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Abstract—An (n, d) permutation array (PA) is a subset ofSn

with the property that the distance (under some metric) between
any two permutations in the array is at least d. They became
popular recently for communication over power lines. Motivated
by an application to flash memories, in this paper the metric used
is the Chebyshev metric. A number of different constructions are
given as well as bounds on the size of such PA.

Index Terms—Permutation arrays, Chebyshev distance, flash
memory, code constructions, bounds

I. I NTRODUCTION

Let Sn denote the set of all permutations of lengthn. A
permutation array of lengthn is a subset ofSn. Recently,
Jiang et. al [5], [6] showed an interesting new application
of permutation arrays for flash memories, where they used
different distance metrics to investigate efficient rewriting
schemes. Under the multi-level flash memory model, we find
the metric induced by thel∞ norm very appropriate for
studying the recharging and error correcting issues. This metric
is known as the Chebyshev metric. We consider a noisy
channel where pulse amplitude modulation (PAM) is used with
different amplitude levels for each permutation symbol. The
noise in the channel is an independent Gaussian distribution
with zero mean for each position. The received sequence is
the original permutation distorted by Gaussian noise, and its
ranking can be seen as a permutation, which can be different
from the original one.

To study the correlations between ranks, several metrics on
permutations were introduced, such as the Hamming distance,
the minimum number of transpositions taking one permutation
to another, etc. [3], [7]. For instance, Stoll and Kurz [14]
investigated a detection scheme of permutation arrays using
Spearman’s rank correlation. Chadwick and Kurz [2] studied
the permutation arrays based on Kendall’s tau.

Under the model of additive white Gaussian noise (AWGN)
[4], there is a probability for any amplitude level to deviate
from the original one, which may yield a large Hamming
distance but with a rather small Chebyshev distance. Mean-
while, the original rank may still be in good shape even
after some perturbation. Observe that two permutations with a
large Hamming distance can actually have a small Chebyshev
distance and vice versa. They appear to complement each other
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in some sense. This inspired us to use the Chebyshev distance.
Technically, withl∞ norm, we find it is much easier to encode,
decode and estimate the sphere size of permutation arrays than
with the otherlp norms.

In this paper, we give a number of constructions of PAs. For
some we give efficient decoding algorithms. We also consider
encoding from vectors into permutations.

II. N OTATIONS

We use[n] to denote the set{1, . . . , n}. Sn denotes the set
of all permutations of[n]. For any setX , Xn denotes the set
of all n-tuples with elements fromX .

Let idn denote the identity permutation inSn. The Cheby-
shev distance between two permutationsπ, σ ∈ Sn is

dmax(π, σ) = max{|πj − σj | | 1 ≤ j ≤ n}.

An (n, d) permutation array (PA) is a subset ofSn with the
property that the Chebyshev distance between any two distinct
permutations in the array is at leastd. We sometimes refer to
the elements of a PA as code words.

The maximal size of an(n, d) PA is denoted byP (n, d).
Let V (n, d) denote the number of permutations inSn within
Chebyshev distanced of the identity permutation. Since
dmax(idn, σ) = dmax(π, πσ), the number of permutations in
Sn within Chebyshev distanced of any permutationπ ∈ Sn

will also beV (n, d). Bounds onP (n, d) andV (n, d) will be
considered in Sec. IV.

III. C ONSTRUCTIONS

In this section we give a number of constructions of PAs,
one explicit and some recursive.

A. An explicit construction

Let n andd be given. Define

C = {(π1, . . . , πn) ∈ Sn|πi ≡ i (mod d) for all i ∈ [n]}.

Theorem 1: If n = ad+ b, where0 ≤ b < d, thenC is an
(n, d) PA and

|C| = ((a+ 1)!)b(a!)d−b.

Proof: Let 1 ≤ m ≤ d andu = ⌊(n−m)/d⌋. Forπ ∈ C,
we see that(πm, πm+d, πm+2d, . . . , πm+ud) is a permutation
of the set{m,m+ d,m+2d, . . . ,m+ ud}. This set contains
(a + 1) elements if1 ≤ m ≤ b and so there are(a + 1)!
possible choices for(πm, πm+d, πm+2d, . . . , πm+ud) and all
can used. Similarly, there area! choices ifm > b. Hence the
total number of permutations inC is ((a+ 1)!)b(a!)d−b.

In particular, we get the following bound.
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Theorem 2: If n = ad+ b, where0 ≤ b < d, then

P (n, d) ≥ ((a+ 1)!)b(a!)d−b.

Example 1: For d = 2, we get

P (2a, 2) ≥ (a!)2.

We note that if2d > n, then a = 1 and b = n − d and
so |C| = 2n−d. If 2d = n, then a = 2, b = 0, and we
have |C| = 2d = 2n−d as well. However, if2d < n, then
|C| > 2n−d. Especially, whend is small relative ton, |C|
is much larger than2n−d. For example, forn = 30, d = 2,
|C|/2n−d ≈ 6.37× 1015.

This construction has a very simple error correcting algo-
rithm. For d ≥ 2t + 1, we can correct error up to sizet
in any coordinate. For coordinatei, the codeword has value
πi ≡ i (mod d). Suppose that this coordinate is changed into
σ = πi + u, where|u| ≤ t. Thenπi is the integer congruent
to i which is closest toσ. Therefore, decoding of positioni
is done by first computing

a ≡ i− σ (mod d),

where−(d − 1)/2 ≤ a ≤ (d − 1)/2. Thena = −u, and so
we decode intoσ + a = πi.

B. First recursive construction

Let C be an(n, d) PA of sizeM , and let r ≥ 2 be an
integer. We define an(rn, rd) PA, Cr, of sizeM r as follows:
for each multi-set ofr code words fromC,

(π
(j)
1 , . . . , π(j)

n ), j = 0, 1, . . . , r − 1,

let

ρj = (rπ
(j)
1 − j, . . . , rπ(j)

n − j), j = 0, 1, . . . , r − 1,

and include(ρ0|ρ1| . . . |ρr−1) as a codeword inCr. It is clear
that under this construction the distance between any two
distinct ρj, ρj′ is at leastrd. It is also easy to check that
(ρ0|ρ1| . . . |ρr−1) ∈ Srn. Hence|Cr| = M r. In particular, we
get the following bound.

Theorem 3: If n > d andr ≥ 2, then

P (rn, rd) ≥ P (n, d)r.

Proof: Let C be an (n, d) PA of size P (n, d). Then
the construction above gives an(rn, rd) PA of Cr. Hence
P (rn, rd) ≥ |Cr| = |C|

r = P (n, d)r.

C. Second recursive construction

For a permutationπ = (π1, π2, . . . , πn) ∈ Sn and an integer
m, 1 ≤ m ≤ n+ 1 define

ϕm(π) = (m,π′

1, π
′

2, . . . , π
′

n) ∈ Sn+1

by
π′

i = πi if πi ≤ m,
π′

i = πi + 1 if πi > m.

Let C be an(n, d) PA, and let

1 ≤ s1 < s2 < · · · < st ≤ n+ 1

be integers. Define

C[s1, s2, . . . , st] = {ϕsj (π) | 1 ≤ j ≤ t, π ∈ C}.

Theorem 4: If C is an (n, d) PA of sizeM and

sj + d ≤ sj+1 for 1 ≤ j ≤ t− 1,

thenC[s1, s2, . . . , st] is an (n+ 1, d) PA of sizetM .
Theorem 5: If C is an (n, d) PA of sizeM andn ≤ 2d,

thenC[d] is an (n+ 1, d+ 1) PA of sizeM .
Proof: If j > j′, then

dmax(ϕsj (π), ϕsj′ (σ)) ≥ sj − sj′ ≥ d.

Next, considerj′ = j. If π, σ ∈ C, π 6= σ, then w.l.o.g, there
exist ani such thatπi ≥ σi + d. Hence

dmax(ϕsj (π), ϕsj (σ)) ≥

{

πi − σi + 1 > d if πi > sj ≥ σi,
πi − σi ≥ d otherwise.

This proves Theorem 4. To complete the proof of Theorem 5
we note that

πi ≥ σi + d ≥ d+ 1 > d,

and
σi ≤ πi − d ≤ n− d ≤ d.

Henceπi > d ≥ σi and so

dmax(ϕsj (π), ϕsj (σ)) ≥ d+ 1.

The constructions imply bounds onP (n, d).
Theorem 6: If n > d ≥ 1, then

P (n+ 1, d) ≥
(⌊n

d

⌋

+ 1
)

P (n, d).

Proof: Let t = ⌊n/d⌋ + 1. Then (t − 1)d + 1 ≤ n + 1.
If C is an (n, d) PA of sizeP (n, d), then Theorem 4 implies
thatC[1, d+ 1, 2d+ 1, . . . , (t− 1)d+ 1] is an (n+ 1, d) PA
of size tP (n, d). HenceP (n+ 1, d) ≥ tP (n, d).

Example 2: In Example 1 we showed that the explicit con-
struction implied thatP (2a, 2) ≥ (a!)2. Combining Theorem
6 and search, we can improve this bound. We have found that
P (7, 2) ≥ 582, see the table at the end of the next section.
From repeated use of Theorem 6 we get

P (2a, 2) ≥ (a(a− 1) · · · 5)2 · 4P (7, 2) ≥
97

24
(a!)2.

Theorem 5 implies the following bound.
Theorem 7: If d < n ≤ 2d, then

P (n+ 1, d+ 1) ≥ P (n, d).

Proof: LetC be an(n, d) PA of sizeP (n, d). By Theorem
5, C[d] is an (n+ 1, d+ 1) PA of sizeP (n, d). Hence

P (n+ 1, d+ 1) ≥ |C[d]| = P (n, d).

Theorem 7 shows in particular that for a fixedr,

P (d+ 1 + r, d+ 1) ≥ P (d+ r, d) for d ≥ r. (1)

We will show that P (d + r, d) is bounded. We show the
following theorem.
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Theorem 8: For fixedr, there exist constantscr anddr such
thatP (d+ r, d) = cr for d ≥ dr. Moreover,

cr ≤ 22r (2r)! (2)

and
dr ≤ 1 + (2r − 1)cr − r. (3)

Remark. The main point of Theorem 8 is the existence of
cr anddr. The actual bounds given are probably quite weak in
general. For example, Theorem 8 gives the boundsc1 ≤ 8 and
d1 ≤ 8. In Theorem 9 below, we will show thatc1 = 3 and
d1 = 2. Theorem 8 givesc2 ≤ 384 andd2 ≤ 1151, whereas
numerical computation indicate thatc2 = 9 andd2 = 5.

We split the proof of Theorem 8 into three lemma.
Lemma 1: If d ≥ r, thenP (d+ r, d) ≤ 22r (2r)!.

Proof: Suppose that there exists an(d + r, d) PA C of
sizeM > 22r (2r)!. We call the integers

1, 2, . . . , r andd+ 1, d+ 2, . . . , d+ r

potent, the first r smaller potent, the last r larger potent.
Two potent integers are calledequipotent if both are smaller
potent or both are larger potent. If the distance between two
permutations(π1, π2, . . . , πn), (ρ1, ρ2, . . . , ρn) is at leastd,
then there exists some positioni such that, w.l.o.g,πi−ρi ≥ d,
Then πi is a larger potent element andρi is smaller potent.
Each permutation inSd+r contains2r potent elements and we
call the set of positions of these thepotency support χ(π) of
the permutation, that is, the potency support ofπ is

χ(π) = {i | 1 ≤ πi ≤ r} ∪ {i | d+ 1 ≤ πi ≤ d+ r}.

The potency support ofC is the union of the potency support
of the permutations inC, that is

χ(C) ={i | 1 ≤ πi ≤ r for someπ ∈ C}

∪ {i | d+ 1 ≤ πi ≤ d+ r for someπ ∈ C}.

Let π ∈ C. For eachρ ∈ C, ρ 6= π, we haved(π, ρ) ≥
d. Hence there exists somei ∈ χ(π) such thatρi is potent.
Therefore, the set

{(ρ, i) | ρ ∈ C and i ∈ χ(π)}

contains at least2r+(M − 1) > M elements. Hence there is
an i ∈ χ(π) such that

|{ρ ∈ C | ρi is potent}| > M/(2r) > 22r(2r − 1)!.

Since

{ρ ∈ C | ρi is potent} ={ρ ∈ C | ρi is smaller potent}

∪{ρ ∈ C | ρi is larger potent},

there exists a subsetC1 ⊂ C such that

|C1| > 22r−1(2r − 1)!

and the elements in positioni1 = i are equipotent.
We can now repeat the procedure. Letπ ∈ C1. There must

exist ani2 ∈ χ(π) \ {i1} such that

|{ρ ∈ C1 | ρi2 is potent}| ≥ |C1|/(2r − 1) > 22r−1(2r − 2)!.

Hence we get subsetC2 ⊂ C1 such that

|C2| > 22r−2(2r − 2)!

and the elements in positioni2 are equipotent (and the
elements in positioni1 are equipotent).

Repeated use of the same argument will produce for each
j, 1 ≤ j ≤ 2r a setCj such that

|Cj | > 22r−j (2r − j)!

and forj positionsi1, i2, . . . ij , the elements in those positions
are all equipotent. In particular,|C2r| > 1, all permutations
in C2r have the same potency support{i1, i2, . . . , i2r}, and
for each of these positions, all the elements in that position
are equipotent. This is a contradiction since the distance
between two such permutations must be less thand. Hence
the assumption that a PA of size larger than22r (2r)! exists
leads to a contradiction.

Lemma 1 combined with (1) proves the existence ofcr and
dr and gives the bound (2).

Lemma 2: If C is a (d+ r, d) PA of sizeM where

d > r andd+ r > |χ(C)|,

then there exists a(d−1+r, d−1) PA of sizeM . In particular,
if M = P (d+ r, d), then

P (d− 1 + r, d− 1) = P (d+ r, d).

Proof: Replace all elements in ranger + 1, r + 2, . . . , d
in the permutations ofC by a star ∗ which will denote
”unspecified”. The permutations inC is transformed into
vectors containing the potent elements andd−r stars. Note that
if we replace the unspecified elements in each vector by the
integersr+1, r+2, . . . , d in some order, we get a permutation,
and the distance between two such permutations will be at least
d since we have not changed the potent elements.

Since the lengthd + r of C is larger than|χ(C)|, there
exists a position where all the vectors contains a star. Remove
this position from each vector and reduce all the larger potent
elements by one. This given a set ofM vectors of length
d − 1 + r and such that the distance between any two is at
leastd − 1. Replacing thed − 1 − r stars in each vector by
r+1, r+1, . . . , d−1 in some order, we get a(d−1+r, d−1)
PA of sizeM .

If M = P (d+ r, d), then we get

P (d− 1 + r, d− 1) ≥ P (d+ r, d).

SinceP (d − 1 + r, d − 1) ≤ P (d + r, d) by (1), the lemma
follows.

Lemma 3: If C is a (d + r, d) PA of sizeM and d ≥ r,
then

|χ(C)| ≤M(2r − 1) + 1.

Proof: Each permutation has potency support of size2r.
The potency support of any two permutations inC must over-
lap since their distance is at leastd. Hence each permutation
after the first will contribute at most2r − 1 new elements to
the total potency support. Therefore,

|χ(C)| ≤ 2r + (M − 1)(2r − 1).
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Remark. By a more involved analysis, we can improve
this bound somewhat. For example, we see that two new
permutations can contribute at most4r−3 to the total support.

We can now complete the proof of Theorem 8. LetC be a
(d+r, r) code of sizecr. By Lemma 3,|χ(C)| ≤ cr(2r−1)+1.
If d > 1 + cr(2r − 1) − r, then d + r > |χ(C)|. Hence,
by Lemma 2,P (d − 1 + r, d − 1) = P (d + r, d). Therefore,
dr ≤ 1+cr(2r−1)−r, that is, (3) is satisfied. This completes
the proof of Theorem 8.

Theorem 9: We haveP (d+ 1, d) = 3 for d ≥ 2.
Proof: We use the same notation as in the proof of Lemma

2. Let C be an(d + 1, d) PA. The only potent elements are
1 andn. W.lo.g. we may assume the first permutation inC
is (1, n, ∗, ∗, . . .) where∗ denotes some unspecified integer in
the range2, 3, . . . , d. W.l.o.g, a second permutation has one
of three forms:

(n, 1, ∗, ∗, . . .), (n, ∗, 1, ∗, . . .), (∗, 1, n, ∗, . . .).

We see that if the second permutation is of the first form, there
cannot be more permutations. If the second permutation is of
the form (n, ∗, 1, ∗, . . .), then there is only one possible form
for a third permutation, namely(1, ∗, n, ∗, . . .). Hence we see
thatP (d+ 1, d) ≤ 3 and thatP (d+ 1, d) = 3 for d ≥ 2.

To determineP (d + r, d) along the same lines forr ≥ 2
seems to be difficult because of the many cases that have to be
considered. Even to determineP (d+2, d) will involve a large
number of cases. For example for the second permutation there
are 138 essentially different possibilities for the four positions
in the potency support of the first permutation. For each of
these there are many possible third permutations, etc.

D. Encoding/decoding of some PA constructed by the second
recursive construction

Suppose we start with the PA

Cd = {(1, 2, 3, . . . , d)}.

For ν = d, d+ 1, . . . , n− 1 let

Cν+1 = Cν [1, ν + 1].

Then Cn is an (n, d) PA of size 2n−d. For some applica-
tions, we may want to map a set of binary vectors to a
permutation array. One algorithm for mapping a binary vector
(x1, x2, . . . , xn−d) into Cn would be to use the recursive con-
struction ofCn by mapping(x1, x2, . . . , xi) into a permutation
π in Cd+i. Recursively, we can then map(x1, x2, . . . , xi, 0)
to ϕ1(π) and (x1, x2, . . . , xi, 1) to ϕd+i+1(π).

However, there is an alternative algorithm which requires
less work. Retracing the steps of the construction, we see
that given some initial part of length less thann − d of a
permutation inCn, there are exactly two possibilities for the
next element, one ”larger” and one ”smaller”. More precisely,
induction shows that if the initial part of lengthi− 1 contains
exactlyt ”smaller” elements, then element numberi is either
t+1 (the ”smaller”) orn− i+ t+1 (the ”larger”). This is the
basis for a simple mapping fromZn−d

2 to Cn. We give this
algorithm in Figure 1.

Input: (x1, . . . , xn−d) ∈ Zn−d
2

Output: (π1, . . . , πn) ∈ Cn

for i← n− d+ 1 to n do xi ← 0;
t← 0; //* t is the number of zeros seen so far.*//
for i← 1 to n do

if xi = 0
then {πi ← t+ 1; t← t+ 1;}
else{πi ← n− i+ t+ 1;}

Fig. 1. Algorithm mappingZn−d
2 to Cn

We see that the difference between the larger and the smaller
element in positioni ≤ n − d is n − i. Hence we can
recover from any error of size less than(n− i)/2 by choosing
the closest of the two possible values, and the corresponding
binary value. We give the decoding algorithm in Figure 2.

Input: (π1, . . . , πn) ∈ [n]n

Output: (x1, . . . , xn−d)
t← 0; //* t is number of zeros determined. *//
for i← 1 to n− d do

if πi < (n− i)/2 + t+ 1
then {xi ← 0; t← t+ 1;}
else{xi ← 1;}

Fig. 2. Decoding algorithm recovering the binary preimage from a corrupted
permutation inCn.

Without going into all details, we see that we can get a
similar mapping fromq-ary vectors. Now we start with the
PA

C(q−1)d = {(1, 2, 3, . . . , (q − 1)d)}.

For (q− 1)d ≤ ν ≤ n− 1 let sj = (j− 1)⌊ν/(q− 1)⌋+1 for
1 ≤ j ≤ q − 1 andsq = ν + 1. Let

Cν+1 = Cν [s1, s2, . . . , sq].

Then Cn is an (n, d) PA of size qn−(q−1)d. Encoding and
decoding correcting errors of size at most(d−1)/2, based on
the recursion, is again relatively simple.

IV. FURTHER BOUNDS ONP (n, d)

A. General bounds

Sincedmax(π, σ) ≤ n−1 for any two distinct permutations
in Sn, we haveP (n, n) = 1. Therefore, we only consider
d < n.

Since the spheres of radiusd in Sn all have sizeV (n, d),
we can get a Gilbert type lower bound onP (n, d).

Theorem 10: For n > d ≥ 2 we have

P (n, d) ≥
n!

V (n, d− 1)
.

Proof: It is clear that the following greedy algorithm pro-
duces a permutation array with cardinality at leastn!/V (n, d−
1).
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1) Start with any permutation inSn.
2) Choose a permutation whose distance is at leastd to all

previous chosen permutations.
3) Repeat step 2 as long as such a permutation exists.

Let C be the permutation array produced by the above greedy
algorithm. Once the algorithm stops,Sn will be covered by
the |C| spheres of radiusd− 1 centered at the code words in
C. Thusn! ≤ |P | · V (n, d− 1) which implies our claim.

Similarly, we get a Hamming type upper bound in the usual
way.

Theorem 11: If n > d ≥ 1, then

P (n, d) ≤
n!

V (n, ⌊(d− 1)/2⌋)
.

Proof: Let C be an (n, d) PA of size P (n, d). The
spheres of radius⌊(d − 1)/2⌋ around the permutations inC
are pairwise disjoint. The union of these spheres is a subset
of Sn. Hence

P (n, d)V (n, ⌊(d− 1)/2⌋) = |C|V (n, ⌊(d− 1)/2⌋) ≤ n!

and the bound follows.
If n ≤ 2d and d is even, we can combine the bound in

Theorem 11 with Theorem 7 to get the following bound which
is stronger than the ordinary Hamming bound, at least in the
cases we have tested.

Theorem 12: If d is even and2d ≥ n > d ≥ 2, then

P (n, d) ≤
(n+ 1)!

V (n+ 1, d/2)
.

Proof:

P (n, d) ≤ P (n+ 1, d+ 1) ≤
(n+ 1)!

V (n, d/2)
.

Example 3: For n = 11 andd = 6, Theorem 11 gives

P (11, 6) ≤

⌊

11!

V (11, 2)

⌋

=

⌊

11!

11854

⌋

= 3367

whereas Theorem 12 gives

P (11, 6) ≤

⌊

12!

V (12, 3)

⌋

=

⌊

12!

563172

⌋

= 850.

Remark. We can of course use Theorem 7 repeatedlyr times
and then Theorem 11 to get

P (n, d) ≤
(n+ r)!

V (n+ r, ⌊(d+ r − 1)/2⌋)

for all r ≥ 0. However, it appears we get the best bounds for
r = 1 whend is even andr = 0 whend is odd.

In general, no simple expression ofV (n, d) is known. A
survey of known results as well as a number of new results
on V (n, d) were given by Kløve [8]. See also Kløve [9] and
[10]. Here we briefly give some main results.

As observed by Lehmer [11],V (n, d) can be expressed as
a permanent. The permanent of ann× n matrix A is defined
by

perA =
∑

π∈Sn

a1,π1
· · · an,πn

.

In particular, ifA is a (0, 1)-matrix, then

perA = |{π ∈ Sn : ai,πi
= 1 for all i}|.

Let A(n,d) be then×n matrix with a
(n,d)
i,j = 1 if |i−j| ≤ d

anda(n,d)i,j = 0 otherwise.
Lemma 4: V (n, d) = perA(n,d).

Proof:

V (n, d) =|{π ∈ Sn : dmax(id, π) ≤ d}|

=|{π ∈ Sn : |πi − i| ≤ d for all i}|

=|{π ∈ Sn : a
(n,d)
i,πi

= 1 for all i}|

=perA(n,d).

For fixedd, V (n, d) satisfies a linear recurrence inn. A proof
is given in [13] (Proposition 4.7.8 on page 246). For1 ≤ d ≤ 3
these recurrences were determined explicitly by Lehmer [11],
and for 4 ≤ d ≤ 6 by Kløve [8]. In particular, this implies
that

lim
n→∞

V (n, d)1/n = µd,

where µd is the largest root of the minimal polynomial
corresponding to the linear recurrence ofV (n, d). Lehmer [11]
determinedµd approximately ford = 1, 2, 3 and Kløve [8] for
d ≤ 8.

For ann × n (0, 1)-matrix it is known (see Theorem 11.5
in [16]) that

perA ≤

n
∏

i=1

(ri!)
1/ri ,

whereri is the number of ones in rowi.
For A(n,d) we clearly haveri ≤ 2d+ 1 for all i. Hence

V (n, d) ≤ [(2d+ 1)!]n/(2d+1) for all n (4)

and
µd ≤ [(2d+ 1)!]1/(2d+1).

In Table I we giveµd and this upper bound.

TABLE I
µd AND ITS UPPER BOUND.

d µd [(2d+ 1)!]1/(2d+1) µd/(2d + 1)
1 1.61803 1.81712 0.53934
2 2.33355 2.60517 0.46671
3 3.06177 3.38002 0.43739
4 3.79352 4.14717 0.42150
5 4.52677 4.90924 0.41152
6 5.26082 5.66769 0.40468
7 5.99534 6.42342 0.39969
8 6.73016 7.17704 0.39589

We note that for larged, µd/(2d+ 1) ≈ 1/e ≈ 0.36788.
Combining Theorem 10 and (4) we get
Corollary 1: For n > d ≥ 1, we have

P (n, d) ≥
n!

[(2d− 1)!]n/(2d−1)
.
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Combining equations (33) and (34) in Kløve [8] we get the
following lower bound onV (n, d):

V (n, d) ≥
n! (2d+ 1)n

22d nn
. (5)

For d odd, (5) gives

V (n, ⌊(d− 1)/2⌋) = V (n, (d− 1)/2) ≥
n! dn

2d−1 nn
.

Combining this with Theorem 11 we get the following explicit
upper bound onP (n, d).

Corollary 2: For d odd andn > d ≥ 1, we have

P (n, d) ≤
2d−1nn

dn
.

Similarly, for d even, combining Theorem 11 and Theorem 12
with (5), we get the following.

Corollary 3: For d even andn > d ≥ 2, we have

P (n, d) ≤ min

{

2d−2nn

(d− 1)n
,
2d(n+ 1)n+1

(d+ 1)n+1

}

.

The bounds onV (n, d), both the upper and the lower, are
in most cases quite weak and so the bounds onP (n, d) also
become quite weak.

B. Table of bounds on P (n, d)

We have used the following greedy algorithm to find an
(n, d) PA C: Let the identity permutation inSn be the
first permutation inC. For any set of permutations chosen,
choose as the next permutation inC the lexicographically
next permutation inSn with distance at leastd to the chosen
permutations inC if such a permutation exists. The size of
the resulting PA is of course a lower bound onP (n, d).

The lower bounds in Table II were in most cases found by
this greedy algorithm. Forn = 8, d = 5, the greedy algorithm
gave a PA of size 26. However,

P (8, 5) ≥ P (7, 4) ≥ 28

by Theorem 7. Similarly,

P (10, 7) ≥ P (9, 6) ≥ P (8, 5) ≥ 28.

Some other of the lower bounds are also determined using
Theorem 7. They are marked by∗. The upper bound is the
Hamming type bound in Theorem 11 or it’s modified bound in
Theorem 12. SinceP (n, 1) = n! for all n, this is not included
in the table.

V. CONCLUSION

We give a number of constructions of permutations ar-
rays under the Chebyshev distance, some with efficient error
correction algorithms. We also consider an explicit mapping
of vectors to permutations with efficient encoding/decoding.
Finally, we give some bounds on the size of PAs under the
Chebyshev distance.

Tamo and Schwartz [15] independently considered this
problem and gave, among other results, a construction equiv-
alent to our first construction as well as some other construc-
tions.

TABLE II
BOUNDS ONP (n, d).

d = 2 d = 3 d = 4
n = d+ 1 3 3 3
n = d+ 2 6− 24 9 9− 12
n = d+ 3 29− 120 20− 34 28− 43
n = d+ 4 90− 720 84 − 148 68− 166
n = d+ 5 582 − 5040 401− 733 283− 4077

d = 5 d = 6 d = 7
n = d+ 1 3 3 3
n = d+ 2 9− 12 9− 18 9− 18
n = d+ 3 28∗ − 43 28∗ − 60 28∗ − 60
n = d+ 4 95 − 166 95∗ − 216 95∗ − 216
n = d+ 5 236− 714 236∗ − 850 236∗ − 850
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