations from o, we
ne : Apbine g - ! e at o in o e . .
define a one-to-one mapping g : {1, ,m’} — {1, ,m} such that o; in ¢’ corresponds to o
in o, for i = 1 to m’. In other words, ¢’ is simply a projection of . We claim that: for cvery
/ , / , ,) 7 N' / DO / = N' DO
ke {l,---,m'}, if 0, is applicd to jug i, then 0;(0,0] -+ 0,) = 0;(0,01 - 04k).

We show that 6(0,0) = (0, 0") follows from the claim. First consider every ¢ with 6;(0,0") #
0. Let o) be the last operation applied to jug 7 in ¢’. Since 6;(0,0”) # 0, V(i,zi(0)) 18 gray. The
last operation applied to jug 7 is still in ¢’. Thercfore, there is no operation o« applied to jug i
in o with I* > ¢(1). We have that §;(0,0”) = §;(0,0] - 0;) = 06;(0,01---04y) = 0;(0,0). Next
for those i with 9;(0,0) = 0, there arc two possibilitics: (1) All operations on jug i are removed.
Therefore, 0;(0,0") = 0;(0,¢) = 0 = 0;(0,0); (2) There are still some operations on jug i in

o'. Note that §;(0,0) = 0 implies that all operations on jug i in o are associated with white

vertices. Let the last operation applied to jug i in o’ be o). Then 0;(0,0") = 6;(0,0) ---0}) =
0i(0,01 - 04y) = 0= 6;(0,0), since oy is the last operation associated with some white vertez.
We conclude that for every i € [n], 9;(0,0”) = 9;(0,) which implics 6(0,0”) = (0, 0).

Now we prove the claim by way of contradiction. Let & be the smallest index such that when
0}, is applicd to some jug 7, 0,(0,0 -+ 0},) # 0,(0,01 - - 041y). We have that o}, must be a pour
opcration, thus we assume oj, = i — j. Since o), is applied to both jug i and jug j, onc of the
following two inequalitics must hold: 6;(0,0% -+ 0}_;) # 0;(0,01 - - 0g(4y—1) 01 65(0, 0 -0} _|) #
0j(0,01 -+~ 0g(gy—1)- Thercfore, if we can show that 6;(0,0)---0,_,) = 6;(0,01---0,
0j(0,0] -+ 0}_1) = 09;(0,01 -+ - 0g(3)—1), then the assumption leads to a contradiction.

(k)f1) and

We show that §;(0,0) ---0},_;) = 0;(0,01 - 040y_1), and the proof for 6;(0,0| - 0,_,) =
5j(0101“‘0g(k)—1) is similar. If oy is the first operation applied to jug @ in o, then
0i(0,01 - 0g(y—1) = 0i(0,€) = 0 = 6;(0,0) ---0}_). Assume oy is not the first operation
applied to jug . Let o; be the operation applied to jug ¢ prior to og;). We have two possible
cases:

e (Casc 1: o is not removed.) Then we have 6;(0,01 - 04y-1) = 6;(0,01---0)) =
3:(0,0} -+ o;,l(l)) = 0;(0,0) -+ 0},_1), since by the assumption there is no no integer k' < &
such that oy is applicd to jug ¢ and ;(0, 0} -+ 0},) # 0;(0,01 -+ - 04(3))-

e (Casc 2: o7 is removed.) Then op must make jug i ecmpty, otherwise 0g(ky and op would be
associated with the same removed vertex. If all operations involving jug @ before oy, arc
removed, then 0;(0,01 «+ - 0ggy—1) = 0 = 6;(0,0] -0} _,). Assume some of them arc not
removed. Let oy, be the last remaining operation applied to jug @ before oy, Since there
is no other operation applied to jug ¢ between ogyy and oy, 0gpy is the last operation
associated with some white vertex. Thus, o4,y empties jug ¢ and 3;(0,07 - - og(k),l) =0=
57(0 [Og(h)) = 67(0. ()/1 v O/h) = 67(0. ()/1 T '02771)‘

Thus 6;(0,0) ---0},_;) = 0;(0,01 - - - 04()—1) and similarly 6;(0,0 ---0}_,) = 6;(0,01 - 0g(1y_1)-
Therefore the claim is true and the lemma is proved. O

Now we can give the lower bound on the number of pour operations in a standard scquence.

Lemma 8 Let 0 = o1---0p, be a standard sequence for a reachable state s = 0(0,0) and
JE— n Q. y y

r =" si. Let nye be the number of non-zero entries of s, then the number of pour operations

in o is at least fe(r) — Npe.

Proof. Lect V¥ be the vertex set of all connected components of G, that contains no gray
vertex. By removing all operations associated with vertices in V¥, we obtain a standard sequence
p such that 6(0,p) = s, p(p) < p(o) and its corresponding graph G, = (V,, I,) docs not
contain any connccted component consisting of only white vertices. Since G, has at most np,
connected components, we have p(p) = |E,| > |V,| — nye. Since p is standard, for cvery vertex
v € V,, v is associated with at most onc fill operation and at most onc empty operation. We
have |V,| > 327 max(ei(p), filp)) = >°i leilp) — filp)] > pe(x); hence the number of pour
opcrations in o is at least pe(z) — npe. O

By Lemma 4 and Lemma 8, we have Theorem 6 as an immediate consequence. We remark
that this lower bound is tight empirically for many cases, for example, for measuring (0, -+ ,0, z)
with z € M(e).

10

Now we turn to the upper bound. We show the following theorem by analyzing the MEASURE
algorithm carcfully.

Theorem 9 For all x € M (¢), if we can use the largest I jugs to hold the quantity x, then the
algorithm MEASURE additively measures x in 2ue(x) + 1 — 1 steps.

Since we alrcady know the number of non-pour operations gencrated by the algorithm is

llz||1. we focus on the number of pour operations.

Lemma 10 Let x be an optimal representation of x with capacity ¢. The algorithm MEASURE
outputs a sequence of operations o such that |o| < 2pue(z) +1— 1.

Proof. Let F'= {ilz; > 0} and I = {i|z; < 0}. Let e be the number of empty operation in o.
There arc 3 loops in algorithm MEASURE. Let fi be the numbers of fill operations generated in
the k-th loop, £ =1,2,3. Since for every i € F, we fill jug i in the first loop, we have f1 = [£].

If an invocation of pour(j,i) in the sccond loop is neither followed by an empty(i) nor by a
fill(j), then we have v; = 0 and s; = 0 at the end of that iteration. This means we will never
pick such j in linc 4 afterward. Note that we only pick j’s from F. Thercfore, the number of
pour opcrations gencrated in the sccond loop is at most fo+e+ |F| = fo+e+ f1.

If we do not fill jug 7 after invoking pour(i, j) in the third loop, then we have jug j is full
and jug 7 is non-cmpty. Such j will never be picked in line 9 again. Morcover, such cvent
happens at most [— 1 times, otherwise z > >0 11 Ck, @ contradiction. The total number
of pour opcrations generated in the third loop is at most fs +1 — 1. The total number of pour
operations in ¢ is no more than fo + e+ fi+ fs+1— 1= ||y +1 1= pe(x) +1—1 and thus
lo| <2puelz)+1—1. 0

Theorem 9 follows by lemma 5 and lemma 10. The above proof is suggested by onc of the
anonymous referces which simplifies our proof in the carly draft.

4.2 Bounds for measurable quantities

In this subscction, we prove new lower and upper bounds for measurable quantitics. Recall that
a sequence o measures z if one of the entries of §(0, o) cquals to z, but a sequence o additively
measures if the sum over all entrics of §(0, ¢’) equals to z. Thercfore, we cannot dircetly apply
the results for additively measuring here. We prove the following lower bound, which improves
the previous bound Jpue(z) by Boldi cf al.[4].

Theorem 11 No sequence of operations can measure x, for all x € M(c), in less than
max{2pc(x) — n, pe(x)} steps.

Proof. First we show that no sequence can measure x in less than 2uq(x) — n steps by way

of contradiction. If there is a state s with s; = 2 for some ¢ € [n] that can be reached in less
i—1

——
than 2pue(x) — n steps, then (0,--- ,0,2,0,---,0) is reachable in less than 2u.(x) — 1 steps by
applying at most n — 1 extra empty operations. By theorem 6, we know it is impossible!

Note that the above bound vanishes when 2p.(x) — n < 0. Next we prove that no sequence
measurcs = in less than pe(x) steps by a more carcful obscrvation on the number of pour

11

opcrations. It is trivial for x = 0. Thus we consider the case when z > 0. Let p be a shortest
standard scquence that measurcs z. Let 0(0,p) = ¢ and ¢, = x for some k. Duc to lemma 2,
we can assume t; € {0,¢;} for every j# k. Let R={j:t; #0Aj # k} = {r1,--+ 7} Lot
k—1
- ——
o=pory To-orp . Thus o is standard, 6(0,0) = (0, ,0,2,0,---,0) and p(p) = p(o).
By lemma 8, we obtain p(p) = p(0) > pe(x) — 1. Since we need at least one fill operation for
measuring z > 0, we have |p| > 1+ p(p) = pre(z). O

Next we prove the following upper bound which improves the previous bound %/LC(.’I}) by
Boldi et al.

Theorem 12 For all x € M(c),

. there exists a sequence of operations p such that 6(0,p) =
0,-++,0,z) and |p| < 2pue(r).

Proof. Let o = o0;---0j5 be the sequence output by MEASURE. A pour operation i — j in o
makes jug j full or jug ¢ cmpty. Let 14 be the set of pour operations in the former casc and 1%
in the latter case.

Consider an arbitrary opecration o, =i — j in 1. If it is generated in the sccond loop, then
MEASURE invokes empty(7) in the same iteration. Since the total amount of water is less than
z in any itceration of the third loop and the largest jug has capacity at least x, one can conclude
that there is no pour operation in I’ gencrated in the third loop. Thus, || = (o).

Let o, =4 — j be a pour operation in /%. Let [= max{q:q < k Aoy =] i}. We claim that
for every r € (I, k), o, is not a pour operation emptying jug i. Supposc not, let o, =7 — j’ in
I%. If o, is generated in the third loop, then it must be followed by | 4, since jug ¢ is empticd
by or. If 0, is generated in the sccond loop and o, is not followed by | i, then v; = 0 and §;, = 0
after invoking pour(i, j'). Conscquently, o, is the last pour operation emptying jug ¢ and this
contradicts the assumption r < k. Then o, must be followed by | 4, and it leads to r < [, which
contradicts that r € ({, k). Now we know the claim is true, and every pour operation i — j in
D% can be paired with the closest prior | @ operation. Thus |I%| = f(o) — fu, where f,, is the
number of unpaired fill operations.

Now we turn to bound f,. Let F* = {i : i < nAs; > 0 when MEASURE terminated .
F* C {i:x; > 0} since at the end of the sccond loop for every ¢ € {i : z; <0} s; = 0 and we
only pour water into jug n in the third loop. For cvery i € F*, there cxists | ¢ in o, and the
last onc is unpaired, since there is no operation emptying jug ¢ after it. We have [F*| < f,, so
0] = F(0) +e(0) +p(0) < F(o)+e(0) + [P1] + 1P| < 20£(0) + (o) — [F7] < 2pela) — |7 Lot
p=0c0iy —>no-oip —n where ¥ = {iy,--+ i~ }. We have that §(0,p) = (0,--+,0,2)
and |p| < 2ue(x). O

We thank one of anonymous refereces whose comments inspired us to give stronger results
for mecasurable quantitics than the original version. From theorem 12, we know that when
measuring (0,---,0,z) with x € M (e), the bound is very close to the lower bound mentioned
in subsection 4.1.

12

5 Computing p.(r) and its approximation

5.1 Hardness of jug measuring

Recall that we define the optimal jug measuring problem as: given n jugs with capacity
1,7+, Cn, and a state s, find the length of shortest sequence o such that 6(0,0) = s.

We have used pie(2) to bound the number of steps on jug measuring. In this section, we
investigate the hardness of computing pe(x) and the optimal jug measuring problem. It can be
shown dircctly that computing pe(z) is indeed N P-hard. For the notations of computational
complexity we refer to standard textbooks such as by Sipser [10] and Papadimitriou [9]. However,
we have stronger results, i.e., it is hard even to approximate it.

To study the complexity of computing pe(x), we investigate the shortest GCD multiplier
problem [6], which is: given ¢1,¢9,-++ , ¢, we want to find @ = (xy, 22, -+ ,2,) such that
Yol wic; = ged(ersep, -+ ey) and [Jx], is minimal. The latter problem, for p = 1, is a special
casc of the problem of computing p1.(x). Havas and Scifert [6] proved that: (1) Unless N2 C 2,
there exists no polynomial-time algorithm which approximates the shortest GCD multiplier
problem in /,-norm within a factor of k, where £ > 1 is an arbitrary constant. (2) Unless
NP C DTUWE(TLPOZ?/(IOg ”)), there exists no polynomial-time algorithm which approximates the
shortest GCD multiplier problem in [,-norm within a factor of nt/(Plog”n) where v is an arbitrary
small positive constant.

Let o be an optimal sequence to measure x € M (). By the lower and upper bounds of
the previous scction, we have pe(z) = [@W where 6(0,0) = (0,---,0,x). In other words, if we
know how to solve the optimal jug measuring problem, then we know the value of je(x). By
sclecting = = ged(e), for the optimal jug measuring problem we have analogous results:

Theorem 13 Unless NP C P, there exists no polynomial-time algorithm which approxrimates
the optimal jug measuring problem within o factor of k, where k > 1 is an arbitrary constant.
Theorem 14 Unless NP C DTIME(nPo18m)) there exists no polynomial-time algorithm

. o .] Y
which approzimates the optimal jug measuring problem within a factor of /108" ™,
an arbitrary small positive constant.

where v is

5.2 Reduction from computing p.(z) to CVP

In this scction we give a polynomial time reduction from the problem of computing pe(z) to
CVP and an LLL-basced approximation algorithm for computing pe(z) with ezponential errors
(approximation ratio). Our approximation algorithm is based on the fact: computing pe(z) can
be polynomially reduced to the closest lattice vector problem (CVP). This is an extension of the
approach given by Havas ct al.[7] for approximating the extended GCD problem.

We introduce lattice and the closest lattice problem briefly ag follows. A lattice in R™ ig the
sct all integer lincar combination of m independent column vectors by, by, - -+ , by, The lattice
generated by by, by, - -+, by, denoted as L(by, by, -, by,), is theset {377, \ib;|Vi € [m], \; € Z}.

The independent vectors by, bo, - -+ |, by, arc called a basis of the lattice. The closest lattice vector
problem is: given a basis by, ba, -+ , by, a vector v € R™ and an integer p, we want to find the
lattice point u € L(by, ba, -+, by,) which is closest to v under l,-norm.

In order to complete the reduction from computing pe(z) to CVI, we introduce the Hermite

13

normal form[11]. A matrix A is said to be in Hermite normal form if it has the form [B 0]
where the matrix B is a nonsingular, lower triangular, nonnegative matrix, in which each row
has a unique maximum cntry, which is located on the main diagonal of 3.

The following opcrations on a matrix arc called elementary (unimodular) column operations:
(1) exchanging two columns; (2) multiplying a column by —1; (3) adding an integral multiple of
one column to another colummn.

A nonsingular matrix U is a unimodular matrix if U is integral and hag determinant 1 or
—1. Unimodular matrix can be obtained by applying some unimodular operations to I. For

3 10
cxample, | —1 0 0 | is a unimodular matrix which is obtained by: exchanging column 1 and
0 0 1

2, multiplying column 1 by —1, then adding 3 times column 2 to column 1. There are several
known facts about Hermite normal form:

Theorem 15 [11] (1) Each rational matriz of full row rank can be brought into Hermite normal
form by a series of elementary column operations. (2) For cach rational matriz A of full row
rank, there is a unimodular matriz U such that AU is the Hermite normal form of A. (3) Given
a feasible system Ay = b of rational linear diophantine equations, we can find in polynomial
time integral vectors Yo, Y1, Y2, -+ , Y. such that {y|Ay = by y is integral} = {yo + My1 + -+ +
MY AL, A € Z} with y1,y2, -+ -,y linearly independent. Moreover, [yo y1 y2 -+ Y] =
~1
U [B~™b 0

0 I]. where AU = [B 0] is the Hermite normal form of A.

We are now in position to prove the announced reduction.

Corollary 16 The problem of computing jie(x) can be polynomially reduced to CVI.

Proof. Assume ((c1,¢2,-++ ,¢p),x) is an instance for computing pe(r). Let 1-by-n-matrix
C =le1 cg -++ ¢p]. By theorem 15-(2), there exists a unimodular n-by-n-matrix U such that
20
CU =0 - 0] is the Hermite normal form of C. Let [vg v1 vy -+ v, 1] =U { (b) 7 } By
theorem 15-(3), we know vy, vg -+ ,v,1 arc lincarly independent column vectors and form a
basis of a lattice L. Hence pe(2) = min lvl|y = min lvg Ao+ 1011 =
ve{xlcr=a} Al An 1 €4

min ||lw — (—vp)||1. Thus pe(x) is the l1-norm of the vector v € L which is closest to —wvg. Note
we L
that all computation can be done in polynomial time. O

For the problem of computing the unimodular matrix U such that [¢1 ¢ -+ ¢,]U is in the
Hermite normal form, we propose an algorithm which is simpler than the gencral algorithm in
[11] and the algorithms mentioned in [7]. However, the algorithms in [7] could outperform our
algorithm. Our algorithm works for our application on the special case [¢1 ¢o -+ ¢,]U, but
it can’t computc the unimodular matrix U for any other n by m matrix, where n > 1. The
algorithm is shown in figure 3, and it is based on the Euclidean algorithm. It computes the
greatest common divisor of the first and the ith entries by applying Euclidean algorithm with
unimodular operations. Each iteration terminates when the greatest common divisor is written
back to the first entry and 0 is written to the ith entry, thus it runs in O(n?logc,) time. The
maximum of the absolute value of the entrics of U will not exceed O(nlogcy,).

Babai [2] provided two polynomial-time approximation algorithms for C'V 2. Both algorithms

14

Algorithm HERMITE NORMALIZE(C)

Inputs: C' = [c1eg- -+ ¢y, the capacitics of jugs.

Outputs: U = [ujug - - - uy) such that [c1ca -+ ¢,]U is in the Hermite normal form.
Variables: ¢, temporal storages for L:—”

begin

1. U:=1,;

2. for i=2tondo

3. while (truc) do

1 gi= L%); e o= o — qers w = i — qua;
5. if (¢; = 0) then break;

6. Swap(c;, c1); Swap(w;, uy);

7. loop

8. next ¢

end

Figure 3: A simple algorithm to compute U.

are based on LLL basis reduction algorithm proposed by A. K. Lenstra, H. W. Lenstra and
L. Lovasz (scc c.g., [8]). Assumec we arc given an LLL reduced basis {b, b2, -, by} where
|b1]]2 < 25 Milye 7, (by - by)— (0} |[0]]2, & vector @ = Y7 | a;b; and we are to find a vector
w € L(by,by, -+, by,) that is closc to . The first algorithm is called the rounding off heuristic
algorithm. It simply outputs w = 3.7 | 8;b; where 3; is the closest integer to a;. The sccond
algorithm is called the nearest plane heuristic algorithm. It is a recursive algorithm. Let
V = span(by, by, - ,by_1), and find v € L(by,bo,--- ,b,) such that the distance between
V + v and x is minimal. Let 2’ be the orthogonal projection of @ on V + v. Then find
y € L(by, by, ,b,_1) closc to ' — v, and output w = y +v. Both algorithms guarantce that
w is close to .

Theorem 17 [2] The rounding off heuristic algorithm find a vector w such that ||z — w|y <
n .
(1—}—271(%)5) min |l — vl2.
veL(b1,ba, - bn)
Theorem 18 [2] The nearest plane algorithm heuristic algorithm find a vector w such that

|z — wl|, SQ% min |z — v|
veL(b1 b2, ,by)

2.

Using the nearest planc heuristic algorithm, we can approximate pe(z) in polynomial time
but with an exponential error (approximation ratio) .

Corollary 19 There exists a polynomial-time algorithm to find a vector x such that c-x =z
n—1
and ||lz||1 < Vn- 277 pe(x).

The LLL algorithm can reduce a basis of some lattice L to a shorter one. If we replace the
LLL reduced basis with another shorter bagis in the nearest plane heuristic algorithm, it will
have a better performance. Using the basis reduction algorithm in [1], we can have a smaller

approximation ratio 20(nloglogn/logn)

15

6 Conclusion and remarks

We have characterized the additively measurable quantities, and proved new lower and upper
bounds on the minimum number of measuring steps. We prove that the optimal jug measuring
problem is hard to approximate within constant factor. Finally, based on LLL-algorithm we
give a polynomial time approximation algorithm with exponential errors.

Acknowledgments

We would like to thank the anonymous referces who provided very helpful comments for improv-
ing and preparing this paper. We also would like to thank Dr. Chi-Jen Lu for his hospitality
during one of the authors’ visit to Institute of Information Science, Academia Sinica, while
working on this problem.

References

[1] Miklos Ajtai, Ravi Kumar, and D. Sivakumar, A sicve algorithm for the shortest lattice
vector problem. In Proceedings of the 33rd ACM Symposium on Theory of Computing,
pages 601-610, 2001.

2] L. Babai, On Lovasz’ Lattice Reduction and the Nearest Lattice Point Problem, Combina-
torica 6:1-13, 1986.

(3] The American Mathematical Monthly, Volume 109 (1), 2002, page 77.

4] P. Boldi, M. Santini ans S. Vigna, Mecasuring with jugs, Theoretical Computer Science, 282
(2002) 259 270.

(5] C. McDiarmid and J. Alfonsin, Sharing jugs of wine, Discrete Math, 125 (1994) 279 287.

6] G. Havas and J.-P. Scifert, The Complexity of the Extended GCD Problem, Springer LNCS
vol.1672, 1999.

(7] G. Havas, B. S. Majewski, and K. R. Matthews, Extended GCD and Hermite Normal Form
Algorithm via Lattice Basis Reduction, Experimental Mathematics 7, 1998.

8] L. Lovasz, An Algorithmic Theory of Numbers, Graphs and Convexity, Philadelphia, Penn-
sylvania, STAM, 1986.

9] C. Papadimitriou, Computational Complexity, Addison-Wesley Publishing Co, 1995.
[10] M. Sipscer, Introduction to the Theory Computation, PWS Publishing Company, 1997.
[11] A. Schrijver, Theory of Lincar and Integer Programming, John Wiley & Sons Inc., 1986.

[12] N. P>. Smart The Algorithmic Resolution of Diophantine Equations, Cambridge, 1998.

16

