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Abstract—An (n,d) permutation array (PA) is a subset of S,  in some sense. This inspired us to use the Chebyshev distance
with the property that the distance (under some metric) betveen  Technically, withi., norm, we find it is much easier to encode,

any two permutations in the array is at leastd. They became ac6ge and estimate the sphere size of permutation arrays th
popular recently for communication over power lines. Motivated .
with the otherl,, norms.

by an application to flash memaories, in this paper the metric sed ) i .
is the Chebyshev metric. A number of different constructiors are In this paper, we give a number of constructions of PAs. For
given as well as bounds on the size of such PA. some we give efficient decoding algorithms. We also consider

Index Terms—Permutation arrays, Chebyshev distance, flash encoding from vectors into permutations.
memory, code constructions, bounds
Il. NOTATIONS

[. INTRODUCTION We use[n] to denote the sefl,...,n}. S, denotes the set

Let S,, denote the set of all permutations of length A of all permutations ofn]. For any setX, X" denotes the set
permutation array of length is a subset ofS,. Recently, ©f all n-tuples with elements fronX'.
Jiang et. al [5], [6] showed an interesting new application L€t id, denote the identity permutation if},. The Cheby-
of permutation arrays for flash memories, where they uséfev distance between two permutations € .5y, is
different distance metrics to investigate efficient rewgt
schemes. Under the multi-level flash memory model, we find
the metric induced by thé., norm very appropriate for An (n,d) permutation array (PA) is a subset.8f with the
studying the recharging and error correcting issues. Tlisio1 property that the Chebyshev distance between any two distin
is known as the Chebyshev metric. We consider a noiggrmutations in the array is at leaktWe sometimes refer to
channel where pulse amplitude modulation (PAM) is used withe elements of a PA as code words.
different amplitude levels for each permutation symboleTh The maximal size of arin,d) PA is denoted byP(n,d).
noise in the channel is an independent Gaussian distributicet V' (n,d) denote the number of permutations$p within
with zero mean for each position. The received sequenceGhebyshev distancel of the identity permutation. Since
the original permutation distorted by Gaussian noise, &d il (id,, o) = dyax(7, 7o), the number of permutations in
ranking can be seen as a permutation, which can be differght within Chebyshev distancé of any permutationr € S,,
from the original one. will also be V' (n, d). Bounds onP(n,d) andV (n,d) will be

To study the correlations between ranks, several metrics eansidered in Sec. IV.
permutations were introduced, such as the Hamming distance
the minimum number of transpositions taking one permutatio
to another, etc. [3], [7]. For instance, Stoll and Kurz [14] _ ) ) )
investigated a detection scheme of permutation arraysgusin I this section we give a number of constructions of PAs,
Spearman’s rank correlation. Chadwick and Kurz [2] studi¢d® explicit and some recursive.
the permutation arrays based on Kendall's tau.

Under the model of additive white Gaussian noise (AWGNA. An explicit construction
[4], there is a probability for any amplitude level to dewat
from the original one, which may yield a large Hamming
distance but with a rather small Chebyshev distance. Mear? = {(r1,...,m,) € Su|m =4 (mod d) for all i € [n]}.
while, the original rank may still be in good shape even )
after some perturbation. Observe that two permutations avit 1heorem 1. If n = ad + b, where0 < b < d, thenC'is an

Amax(m,0) = max{|m; —o;| | 1 < j < n}.

Ill. CONSTRUCTIONS

Let n andd be given. Define

large Hamming distance can actually have a small Chebysr{@vd) PA and
distance and vice versa. They appear to complement eaah othe 10 = ((a + 1)) (a))?",
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Theorem 2: If n = ad + b, where0 < b < d, then be integers. Define

P(n,d) > ((a + 1)!)b(a!)d7b. Cls1,82,...,8:) = {ps,(m) [ 1 < j <t, me C}.
Example 1: Ford = 2, we get Theorem 4: If C'is an(n,d) PA of size M and
P(2a,2) > (a))?. si+d<sjpforl<j<t—1,

We note that if2d > n, thena = 1 andb = n — d and thenC(sy, s2,...,s:] is an(n + 1,d) PA of sizetM.
so|C| = 274 If 2d = n, thena = 2, b = 0, and we  Theorem5: If C is an(n,d) PA of size M andn < 2d,
have |C| = 2¢ = 27~¢ as well. However, if2d < n, then thenC|d] is an(n + 1,d + 1) PA of size M.

|C| > 29, Especially, whend is small relative ton, |C| Proof: If j > 4/, then
is much larger thare”—<. For example, fom = 30,d = 2,
|C]/2"~" ~ 6.37 x 105, o (s, (7), s, (0)) = 85 = 57 2 d.

This construction has a very simple error correcting alg®ext, considerj’ = j. If ©,0 € C, © # o, then w.l.o.g, there
rithm. For d > 2t 4+ 1, we can correct error up to size exist ani such thatr; > o; + d. Hence

in any coordinate. For coordinate the codeword has value .
{ m—o;+1>d if 7Ti>8j20i,

7; =i (mod d). Suppose that this coordinate is changed ini@,.. (s, (7), ¢s, (o)) > o> d otherwise.

o = m; + u, where|u| < t. Thenm; is the integer congruent
to 7 which is closest tar. Therefore, decoding of position This proves Theorem 4. To complete the proof of Theorem 5
is done by first computing we note that

>0 +d>d+1>d,
a=i—o0 (mod d), iz ot *

d
where—(d —1)/2 < a < (d —1)/2. Thena = —u, and so an

. o, <m—d<n-—d<d.
we decode inter + a = ;.
Hencer; > d > o; and so
B. First recursive construction Aenax (@5 (1), s (0)) = d+ 1
J ? J — )

Let C be an(n,d) PA of size M, and letr > 2 be an -
integer. We dgflne atrn,rd) PA, C,, of size M" as follows: The constructions imply bounds dR(n, d).
for each multi-set of- code words fronC, i
Theorem 6: If n > d > 1, then

(ﬂj),---ﬂﬂ(lj))aj:0’1""’T_1’ P(n+1,d) > QgJ +1) P(n,d).

let
G G Proof: Lett = |n/d| +1. Then(t —1)d+1 < n+ 1.
pj = (rmy” =g, orm?) =), =0,1,...,r =1, If C'is an(n,d) PA of size P(n,d), then Theorem 4 implies
and include(po|p1| . .. |p,_1) as a codeword itt,. It is clear HatC[ld+1,2d+1,....(t ~1)d+1]is an(n+1,d) PA

that under this construction the distance between any t\%SizetP("’_d)' HenceP(n +1,d) > tP(n,d). - n
distinct p;, p; is at leastrd. It is also easy to check that Example2: In Example 1 we showed that the explicit con-

(polp1- .- |pr_1) € Srn. Hence|C,| = M. In particular, we struction implied thatP(2a,2) > (a!)?. Combining Theorem
get the following bound. 6 and search, we can improve this bound. We have found that

Theorem 3: If n > d andr > 2, then P(7,2) > 582, see the table at the end of the next section.
- From repeated use of Theorem 6 we get
P(rn,rd) > P(n,d)". 97
_ P(2a,2) > (a(a —1)---5)2 -4 P(7,2) > —(a!)%
Proof: Let C' be an(n,d) PA of size P(n,d). Then 24
the construction above gives dnn,rd) PA of C,. Hence  Theorem 5 implies the following bound.
P(rn,rd) > |C,| = |C|" = P(n,d)". B Theorem7: If d < n < 2d, then

P(n+1,d+1) > P(n,d).

Proof: Let C be an(n, d) PA of sizeP(n, d). By Theorem
5,C[d] isan(n+1,d+ 1) PA of size P(n,d). Hence

P(n+1,d+1) > |C[d]| = P(n,d).

C. Second recursive construction

For a permutationr = (71,72, ..., m,) € S, and an integer
m, 1 <m <n+1 define

Spm(ﬂ) = (maﬂllawéa s aﬂ—:z) € Sn+1
by _ . : -
= it T, <m, Theorem 7 shows in particular that for a fixed
mo=m+1 i m>m. P(d+14+rd+1)>Pd+rdford>r. (1)
Let C be an(n, d) PA, and let We will show that P(d + r,d) is bounded. We show the

1<s1<s9<--<s;<n+1 following theorem.



Theorem 8: For fixedr, there exist constants andd,. such Hence we get subsét; C C; such that
that P(d d) = ¢, for d > d,. Moreover, _
(d+rd)=c = Cy] > 227~2(2r — 2)!

< 2% (2r)! . . :
er < 27 (2r) 2) and the elements in positiot, are equipotent (and the
and elements in positior; are equipotent).
dr <1+ (2r —1)e, — - ©) Repeated use of the same argument will produce for each

J, 1 < j < 2r asetC; such that
Remark. The main point of Theorem 8 is the existence of

. . . 2r—j .
¢, andd,.. The actual bounds given are probably quite weak in C5] > 27777 (2r — j)!
general. For example, Theorem 8 gives the bounds 8 and o for; positionsiy , is, . . .i;, the elements in those positions

dy < 8. In Theorem 9 below, we will show that = 3 and 5.0 5y ‘equipotent. In particulaf(y,| > 1, all permutations
dy = 2.. Theorem 8 _glve.s;:Q.S 384 andd, < 1151, whereas ;, Cs, have the same potency suppéit, i, . . ., iz}, and
numerical computation indicate thaf = 9 andd, = 5. for each of these positions, all the elements in that pasitio
We split the proof of Theorem 8 into tr;ree lemma. are equipotent. This is a contradiction since the distance
Lemma 1: If d > r, thenP(d +r,d) < 27" (2r)!. between two such permutations must be less #hahlence
Proof: Suppose that there exists &+, d) PA C of he assumption that a PA of size larger tHz (2r)! exists

size M > 22" (2r)!. We call the integers leads to a contradiction. -
1,2,...randd+1,d+2,....d+r Lemmg 1 combined with (1) proves the existence,0énd
d, and gives the bound (2).
potent, the first smaller potent, the lastr larger potent. Lemma 2: If Cis a(d + r,d) PA of size M where

Two potent integers are callesfjuipotent if both are smaller
potent or both are larger potent. If the distance between two
permutations(my, ma, ..., ™), (p1,p2,...,pn) iS @t leastd, then there exists &l—1+r,d—1) PA of sizeM. In particular,
then there exists some positiosuch that, w.l.o.gri—p; > d, it M = P(d + r, d), then

Thenr; is a larger potent element and is smaller potent.

Each permutation it$,,, contains2r potent elements and we Pd—-1+rd—-1)=P(d+rd).

call the set of positions of these tipetency support x () of

d>randd+r > |x(C)],

h : hat is. th & Proof: Replace all elements in ranget+ 1,7+ 2,....d
the permutation, that Is, the potency supportra in the permutations ofC by a starx which will denote
(@) ={i|1<m<riufi|ld+1<m <d+r}. "unspecified”. The permutations i’ is transformed into

vectors containing the potent elements addr stars. Note that
The potency support of' is the union of the potency supportif we replace the unspecified elements in each vector by the
of the permutations ir”, that is integers-+1,7+2,...,d in some order, we get a permutation,
(C) ={i | 1 < m; < r for somer € C} Snc_i the distance between two such permutations will be stt lea

since we have not changed the potent elements.
U{ild+1<m <d+rfor somer € C}. Since the lengthi + r of C' is larger than|x(C)|, there

exists a position where all the vectors contains a star. Remo
this position from each vector and reduce all the largermgote
elements by one. This given a set 8f vectors of length
d — 1+ r and such that the distance between any two is at
{(p,i) | p€ C andi € x(m)} leastd — 1. Replacing thed — 1 — r stars in each vector by

. r+1,r+1,...,d—1in some order, we get@—1+r,d—1)
contains at leas?r + (M — 1) > M elements. Hence there iSpa of size /.

Let 7 € C. For eachp € C, p # w, we haved(w,p) >
d. Hence there exists somec x(m) such thatp; is potent.
Therefore, the set

ani € x(m) such that If M = P(d+r,d), then we get
[{p € C'| pi is poten}| > M/(2r) > 22" (2r — 1) P{d—1+rd—1)> P(d+rd).
Since SinceP(d — 1+ r,d—1) < P(d+ r,d) by (1), the lemma
follows. [ |

e C| p; is potent ={p € C | p; is smaller pote . )
1% piisp G e poterjt Lemma 3: If Cis a(d + r,d) PA of size M andd > r,

U{p € C'| p; is larger potert, then
there exists a subsét; C C such that IX(O) < M(2r —1) + 1.
ICh] > 221 (2r — 1) Proof: Each permutation has potency support of size
The potency support of any two permutationglirmust over-
and the elements in position = i are equipotent. lap since their distance is at leaktHence each permutation
We can now repeat the procedure. ket C;. There must after the first will contribute at mostr — 1 new elements to
exist anis € x(m) \ {¢1} such that the total potency support. Therefore,

{p € C1 | pi, is potent| > |Cy|/(2r — 1) > 22"~ 1(2r — 2)I. Ix(C)] < 2r + (M —1)(2r —1).



n
Remark. By a more involved analysis, we can improPut: (z1,...,2n—q) € z5~¢
this bound somewhat. For example, we see that two n&WtPUt: (m1,...,mn) € Cn
permutations can contribute at mdst—3 to the total support.  for i <~ n—d+1ton doz; < 0;
We can now complete the proof of Theorem 8. ebe a ¢ <= 0; //* t is the number of zeros seen so far.*//
(d+r,r) code of size,,.. By Lemma 3)x(C)| < ¢, (2r—1)+1.  for i« 1tondo

If d >1+c¢-(2r—1)—r, thend +r > |x(C)|. Hence, if 2, =0
by Lemma 2,P(d — 1 +r,d — 1) = P(d + r,d). Therefore, then {m; ¢ +1; ¢t 1+ 1}
d, < 1+4c¢.(2r—1)—r, thatis, (3) is satisfied. This completes else{m <~n—i+t+1;}

the proof of Theorem 8.
Theorem 9: We haveP(d + 1,d) =3 for d > 2. _ _ . .
Proof: We use the same notation as in the proof of Lemnfdg- 1. Algorithm mappingZ;—“ to Cin
2. Let C be an(d + 1,d) PA. The only potent elements are
1 andn. W.lo.g. we may assume the first permutationCin !
is (1,n, #, %, ...) wherex denotes some unspecified integer in We see that the difference between the larger and the smaller
the range2, 3, ...,d. W..o.g, a second permutation has onE/€MeNt in positioni < n —d is n —i. Hence we can
of three forms: recover from any error of size less than—)/2 by choosing
' the closest of the two possible values, and the correspgndin
(ny 1,5, o), (nyk, 1ok o), (6, 1, nykg L) binary value. We give the decoding algorithm in Figure 2.

We see that if the second permutation is of the first form.ghey, - (71, ... 7n) € 0]
cannot be more permutations. If the second permutation isg tput: (z1, ..., %n_q)
the form(n, x, 1, ,...), then there is only one possible form , 0: //* t is number of zeros determined. *//
for a third permutation, namelft, x, n, *,...). Hence we see 5. v . 1 to n — d do
that P(d + 1,d) < 3 and thatP(d + 1,d) =3 ford>2. = if < (n—i)/2+t+1

To determineP(d + r,d) along the same lines far > 2 then {z; < 0t « ¢ +1;}
seems to be difficult because of the many cases that have to be 4|5 (z: 1)
considered. Even to determid¥d+ 2, d) will involve a large
number of cases. For example for the second permutatioa ther
?re 138 essentially different pos_3|b|I|t|es for the fousiions Fig. 2. Decoding algorithm recovering the binary preimagenfa corrupted
in the potency support of the first permutation. For each gérmutation inC,.
these there are many possible third permutations, etc.

Without going into all details, we see that we can get a

D. Encoding/decoding of some PA constructed by the second similar mapping fromg-ary vectors. Now we start with the
recursive construction PA o 193 Nd
Suppose we start with the PA (-pa = {128, (= D).
For(¢—1)d<v<n-1lets;=(j—1)|v/(¢g—1)|+1 for
Ca={1,2,3,...,d)}. 1<j<q—1ands, =v+1. Let

Forv=d,d+1,....,n—1let Cyi1=Cyls1,82,...,8]

Cor = Co[lv +1]. Then C,, is an (n,d) PA of size ¢"~(¢~14, Encoding and
Then C,, is an (n,d) PA of size 2", For some applica- decoding correcting errors of size at mogt- 1)/2, based on

tions, we may want to map a set of binary vectors to € recursion, is again relatively simple.
permutation array. One algorithm for mapping a binary vecto

(z1,x2,...,2,_q) into C,, would be to use the recursive con- IV. FURTHER BOUNDS ONP(n,d)
struction ofC,, by mapping(x1, zo, . . ., ;) into a permutation A. General bounds
7 in Cy4;. Recursively, we can then map., zo,...,x;,0)

Sincednyax(m, o) < n—1 for any two distinct permutations
to p1(m) and (21, 22, ..., i, 1) 10 @arit (m). , _in S, we haveP(n,n) = 1. Therefore, we only consider
However, there is an alternative algorithm which requires _ .-

less work. Retracing the steps of the construction, we seegiyce the spheres of radidsin S, all have sizeV (n, d)
that given some initial part of length less th@p_—_ dofa e can get a Gilbert type lower bound dt{(n, d).
permutation inC,, there are exactly two possibilities for the  thaorem 10 Forn > d > 2 we have

next element, one "larger” and one "smaller”. More pregisel |
n

induction shows that if the initial part of length- 1 contains Pn,d) > ———.
exactlyt "smaller” elements, then element numhds either V(n,d—-1)
t+1 (the "smaller”) orn —i+t+ 1 (the "larger”). This is the Proof: It is clear that the following greedy algorithm pro-

basis for a simple mapping frorﬁ;“d to C,. We give this duces a permutation array with cardinality at leasti (n, d—
algorithm in Figure 1. 1).



1) Start with any permutation if,,. In particular, if A is a (0, 1)-matrix, then

2) Choose a permutation whose distance is at léastall )
previous chosen permutations. perA = [{m € Sy : i, =1 for all i}|.

3) Repeat step 2 as long as such a permutation exists.

, Let A9 be then x n matrix with a'™? = 1if |i—j| < d
Let C be the permutation array produced by the above greedXd (D) _ ) otherwi 7
algorithm. Once the algorithm stopS,, will be covered by anda, ; N OINerwise. (n.d)
the |C'| spheres of radiug — 1 centered at the code words in -€MMa 4 V(n,d) = perAT™.
C. Thusn! < |P|-V(n,d — 1) which implies our claim. m Proof:
WaSylmllarIy, we get a Hamming type upper bound in the usual V(n,d) =|{r € Sy, : dmax(id, 7) < d}|
Theorem 11: If n > d > 1, then =|{m € Sn : |m —i| < d for all i}|
nl =|{r € S :al™? =1 for all i}|
P(n,d) < . o
(n,d) < V(n, [(d—1)/2]) =per A4,
Proof: Let C' be an (n,d) PA of size P(n,d). The -

spheres of radiug(d — 1)/2] around the permutations i@ oy fixedd, V (n, d) satisfies a linear recurrencesin A proof
are pairwise disjoint. The union of these spheres is a SUb%eéiven in [13] (Proposition 4.7.8 on page 246). Fog d < 3
of S,. Hence these recurrences were determined explicitly by Lehme}; [11

Pln,d)V(n, |(d —1)/2]) = |C|V(n, [(d — 1)/2]) < n! and for4 < d < 6 by Klgve [8]. In particular, this implies
N that
and the bound follows. [ ] lim V(n, Y = pg,

If n < 2d andd is even, we can combine the bound in n—o0
Theorem 11 with Theorem 7 to get the following bound whictvhere 11, is the largest root of the minimal polynomial
is stronger than the ordinary Hamming bound, at least in t@erresponding to the linear recurrencén, d). Lehmer [11]

cases we have tested. determined., approximately ford = 1, 2, 3 and Klgve [8] for
Theorem 12: If d is even an®d > n > d > 2, then d< 8.
(n+1)! For ann x n (0,1)-matrix it is known (see Theorem 11.5
P(n,d) < Vint1,d/2) in [16]) that .
Proof: perd < JJ(r:H)"/™,
(n+1)! =t
P(n,d) < P(n+1,d+1) < V(n,d/2) wherer; is the number of ones in row
. For A(™4) we clearly have; < 2d + 1 for all i. Hence
Example 3: Forn = 11 andd = 6, Theorem 11 gives V(n,d) < [(2d +1)]"/@4D for all n (4)
11! 11!
< = = and
P(1,6) < {V(11,2)J {11854J 3367

pa < [(2d + 1)1/ @d+D),
whereas Theorem 12 gives

12! 12!
P(11,6) < - = 850.
(11,6) < {V(12,3)J {563172J

Remark. We can of course use Theorem 7 repeateiiiyes
and then Theorem 11 to get

In Table | we giveuy and this upper bound.

TABLE |
q AND ITS UPPER BOUND

| d K [(2d + DY CIFD T /(2 + 1)
P(n,d) < (n+7)! T [ 1.61803 T.R1712 0.53931
3 —
Vintrlder—1)/2 2 | 2.33355 2.60517 0.46671
(ntr(d+ )/2]) 3 | 3.06177 3.38002 0.43739
for all » > 0. However, it appears we get the best bounds for 4 | 3.79352 4.14717 0.42150
r =1 whend is even and- = 0 whend is odd 5 | 4.52677 4.90924 0.41152
' 6 | 5.26082 5.66769 0.40468
: . - 7 | 5.99534 6.42342 0.39969
In general, no simple expression &f(n,d) is known. A 8 | 673016 7 17704 0.39589

survey of known results as well as a number of new results

on V(n,d) were given by Klgve [8]. See also Klgve [9] and

[10]. Here we briefly give some main results. We note that for large, 1q/(2d 4+ 1) ~ 1/e ~ 0.36788.
As observed by Lehmer [11}/(n,d) can be expressed as Combining Theorem 10 and (4) we get

a permanent. The permanent of arx n matrix A is defined  Corollary 1: Forn > d > 1, we have

by

n!

[(2d — 1)/ D

perd = Z 1,y * Oy - P(n,d) >
TESn



Combining equations (33) and (34) in Klgve [8] we get the
following lower bound onV (n, d):

V(n,d) > % (5)
For d odd, (5) gives
Vi L(d=1)/2)) = Vo, (d = 1)/2) > oo

Combining this with Theorem 11 we get the following explicit
upper bound orP(n, d).
Corollary 2: For d odd andn > d > 1, we have

2d71nn

dn
Similarly, for d even, combining Theorem 11 and Theorem 12
with (5), we get the following.

Corollary 3: For d even andh > d > 2, we have

2d—2nn 2d(n+ 1)n+1

(d—1)" (d+ 1)t
The bounds orl/(n,d), both the upper and the lower, are [3]

in most cases quite weak and so the bounds’¢n, d) also y
become quite weak. {5}

P(n,d) <

(1]
(2]

P(n,d) < min{

B. Table of bounds on P(n,d) [6]

We have used the following greedy algorithm to find an
(n,d) PA C: Let the identity permutation inS, be the 7
first permutation inC. For any set of permutations chosen,
choose as the next permutation @i the lexicographically [&
next permutation inS,, with distance at leasf to the chosen
permutations inC' if such a permutation exists. The size of[9]
the resulting PA is of course a lower bound Bn, d).

The lower bounds in Table Il were in most cases found hyg;
this greedy algorithm. Fon = 8, d = 5, the greedy algorithm
gave a PA of size 26. However,

P(8,5) > P(7,4) > 28

[11]

[12]
by Theorem 7. Similarly,

P(10,7) > P(9,6) > P(8,5) > 28. [13]

Some other of the lower bounds are also determined usi[r%é]
Theorem 7. They are marked by The upper bound is the
Hamming type bound in Theorem 11 or it's modified bound iR5I
Theorem 12. Sincé(n, 1) = n! for all n, this is notincluded |44
in the table.

V. CONCLUSION

We give a number of constructions of permutations ar-
rays under the Chebyshev distance, some with efficient error

TABLE Il
BOUNDS ONP(n,d).

d=2 d=3 d=4
n=d+1 3 3 3
n=d+2 6—24 9 9—12
n=d+3]| 29-120 20 — 34 28 — 43
n=d+4| 90—720 84 —148 68— 166
n=d+5 | 582 —5040 401 — 733 283 — 4077

d=5 d=6 d=717
n=d+1 3 3 3
n=d+2| 9-12 9—18 9—18
n=d+3| 28 —43  28* —60 28* — 60
n=d+4| 95—-166 95* —216  95* — 216
n=d+5 |23 —714 236" —850 236* — 850
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