
Decoding Permutation Arrays with Ternary Vectors

Chia-Jung Lee∗ Te-Tsung Lin † Min-Zheng Shieh‡ Shi-Chun Tsai ‡

Hsin-Lung Wu §

Abstract

We give an explicit decoding scheme for the permutation arrays under Hamming distance
metric, where the encoding is constructed via a distance-preserving mapping from ternary vec-
tors to permutations (3-DPM).

1 Introduction

In this paper we consider the set of permutations from {1, 2, · · · , n}, denoted as Sn. We study
the decoding issue with respect to an encoding scheme C : {0, 1, 2}n → Sn, i.e., given a corrupted
permutation π ∈ Sn that is close to a codeword C(x) ∈ Sn we want to recover x ∈ {0, 1, 2}n. We
use the Hamming distance metric to measure the distance for ternary vectors and permutations.
That is, for any x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ {0, 1, 2}

n, the distance between x and y
is defined as dH(x, y) = |{i : xi 6= yi}|, which is the number of positions they differ. Similarly,
for π and τ ∈ Sn, dH(π, τ) = |{i : πi 6= τi}|. An (n, d) permutation array (PA) is a subset of Sn

with the property that the distance between any two permutations in the array is at least d. PAs
have been studied for some time, see e.g. [1] for a list of early references. Vinck [8, 7] proposed
permutation arrays as an error correcting code over power-line communications, where each symbol
i ∈ {1, . . . , n} is associated with a frequency fi and a message is encoded as a permutation. Most of
the previous works have been on finding mappings from binary vectors to permutations that preserve
the minimum distance of the binary vectors. A typical approach starts by encoding a message with
a binary code, which is then mapped to a permutation and transmitted. From a correctly received
permutation, one can find the corresponding binary vector, with which one can recover the message.
But, there is little discussion on correcting errors directly from the permutations when the error is
not erasure. It was not clear how to efficiently recover the message, when the received permutation
was not a codeword. Using l∞-norm to measure the distance between permutations, Lin et al. [5, 3]
proposed the first efficient encoding and decoding scheme for permutation arrays. In this paper,
we investigate the same problem but with the Hamming distance metric, which is widely used in
coding theory and related areas[2]. Meanwhile, Lin et al. [6] gave a simple distance-preserving

∗Email: leecj@iis.sinica.edu.tw, this work was done while the author was with National Chiao Tung University.
†Email: atman.cs94g@nctu.edu.tw, this work was done while the author was with National Chiao Tung University
‡Email:{mzhsieh, sctsai}@csie.nctu.edu.tw, Department of Computer Science, National Chiao Tung University,

Taiwan.
§Email: hsinlung@mail.ntpu.edu.tw, this work was done while the author was with National Chiao Tung University.

The work was supported in part by the National Science Council of Taiwan under contract NSC 97-2221-E-009-064-

MY3 and and NSC-98-2221-E-009-078-MY3.

1

mapping from ternary vectors into permutations. Based on their construction from {0, 1, 2}n to
Sn for n ≥ 16, we develop an efficient decoding scheme for permutation arrays. For the rest of
the paper, we review the encoding algorithms in section 2 and show our main result, the decoding
algorithm, in Section 3.

2 Construction of 3-DPM

For completeness, we include the construction of ternary distance preserving mapping (3-DPM)[5].
First of all, we show the algorithm for input length 8m for any integer m ≥ 2. We call the algorithm
A8m. Then A8m can be extended to all input of length at least 16. The approach gives a framework
for designing general q-DPM. For convenience, we use the notation [n] to denote the set {1, 2, . . . , n}
and [i, j] for the set {i, i+ 1, . . . , j}, where i and j are integers and i < j.

2.1 3-DPM of length 8m for m ≥ 2

The 3-DPM of length 8m (A8m) is shown in Figure 1. Algorithm A8m consists of two passes: PASS
1 and PASS 2. The encoding scheme for n = 16 is illustrated in Figure 2, which is similar to
the sorting network[4]. Each vertical line segment connects two horizontal lines and the value of
the variable next to it determines to swap the values on the horizontal lines or not. During PASS
1, if the variable associated with a vertical line segment has value 1, then the values of the two
corresponding horizontal lines are swapped. For PASS 2, the values will be swapped when the
associated variable has value 2. We summarize the transitions of PASS 1 and 2 in Table 1 and 2.
Table 2 is very similar to Table 1 if we replace 1 by 2. Note that addition and substraction are
operated in Z8m = [8m], that is, if a, b ∈ Z8m then the output of a+ b is (a+ b mod 8m) if (a+ b
mod 8m) 6= 0; 8m otherwise.

Table 1: Possible values of π1
j after PASS 1 for k ∈ {0, 1, . . . , 4m− 1}.

x2k+1 x2k+2 x2k+3 π1
2k+2 π1

2k+3

1 - - - 2k + 2 2k + 3

2 - - 1 2k + 2 2k + 4

3 - 1 - 2k + 3 2k + 2

4 - 1 1 2k + 4 2k + 2

5 1 - - 2k + 1 2k + 3

6 1 - 1 2k + 1 2k + 4

7 1 1 - 2k + 3 2k + 1

8 1 1 1 2k + 4 2k + 1

2.2 3-DPM for input length ≥ 16

Algorithm A8m has a nice property as shown in lemma 1 and can be extended to handle input
length greater than or equal to 16. As in the previous subsection, let π = A8m(x) and π1 be the
intermediate result after PASS 1. The 3-DPM algorithm A8m+k is shown in Figure 3.

2

Algorithm A8m:
Input: (x1, . . . , x8m) ∈ Z8m

3

Output: (π1, . . . , π8m) ∈ S8m

PASS 1 :
(π1

1 , π
1
2 , . . . , π

1
8m)← (1, 2, . . . , 8m);

for i = 0 to 4m− 1 do;
if x2i+1 = 1 then swap (π1

2i+1, π
1
2i+2);

for i = 0 to 4m− 1 do;
if x2i+2 = 1 then swap (π1

2i+2, π
1
2i+3);

PASS 2 :
(π1, π2, . . . , π8m)← (π1

1 , π
1
2 , . . . , π

1
8m);

for i = 0 to m− 1 do;
if x8i+1 = 2 then swap (π8i+1, π8i+5);
if x8i+2 = 2 then swap (π8i+2, π8i+6);
if x8i+3 = 2 then swap (π8i+3, π8i+7);
if x8i+4 = 2 then swap (π8i+4, π8i+8);

for i = 0 to m− 1 do;
if x8i+5 = 2 then swap (π8i+5, π8i+9);
if x8i+6 = 2 then swap (π8i+6, π8i+10);
if x8i+7 = 2 then swap (π8i+7, π8i+11);
if x8i+8 = 2 then swap (π8i+8, π8i+12);

Output (π1, . . . , π8m).

Figure 1: 3-DPM Algorithm A8m

Table 2: Possible values of πj after PASS 2 for k ∈ {0, 1, . . . ,m− 1} and i ∈ {1, 2, 3, 4}.

x8k+i x8k+4+i x8k+8+i π8k+4+i π8k+8+i

1 - - - π1
8k+4+i π1

8k+8+i

2 - - 2 π1
8k+4+i π1

8k+12+i

3 - 2 - π1
8k+8+i π1

8k+4+i

4 - 2 2 π1
8k+12+i π1

8k+4+i

5 2 - - π1
8k+i π1

8k+8+i

6 2 - 2 π1
8k+i π1

8k+12+i

7 2 2 - π1
8k+8+i π1

8k+i

8 2 2 2 π1
8k+12+i π1

8k+i

3

16 π16b

15 π15b

14 π14b

13 π13b

12 π12b

11 π11b

10 π10b

9 π9b

8 π8b

7 π7b

6 π6b

5 π5b

4 π4b

3 π3b

2 π2b

1 π1b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

x1

x3

x5

x7

x9

x11

x13

x15

x2

x4

x6

x8

x10

x12

x14

x16

︷ ︸︸ ︷

PASS 1
︷ ︸︸ ︷

PASS 2
︷ ︸︸ ︷

PASS 2: 2nd loop

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

x1

x9

x2

x10

x3

x11

x4

x12

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

x5

x13

x6

x14

x7

x15

x8

x16

Figure 2: Encoding with sorting network for n = 16. Initially, line i has value i. After PASS 1,
line i has value π1

i . Each vertical line segment has an associated variable to its left, which decides
to swap the values of two horizontal lines connecting to it or not.

4

Algorithm A8m+k (8m ≥ 16 , 1 ≤ k ≤ 7) :

Input: (x1, . . . , x8m+k) ∈ Z8m+k
3

Output: (π1, . . . , π8m+k) ∈ S8m+k

(π1, . . . , π8m)← A8m(x1, x2, . . . , x8m);
(π8m+1, . . . , π8m+k)← (8m+ 1, . . . , 8m+ k);
for i = 1 to k do;

if x8m+i = 1 then swap (π8m+i, ππ−1(i−3));
if x8m+i = 2 then swap (π8m+i, πi);

Figure 3: 3-DPM Algorithm A8m+k for k ∈ {1, . . . , 7}

Lemma 1. [6] For any i ∈ {1, 2, · · · , 8m}, πi 6= i− 3.

Theorem 1. [6] A8m+k : Z8m+k
3 → S8m+k is a 3-DPM for all m ≥ 2 and k ∈ {1, · · · , 7}.

Corollary 1. [6] There exists an explicit construction of 3-DPM from Zn
3 to Sn for any n ≥ 16.

Note that the above construction can be applied to the case when q ≥ 3. However, for different
q, we need a different version of lemma 1 in order to obtain an explicit construction of q-DPM.

3 Decoding Permutation Arrays with 3-DPM

As shown in [1], we can use 3-DPM to construct permutation arrays with Hamming distance. In
this section we show the corresponding decoding algorithm.

Suppose C is an (n, d) ternary code, which can correct up to e errors. Let n = 8m+k, m ≥ 2 and
0 ≤ k ≤ 7. By Theorem 1 and m ≥ 2, we have a distance-preserving mapping A8m+k : Zn

3 → Sn.
It is easy to see that A8m+k(C) is a permutation array of length n with minimum distance d. Let
P be A8m+k(C) and so |P | = |A8m+k(C)| = |C|.

We show the encoding/decoding scheme in Figure 4. For the encoding issue, if C has an efficient
encoding algorithm E : Msg→ Zn

3 , where Msg is an arbitrary message space with size equal to |C|.
Let EP = A8m+k ◦E, then EP : Msg→ Sn is an efficient encoding algorithm for P because E and
A8m+k are both efficient.

message M ∈ Msg codeword x ∈ C permutation π ∈ P

M̂ ∈ Msg x̂ ∈ Zn
3 receive π′ ∈ Sn

E A8m+k

A−1
8m+kD

channel

Figure 4: Encoding and decoding with permutation arrays and 3-DPM

Now consider the decoding issue. If C has an efficient decoding algorithm D : Zn
3 → C to correct

up to e errors, i.e., for any codeword x ∈ C, and a corrupted codeword y ∈ Zn
3 with dH(x, y) ≤ e,

5

then D(y) = x. Let π = A8m+k(x) ∈ P and π′ be a corrupted permutation satisfying dH(π, π′) = d.
Without decoding π′ to π directly, we design an algorithm A−1

8m+k
which computes the inversion

of A8m+k. If we can bound dH(A−1
8m+k(π

′), x) by dH(π, π′), then we can decode P by combining

A−1
8m+k

and D.
To understand the decoding algorithm, let us explain the idea first. Note that A8m+k is based

on A8m and then handle the last k positions. We consider the inversion of A8m first. The idea is
based on the proof of lemma 1[6], which shows for any i, πi 6= i− 3 by checking the path of symbol
i− 3 and deriving a contradiction on the value of xi−4. In general if πi = t, we can determine the
transition path of symbol t and the values of four positions of x. For example, given π5 = 12, the
path of symbol 12 can be determined as in the figure below, where symbol 12 goes to position 13 in
PASS 1 and goes to position 9 and then 5 in PASS 2. Furthermore, we can determine that x11 6= 1,
x12 = 1, x5 = 2 and x9 = 2 by Tables 3 and 4, where each πi can have up to 15 legitimate values.

125 9 13

Figure 5: The unique path of symbol 12, given π5 = 12.

Tables 3 and 4 show each possible value of πi. For example, suppose πi = i + 7, (i mod
8) ∈ {5, 6, 7, 8} and i is odd(e.g. the case π5 = 12). In the gray area of Table 4, it implies that
πi = π1

i+8 , π1
i+8 = i+ 7 and gives the values of four positions of x, i.e., xi = 2, xi+4 = 2, xi+6 6= 1

and xi+7 = 1. One can verify each entry in both tables by checking algorithm A8m. Note that some
entries are not applicable(n.a.), since A8m avoids some values for certain positions in a permutation.

Checking each position of π, we can determine all the values of xi’s and compute the inversion
of A8m. Now consider A−1

8m+k
. If πi = t where i ∈ {8m + 1, . . . , 8m + k}, then we set xi = 0

if πi = i, xi = 1 if πi = i − 3, and xi = 2 otherwise. If πi = t with i ∈ {1, . . . , 8m} and
t ∈ {8m + 1, . . . , 8m + k}, it implies πi must have been swapped with πt = t in the final stage of
algorithm A8m+k. Thus we can just swap the value of πi and πt first and then determine x by the
above approach. We give the algorithm A−1

8m+k as follows.

6

Table 3: Path Table of πi , i = 8k + 8 + j, j ∈ {1, 2, 3, 4}

i = 8k + 8 + j, j ∈ {1, 2, 3, 4}, i ∈ [n], k ∈ {0, . . . , ⌊n8 ⌋ − 1}

i is odd i is even

πi πi

π
1
i−8

xi−8 = 2,
xi−4 = 2

i− 10 xi−10 = 1, xi−9 = 1 i− 9 xi−9 = 1, xi−8 6= 1
i− 9 xi−10 6= 1, xi−9 = 1 i− 8 xi−9 6= 1, xi−8 6= 1
i− 8 xi−9 6= 1, xi−8 6= 1 i− 7(n.a)
i− 7 xi−9 6= 1, xi−8 = 1 i− 6(n.a.)

π
1
i−4

xi−8 6= 2,
xi−4 = 2

i− 6 xi−6 = 1, xi−5 = 1 i− 5 xi−5 = 1, xi−4 6= 1
i− 5 xi−6 6= 1, xi−5 = 1 i− 4 xi−5 6= 1, xi−4 6= 1
i− 4 xi−5 6= 1, xi−4 6= 1 i− 3(n.a.)

i− 3(n.a.) i− 2(n.a.)

π
1
i

xi−4 6= 2,
xi 6= 2

i− 2 xi−2 = 1, xi−1 = 1 i− 1 xi−1 = 1, xi 6= 1
i− 1 xi−2 6= 1, xi−1 = 1 i xi−1 6= 1, xi 6= 1
i xi−1 6= 1, xi 6= 1 i+ 1 xi = 1, xi+1 6= 1

i+ 1 xi−1 6= 1, xi = 1 i+ 2 xi = 1, xi+1 = 1

π
1
i+4

xi−4 6= 2,
xi = 2

i+ 2 xi+2 = 1, xi+3 = 1 i+ 3 xi+3 = 1, xi+4 6= 1
i+ 3 xi+2 6= 1, xi+3 = 1 i+ 4 xi+3 6= 1, xi+4 6= 1
i+ 4 xi+3 6= 1, xi+4 6= 1 i+ 5 xi+4 = 1, xi+5 6= 1
i+ 5 xi+3 6= 1, xi+4 = 1 i+ 6 xi+4 = 1, xi+5 = 1

Table 4: Path Table of πi , i = 8k + 4 + j, j ∈ {1, 2, 3, 4}

i = 8k + 4 + j, j ∈ {1, 2, 3, 4}, i ∈ [n], k ∈ {0, . . . , ⌊n8 ⌋ − 1}

i is odd i is even

πi πi

π1
i−4

xi 6= 2,
xi−4 = 2

i− 6 xi−6 = 1, xi−5 = 1 i− 5 xi−5 = 1, xi−4 6= 1
i− 5 xi−6 6= 1, xi−5 = 1 i− 4 xi−5 6= 1, xi−4 6= 1
i− 4 xi−5 6= 1, xi−4 6= 1 i− 3(n.a.)

i− 3(n.a.) i− 2(n.a.)

π
1
i

xi 6= 2,
xi−4 6= 2

i− 2 xi−2 = 1, xi−1 = 1 i− 1 xi−1 = 1, xi 6= 1
i− 1 xi−2 6= 1, xi−1 = 1 i xi−1 6= 1, xi 6= 1
i xi−1 6= 1, xi 6= 1 i+ 1 xi = 1, xi+1 6= 1

i+ 1 xi−1 6= 1, xi = 1 i+ 2 xi = 1, xi+1 = 1

π
1
i+4

xi = 2,
xi+4 6= 2

i+ 2 xi+2 = 1, xi+3 = 1 i+ 3 xi+3 = 1, xi+4 6= 1
i+ 3 xi+2 6= 1, xi+3 = 1 i+ 4 xi+3 6= 1, xi+4 6= 1
i+ 4 xi+3 6= 1, xi+4 6= 1 i+ 5 xi+4 = 1, xi+5 6= 1
i+ 5 xi+3 6= 1, xi+4 = 1 i+ 6 xi+4 = 1, xi+5 = 1

π
1
i+8

xi = 2,

xi+4 = 2

i+ 6 xi+6 = 1, xi+7 = 1 i+ 7 xi+7 = 1, xi+8 6= 1

i+ 7 xi+6 6= 1, xi+7 = 1 i+ 8 xi+7 6= 1, xi+8 6= 1

i+ 8 xi+7 6= 1, xi+8 6= 1 i+ 9 xi+8 = 1, xi+9 6= 1
i+ 9 xi+7 6= 1, xi+8 = 1 i+ 10 xi+8 = 1, xi+9 = 1

7

Algorithm A−1
8m+k

(8m ≥ 16 , k ∈ [0, 7]) :

(1) For all i in {1, . . . , k}, check whether π8m+i is 8m + i or i − 3 or others,
then assign the corresponding value 0, 1, or 2, to x8m+i respectively.

(2) For all i in {1, . . . , 8m}, if πi is larger than 8m, then swap (πi, ππi
).

(3) For each πi, i ∈ {1, . . . , 8m}, let Bi be an empty bucket for xi. By the
value of i and πi, find the corresponding entries in Table 3 or Table 4. If it is
not in the tables or not applicable(n.a), then do nothing. Else determine the
values of four positions of x, from which obtain xi = b by checking the tables,
put b to Bi if b ∈ {1, 2}. If b /∈ {1, 2}, then put 0 to Bi.

(4) Determine xi by a weighted majority vote. In each bucket, ‘0’ has weight
0.5; ‘1’ and ‘2’ each has weight 1. For each i in {1, . . . , 8m}, check Bi, assign
xi to be the value b ∈ {0, 1, 2} with the largest weight. If tie, choose the
larger value.

First we use π8m+i to decide x8m+i for all i ∈ {1, . . . , k}. One can verify that if π8m+k is not
corrupted then x8m+k is correct. Next for i ∈ {1, . . . , 8m}, if πi > 8m, it implies A8m+k swaps πi
and ππi

, and then we should swap them. Third, bucket Bi is used to collect the votes (information)
of xi. For each πi = t, one can determine the values of x in four positions by checking Table 3
and Table 4. If xi = b ∈ {1, 2} then put b to Bi; if xi /∈ {1, 2} then put ‘0’ to Bi. For example, if
π5 = 12, then it will put ‘2’ to B5 and B9, put ‘1’ to B12 and put ‘0’ to B11. Finally for each bucket
Bi, make a weighted majority vote to determine the value of xi. Because if it gives xi 6= 1(or 2)
then we put 0 to the bucket but the vote 0 does not guarantee xi is 0, thus we give 0 half weight in
the weighted majority vote. If tie, choose the larger value. Note that Step (3) also indicates that
Algorithm A−1

8m+k
can handle erasure error.

Each π′
i contributes information in at most 4 positions of x. For each xi, four positions of π′

contribute correct information of xi, if π
′ is not corrupted, since each xi is used to decide whether

to swap two positions or not in PASS 1, likewise in PASS 2. Thus it reveals some information
about xi by checking the path of those four symbols.

The inverse algorithm A−1
8m+k works well if π is not corrupted. Let us consider the corrupted

π′. By Tables 3 and 4, each error will give wrong information in at most 4 positions of x, and
also lose correct information in at most 4 positions of x. It immediately gives a rough bound
dH(A−1

8m+k(π
′), x) ≤ 8 · dH(π, π′). Here we give a better bound by analyzing it more carefully. Let

π = A8m+k(x) be the correct codeword of x, and π′ a corrupted permutation.

Claim 1. dH(A−1
8m+k(π

′), x) ≤ 4 · dH(π, π′) + k

Proof. Let x′ = A−1
8m+k

(π′). First note |Bi| = 4 for all i ∈ {1, . . . , 8m} if π′ is not corrupted by
Table 3 and Table 4. Furthermore, it is easy to verify Bi = {2, 2, 0, 0} if xi = 2, Bi = {1, 1, 0, 0}
if xi = 1 and Bi = {0, 0, 0, 0} if xi = 0 . Observe that adding any extra vote to Bi or taking any
vote from Bi would not change the result of the weighted majority vote. It implies that once the
result of the weighted majority vote is wrong, then it must have at least two wrong votes from two
corrupted π′

i’s. Each π′
i votes in at most four buckets and it causes at most eight changes on the

8

buckets, since a wrong vote can have two effects, i.e., removing a vote from one bucket and adding
an extra vote to another.

Now we estimate the total effects of the corrupted positions. Let dH(π[1,8m], π
′
[1,8m]) = d1,

dH(π[8m+1,8m+k], π
′
[8m+1,8m+k]) = d2, and d = d1+d2. It’s clear dH(x[8m+1,8m+k], x

′
[8m+1,8m+k]) ≤ d2

because πi = π′
i implies xi = x′i for i ∈ [8m + 1, 8m + k]. For each πi 6= π′

i with i ∈ [8m], by the
above observation, it causes at most 8/2 = 4 wrong decisions on average in the weighted majority
vote. For each i ∈ [8m] with πi = π′

i, if π
′
i > 8m, even π′

i is not corrupted, the corresponding π′
π′
i

could be corrupted already. Each corrupted π′
π′
i

adds wrong information to at most 8 buckets. But

there are at most d2 such π′
π′
i

. Thus dH(x[1,8m], x
′
[1,8m]) ≤ 4 ∗ (d1 + d2) = 4d. Finally, we have

dH(x, x′) = dH(x[1,8m], x
′
[1,8m]) + dH(x[8m+1,8m+k], x

′
[8m+1,8m+k]) ≤ 4d+ k ≤ 4 · dH(π, π′) + k.

Let us return to the decoding issue. Let DP = D ◦ A−1
8m+k and d ≤ e/4 − 2 be the number of

errors in π′. By Claim 1, dH(x, x′) ≤ 4d+ k ≤ 4(e/4− 2)+7 ≤ e. Thus DP (π
′) = D(A−1

8m+k(π
′)) =

D(x′) = x by the definition of D. We conclude that the decoding algorithm is efficient because D
and A−1

8m+k
are both efficient and can correct up to e/4− 2 errors. The above proves the following

theorem.

Theorem 2. For all n ≥ 16 and d ≤ n, suppose C is an (n, d) ternary code and P is an (n, d)
permutation array generated by A8m+k. If C has an efficient encoding/decoding algorithm pair,
then there is an efficient encoding/decoding algorithm pair for P . Furthermore, if the decoding
algorithm of C can correct up to e errors, then the decoding algorithm of P can decode correctly
when the corrupted codeword π′ satisfies dH(π, π′) ≤ e/4− 2, for some codeword π ∈ P .

Note that the decoding scheme will also work when the received corrupted codeword y ∈
{1, 2, · · · , n}n is not a permutation but satisfies dH(π, y) ≤ e/4− 2, for some codeword π ∈ P .

In most cases, we take n as a multiple of 8 and then the decoding algorithm DP guarantees to
correct up to e/4 errors. In particular, the decoding algorithm can decode almost correctly when
the error does not exceed e/4 too much. This leads us to conjecture that the bound e/4 may not
be tight.

References

[1] J.C. Chang, R.J. Chen, T. Kløve and S.C. Tsai, Distance-preserving mappings from binary
vectors to permutations. IEEE Transactions on Information Theory, 49(4):1054-1059, Apr.
2003.

[2] W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge, U.K.: Cam-
bridge Univ. Press, 2003.

[3] T. Kløve, T.-T. Lin, S.-C. Tsai and W,-G. Tzeng, Permutation arrays under the Chebyshev
distance, IEEE Transactions on Information Theory, 56(6): 2611–2617, June 2010.

[4] Donakd E. Knuth, The Art of Computer Programming Volumn 3 : Sorting and Searching,
US : Addison Wesley Longman, second edition, 1998.

9

[5] T.-T. Lin, S.-C. Tsai,W.-G. Tzeng, Efficient Encoding and Decoding with Permutation Ar-
rays, Proceedings 2008 IEEE International Symposium on Information Theory, Toronto, On-
tario, Canada, July 2008, pp. 211-214.

[6] T.-T. Lin, S.-C. Tsai, H.-L. Wu, Simple Distance-Preserving Mapping from Ternary Vectors
to Permutations. IEEE Transactions on Information Theory, 54(7):3251-3256, Jul. 2008.

[7] A. J. H.Vinck and J.Häring, Coding and modulation for power-line communications, Proc.
Int. Symp. Power Line Communication Limerick, Ireland, April, 2000.

[8] A. J. H. Vinck, Coded modulation for powerline communications. Proc. Int. J. Electron.
Commun, 54(1): 45-49, 2000.

10

