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Abstract—A frequency permutation array (FPA) of length ~ Z3 to S}. Most of those encodirigschemes are efficient but
n = mA and distanced is a set of permutations on a multiset there are only a few efficient decoding algorithms. Swart and
over m symbols, where each symbol appears exactly times pqrrairg [14] gave a decoding algorithm for an application

and the distance between any two elements in the array is at i icati Liet al [11 d
least d. FPA generalizes the notion of permutation array. In ©n POWer line communication. Liet al. [11] proposed a

this paper, under the Chebyshev distance, we first prove lowe couple of novel constructions with efficient encoding and
and upper bounds on the size of FPA. Then we give several decoding algorithms for PAs undéy, ... FPA was proposed

constructions of FPAs, and some of them come with efficient by Huczynska and Mullen [5] as a generalization of PA. They

encoding and decoding capabilities. Moreover, we show ond 0 g4y several constructions of FPA under Hamming distance
our designs is locally decodable, i.e., we can decode a megsa db d th . .

bit by reading at most A + 1 symbols, which has an interesting @10 POUNGS 0N thé maximum array Size. _
application to private information retrieval. Recently, researchers have found that PAs have applica-

tions in areas such as power line communication (e.g. [12],
[18], [19] and [20]), multi-level flash memories (see [6] and
[7], [15]). Similar to the application of PAs on power line
communication, we can encode a message as a frequency
permutation froms;). Then the message is transmittedias

FSK? signals. The nature of frequency permutations provides
higher information rate without losing immunity to impulse

. . noise and permanent frequency disturbaheasntioned in

In 1965, Slepian [13] considered a code of length Vinck's work[20].

for permutation modulation. It consists of all permutation For flash memory applications, different from the approach

Index Terms—Frequency permutation array, Permutation
arrays, Chebyshev distance, Permanent, Locally decodabtmde

|. INTRODUCTION

A1 Am
on the muItiset{’_/uh _ -h\-,ul, . ,/_/um, T i)} where; < by Jianget al. [6], [7], we can use FPA to provide multi-
o < -0 < fim @nd A 4 Ao + - 4+ A = n. In this level flash memory with error correcting capabilities. For
m m .

paper, we consider a special case of Slepian's code. [E¥@MPle, suppose a multi-level flash memory, where each
=12 =2, pm=mandA; = Ao = - = A\ = A cell hasm states, which can be changed by injecting or

Let S} be the set of all permutations on the multisgi€moving charge into or from it. Over injecting or charge
A A\ leakage will alter the state as well. We can use the charge
{’_'1 "1 M}. A frequency permutation array ranks ofn cells to represent a permutation frasy, i.e., the

(FPA) is a subset o’ for some positive integers:, A and cells with the lowest\ charge levels represent symbol 1, and
n=m\ A (\n d)-FnPA is a subset o> and the aistance so on. With our efficient encoding and decoding algorithms,

between any pair of distinct permutations is at leasinder & (A,7,d)-FPA can be used in a flash memory system to
any metric, such as Hamming distance, Chebyshev distafiggresent information and correct errors caused by charge

dmav, €tC. A permutation array (PA) is simply a specia€ve! fluctuation. -
case of an FPA by choosiny = 1. With a fixed length A locally decodable code has an extremely efficient decod-

n, an FPA has a smaller set of symbols than a PA. Thd89 for any message bit by reading at most a fixed number

codes with FPA have a better information rate than tho§ Symbols from the received word. Suppose that a FPA is

with PA. A widely adopted approach to building PAs unde®Pplied to a multi-level flash memory where the length of

Hamming distance, see for example [3], is using distance-

preserving mappings or distance-increasing mappings fromwe consider only encoding and decoding schemes for erroeatorg
codes in this paper. Some other works, such as Babaev's ¢hisider
encoding as computing the binary representation for sommaytation, and
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a codeword is nearly a block of cells (abalii®)[2]. This  dmax(T,y) = dmax(I), 7t oy) < d, sincer toy € Z.
feature allows us to retrieve the desired message bits frofthile for ¥’ € Y, dimax(T,Y') = dmax (I}, 771 0 y') > d.
a multi-level flash without accessing the whole block. Witfrherefore, onlyY'| = |Z| = V.. (A, n, d) permutations inS;)
the locally decodable property, we can raise the robustness d-close tox. [ ]
of the code without loss of efficiency. On the other han
locally decodable codes have been under study for years,(iggorem L
[16] for a survey and [21], [4] for recent progress. They are || |Sh|
related to a cryptographic protocol callpdvate information m < Foo(Am,d) < m'
retrieval (PIR for short). TR 2

In this paper, we extend the ideas in [10] and [11] to Proof: To prove the lower bound, we use the fol-
constructing FPAs undet,,... In section Il, we prove lower lowing algorithm to generate &\, n,d)-FPA with size >
and upper bounds on the maximum cardinality of FPAs. We _[54]
derive Gilbert type and sphere packing bounds by boundir‘(q(’\’”’d_l)'
size of balls under Chebyshev distance in subsection II-A. 1) C«0,D <_.Sr’>-
Moreover, we give several constructions to obtain some?2) Add an arbitraryz < D to C, then remove all
lower bounds, see subsection 11-B. In section Ill, we show  Permutations that igd — 1)-close toz from D.
a pair of efficient encoding and decoding algorithms for 3) If D # () then repeat step 2, otherwise outylt
FPAs constructed in a simple manner. In addition, we shal has initially |S}| elements and each iteration of step 2
that they are locally decodable codes undgf.x. As a removes at most (A, n,d — 1), so we concluddC| >
consequence, the construction of FPA can also be used {/or /|\53 |d -
constru_ctlng. PIR. ml\(ldvxf we)turn to the upper bound. Considefan, d)-FPA

Nota_tlons. Let n = mA throughout the paper unless state%,* with the maximum cardinality. Any twnglj-radius
otherw'lse. We usgn] to represent the Sf{ﬂ’ n '.’n}' Lete; halis centered at distinct permutationsGri do not have any
be thei-th entry of vectore. For two k-dimensional vectors
x andy, let dyax(x,y) = max;ep |2; — yi|. We say two

common permutation, since the minimum distancel.idn
. . other words, thq%J-radius balls centered at permutations
permutationse andy ared-close to each other under metric . o i
() if d(,y) < d. The identty permutationl} in S in C* are all disjoint. We havéC™| < == a7y ®

A
1551

It is clear that|S}| = 2. It is already known that
: —— 1 (A . .
is (1,...,1,....,mm,...,m). Form = (p1,...,pn) € S, Vi (1,n,d) equals the permanent of some special matrix
and an-dimensional vectoee = (z1,...,7,), we define [11]. In this paper, we generalize previous analysis to give
mox = (Lp,Tp,,...,%p,) and 7t ox = I!. For asymptotic bounds for Theorem 1. The permanent of am

example,(2,1,5,3,4,6) 0 (1,1,2,2,3,3) = (1,1,3,2,2,3) matrix A = (a, ;) is defined as
and(2,1,5,3,4,6)"1 = (2,1,4,5,3,6).

[I. LOWER AND UPPER BOUNDS per(4) = ; lj[la”

Let Fo(\,n,d) be the cardinality of the maximum ’
()\,nid)-FPA and V. (A, n,d) be th? number of elementspefine a symmetricv x n matrix AA™d) = a%m@) ,
in S7 being d-close to the identityl; underd,.,. In this (An,d) S j ) (A,n,li)
section, we first give a Gilbert type lower bound and wherea; ;7 = 1, if HX] -5 < d; elsea;; N 0.
sphere packing upper bound df (A, 7,d) by bounding Note that .a QS.rnrr;L)Jtatlorﬁxl,...,zn) |§ d-close to I if
Vao(A,n,d). Then we generalize the method in [10] t#nd only “;Oii,m'a = 1 for everyi & [n]. Now we
obtain several constructions that yields some inequalite consider AXA™4). Since the\ copies of a symbol are
bounding the cardinality of FPAs. considered identical while computing the distance and the

entries indexed front/A — X+ 1) to ¢X of I3, represent the
same symbol for ever§ € [m], it implies that romM/A—A+1)
through row?\ of AXA™4) are identical and so are columns
indexed from(¢/\ — A + 1) to £\ for every?¢ € [m]. Thus,
we haveAMAmd) — A(Lm.d) @ 1, where® is the operator

A. Gilbert type and sphere packing bounds

First, we show that anyl-radius ball inS} underd,,.x
has the same cardinality.

Claim 1. For anyx = (z1,...,x,) € S}, there are exactly Of tensor product and is a A x A matrix with all entries

VoA, n,d) y's in S such thatd,, .. (x,y) < d. equal to 1. For example, take= 2, m =5 andd = 2:
Proof: Since eveny € [m] appears exactly times inz, 11100

there exists a permutationc S} such thate = 7o I)). As a 11110

consequence, we have thit., (1)), 2) = dmyax(x, 70 2) for A2 — 1 1 1 1 1 1 |,1,= ( b )

anyz e S). LetZ={z:2¢€ 8}, dnax(I}),2) <d}, Y = 01 1 1 1 1

{moz:2z¢€ Z}andY = S)\Y. For anyy € Y, we have 0 01 11
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Let »("™% be the row sum ofd(:™d’s j-th row. We have:

d+i if i <d,
rbmd =8 2d 41 if d<i<m-—d,
m—i+1+d ifi>m—d

Then fori € [m] and j € [}, the row sum of the
(i — A + j)th row of AXmd) s A D due to
AGAmd) — A(Lm.d) @ 1, We first calculateVa, (A, n, d)

by usingper (A*md)).

Lemma 1.
B per(A(A’"’d))
Voo()\, n, d) = W
Proof:
per(A()"'”’d))
{a e S): Vi, v =1}
= HeeSh:max|[£] - [%]] < d)
= (A)*y e S, :max; |[1] -yl < d}|
= (A\)*{y € S}t dmax(I}), y) < d}|

(M) AV (A, n, d)

The first equality holds sincd*™% is a (0, 1)-matrix and
by the definition of permanent. We can convere S} into
y € S, by settingy; = [2L], and there are exactlf!)™/*
x's in S! converted to the samg. Thus, we know the

sums range frond\ + A to 2d\ + A. We estimate the lower
bound via a matrix derived from(*™) as follows.

Lemma 3. per (A7) > COINT .

n!
nn’

Proof: Let A = 5i—AX™d which has the sum
of any row or column bounded by, but is not a doubly
stochastic matrix. Observe that every row sum Afis 1
except the firsttA and lastd\ rows. Fori € [d] andj € [},
both row (iA — X + j) and row(n — i\ + j) sum to St
Now we construct am x n matrix B from A with each row
sum equal tol as follows:

_1 to

Fori € [d] andj € [A], add 555+~
1) the first(d — i + 1)\ entries of row(i\ — A + j5);
2) the last(d — i + 1)\ entries of row(n — i\ + j).

The row sums of the firsi\ and lastd)\ rows of B are now
(d=i+DX | dti _
2dA+ )\ 2d+1 .

We turn to check the column sums &. Since A is
symmetric and by the definition of3, we know B is
symmetric as well. Thus we have th&tis doubly stochastic
andper(B) > 7%

To boundper(A*m4)), observe that the entries of the
first d\ and lastd\ rows of B are at mos% times of
the corresponding entries af* % and the other rows are
exactly ;1 times of the corresponding rows oft*4).,

We haveper(A(’\’"’d)) > %pef(fg) 2 (ng)ég\)n,?—i-
||
Theorem 2.
ol 22)\~L%jnn

@ar ae = D S G

Proof: The theorem follows by plugging Lemmas 1, 2
and 3 to Theorem 1. ]

third equality holds. Therefore, the lemma holds by moving. Constructions and related bounds

(A" to the left-hand side of the equation. [ |
We still need to estimatger(AX*m4)) in order to get

asymptotic bounds. Klgve [8], [9] reported some boundg,

and methods to approximateer (A("4). We extend his
analysis forper (A m4)),
Lemma 2. per(AX™D) < [(2d\ + \)1] 2555

Proof: It is known (Theoren? 11.5in [17]) that f@D, 1)-
matrix A, per(4) < [[;,(r:!)™ wherer; is the sum of
the i-th row. Since the sum of any row o4 s at

In [10], Klgve et al. gave several constructions for permu-
tation arrays and they obtained better bounds via observing
me properties of the constructions.

1) Construction 1:We first give an explicit constructions
as follows.

Definition 1. Given )\, m, and d such thatd divides m.
We defineCy (A, m,d) = {(x1,...,2mr) € S}, : Vi €
[mA],z; = (mod d)}.

Theorem 3. If m = ad, C1(\,m,d) is a (\,mA\, d)-FPA of
(a)!

most2d\+ ), we haveper(A) < [T\, [(2dX + N)!] TR = )d'
[(2d\ + A)!] 7+ n

We give per(A*m4)) a lower bound by using the van Proof: Since Ci(A\,m,d) C S),, Ci(\,m,d) has
der Waerden permanent theorem (see p.104 in [1AR: frequency\ and lengthmA. To show the minimum distance,
permanent of am x n doubly stochastic matri¥ (i.e., A consider two different elements,y € Cy(\,m,d) and
has nonnegative entries, and every row sum and column sassume theii-th entries are different, i.ex; # y;. Since
of A is 1.) is no less thaf%. Unfortunately, A*™4) is not z; = y; (mod d), we haved divides (z; — y;) and we have

a doubly stochastic matrix, since the row sums and columps — y;| > d. Hence the minimum distance is at ledst

(he

cardinality (



Now we turn to the cardinality o€ (\, m,d). For each of Cy«C, is |Cy|-|C,|. Since Chebyshev distance between

j € [d], define a family of index sets xzly and 2’|y’ is max{dmax(®, '), dmax(y,y’)}, we have

X; = {(k=1)d+j : k € [aN} = {j,d+j,. .., (aA—1)d+5}. the minimum distance of’y * C,, is at least

For anyxz € C1(\,m,d) and anyi ¢ X;, we haver; = min  {dmax(®, '), dmax (¥, ¥')} = d.

j (mod d) andz; can be any member ifyj,d+j, ..., (a — vy Eg*

1)d+j} = {(k—1)d+j : k € [a]}. Note that eaclik—1)d+j wlyra’ |y’

appears exactly times inz. Thus for eachj € [d], there .

are (/\, ~ possible comblnatlons far at the indices inX;. The frequency and length @) + C, are trivially A + p and
(A Am+ pm, respectively. We concludﬁA*C isa(A+p, Am+

Thus, |C1 (A, m,d)| = gjﬁ)l' and the theorem holds. B pm, d)-FPA of cardinality|C\| - |C,|. [ |

Theorem 3 implies the following lower bound on th

cardinality of (\, n, d)-FPAs. eCoroIIary 2. For integers), p, m andd, Foo(A + p, Am +

pm, d) = Foo (X, Am, d) Foo (p, pm, d).
Corollary 1. If m = ad, then Fs (A, n,d) > (W))') : The second recursive construction is by interleaving tech-

The information rate of this construction is higher thaRicS: For ant-tuple ¢ and mtgegersnj, let v(e,r.j) =
the lower bound in theorem 2 under certain parameters. The
code length, information length, and the bounds are countegt (/ —1) - 1 wherel = (1,....1).
in bits. Since|S3,,,| and |Cy (A, m,d)| do not have to be pefinition 3. Given a(\, n, d)-FPAC and a positive integer
powers of 2, the bit-length could be a fractional numbey. pefine
Table 1 illustrates some codes of 100-symbols. In the first
three rows, we discover the information length is longentha C,(C, ) = {v(c1,7,1)| - - - [v(er, 7, 7) - Vi € [r],¢; € C}
the lower bound and it is closer to the upper bound when
is greater. For the last four rows, we fix= 1. When thed Theorem 5. Given C and r as above,Cy(C,r) is a
is small, see row 4 and %}, even does not reach the lower(\, rn, rd)-FPA of cardinality|C|".
bound. But for largel, C; still has a chance to outperform

the lower bound. Corollary 3. Fo(A,rn,rd) > Foo(A,n,d)".

The following recursive constructions use extranew

Al m | d Igr?gt% Igrlwfgfh tg\gﬁé gggﬁé symbols. We give three kinds df-symbol extension con-
101 10 1 5 13069 | 875 148 | 1400 structions. Assume we hawe = (z1,...,7\n) € S3,, and

5 20 | 5 | 386.6 | 167.2 | 110.8 | 220.0 Y= (y1,.--,ykr) € [m+k]** such that for any € [m+£],

5 1T 50 1 5 | 4748 | 9554 | 2331 | 3402 there are at mosk entries iny equal toi. Our goal is to

T 100 T & 5248 [ 3054 1 3196 | 1562 extendz into an element in53, ., . Observe that initially
T 1100 110 15248 [ 2179 | 2261 | 3554 y|xz may not pe a legitimate element B‘Q_(erk). However

1T 1100 120 | 5248 | 1381 | 1303 | 257.6 we can re-assign values to someagd$ entries such thag|x

T T700 150 1 5248 T 500 T4 11509 is in 85,41~ TO do that we define a total order for the

entries inz, i.e., fori, j € [Am], we sayz; is larger thanc;
if the value ofz; is strictly larger than;’s, or whenz; = z;
andi < j. Let v; be the number of entries ip equal to:.
The extension algorithm (y, ) operates as follows:

TABLE |: Parameters for constructiofi;

2) Simple recursive constructionsiVe give several re-
cursive constructions for FPAs. These constructions could for ; = m + k downto1 do
give codes with higher information rate than construction 2, set the largesk — +; unchanged entries im to i

however they might require a better initial code th@n. and mark them as changed,;
The first one is by concatenation. Fer= (z1,...,z,) and 3. nexti
Y= (Y1,---,Yq), let x|y denote(w1,...,xp,y1,. .., Yq)- 4. returny|x;
Definition 2. Given a(A, Am, d)-FPA Cy and a(p, pm,d)-  For example, lek = 2, y = (1,2,3,4) andz = (1,2,1,2),
FPAC,. Define then we haves,(y, ) = (1,2,3,4,1,4,2,3).
Cr*C, ={exrle, 1 ex € Cy, e, € C} It is easy to check that.(y,x) returns a permutation

of frequency\ and lengthmA + kX. Since every symbol
) 7/ appears at mosk times iny, we havey; < A for every
FPAC,, C\xC, is a(A+p, \m+ pm, d)-FPA of cardinality j € [m+ k], and there are\ — ~; +~; — A entries equal to
CAl-1C - j in y|zx after thej-th iteration. Moreover, those entries will
Proof: Considerz,z’ € C andy y € C,. z|ly # not be changed afterwards. This showgy, =) transforms
x'|y’ if and only if ;é x’' ory # y', hence the cardlnallty y|z into a legitimate element ISA( k)

Theorem 4. Given a (A, Am, d)-FPA C and a(p, pm, d)-



For positive integerst,¢ with & < t, we consider a smaller thanz;,’s. This impliesdmax (¢ (y, ), di(y, =’

selective functionf : [k] — [t], which selectsk ele-

ments in order fromt], i.e., f(i) is thei-th smallest one

among the selected elements. For anyr € S;, and
any t-tuple s with 1 < s < < s < m + k,
define ¢t s (f, ™) = (Sg(ry)s - Sf(mey))- FOr example,
setA = 3,k = 3,t = 4,57 = 1,59 = 3,83 = 5,
sg = T,f(x) = 2+1,andr = (1,2,3,2,2,3,1,3,1),
we havezpk,m(f, 7T) = (82,83784,83783,84782,84782) =
(3,5,7,5,5,7,3,7,3). We definely, ; s(C) = {¢rt.s(f,7) :
f is a selective function fronfk] to [t andw® € C} for
C C S),. We give two constructions by extending with
y € Ui s(Sp,) and withy € Uy ;. o(C) whereC is an FPA.

Both recursive constructions inherit the minimum distaate

the base FPA.

Definition 4. Given positive integers,t with ¢t > k, a

(A, Am,d)-FPA C and at-tuple s with 1 < s1 < s2 <
< st <m+kands; 1 —s; >dforie[t—1]. Define

Cs5(Ck,t,8)= {ox(y,x) :x € C,y € \Ilk_,tys(S,?)\)}.

Definition 5. Given a positive integers, a (A, Am, d)-FPA

C, a(\ Mk, §)-FPA C' and ak-tuple s with 1 < 51 < 59 <
- < sp <m+kands; 1 —s; > [4] fori € [t—1]. Define

Cu(C,C" k,8)= {¢r(y,x) :x € C,y € ¥y 1. s(C")}.

Both C53(C,k,t,s) and Cy(C,C' k,s) are (\,m\ +

kA, d)-FPAs. To prove this, we argue that the distance be-
tween any pair of codewords is at leastwhen they are Corollary 5. F.(\,mA + kA, d)

6]

) >
dmax (T, T'). |
Now, we prove the following theorems.

Theorem 6. C3(C k,t,s) is a (\,mA + kA, d)-FPA of
cardinality (;) { ’“)'|C|

Proof: Consider codewords = ¢y, (vx,..s(f,7), ) and
2= o(WYres(g,p),x’). If f # gorm # p, then we have
dmax(27 Z/) > dmax(wk,t,s(.fy 77)5 u}k.,t,s(gap)) > d by lemma
4.1f f =g andrw = p, thendmax(2, 2') > dmax(x, ') > d
by lemma 5 and” is a (A, Am, d)-FPA. Note that there are

(;) selective functions fronfi] to [¢t] and ’;f))k permutations

in 52y, thus the theorem holds. ]
Corollary 4. Foo(A\,mA + kX, d) > (;) Foo(N\,m), d)
for k <tandtd <m+ k.

Theorem 7. C4(C,C",k,s) is a (A,m\ + kA, d)-FPA of
cardinality |C’| - |C].

Proof: Consider codewords = ¢ (¥ 1,s(f, ), ) and
2z = ¢ (Vi ks(g,p),2'). Since there is only one selective
function from [k] to [k], we havef = g. If © # p, then
we havedax(z,2") > § - %’ = d by lemma 4 and”’ is a
(A kX 0)-FPAL If m = p, thendmax(z,2") > dmax(x, @) >
d by lemma 5 and” is a(\, Am, d)-FPA. Hence the theorem
holds. ]

EA)!
F

constructed from distincy’s or distinctx’s. Therefore, we F, (A, mA,d) for k - [%] <m+k.

need the following lemma.

Lemma 4. For two selective functiong and g mapping
from [k] to [t] and 7,p € S}, lety = ¢ s(f,7) and
Y = Yr1.s(g,p). We havedy,.x(y,y’) > d whenf £ g or
m % p. Moreover,dmax (Y, y’) > d - dmax(m, p) Whenf =g

Finally, we provide another symbol extension construction
which allows us to obtain a FPA of greater cardinality while
the minimum distance is decreased by Similar to the
constructionC3, we relax the constraints og by allowing
some symbols appearing less thatimes iny.

and # p.

Proof: Let FF = {f(i) : « € [k]} and G = {g(¥)
i € [k]}. If f # g, there existsi* such thati* € F\G.
Therefore f(m;) = i* # g(p;) implies y; # y;. We have
dmax(Y,Y') > ly; —yj| > d. If f =g and7w # p, then
there existg/* such thatr;« # p,-. Assumejm; — p;+| =4,
we havedmax(yvyl) > |yj* - y;*l > |Sf(7rj*) - Sf(pj*
dminepp—q7(sit1 — 8i) > od. [ ]

Lemma 6. If for every: € [m + k], y has at most entries

equal toi, thendmax(dr (y, @), dr(y, ') > dmax(x, ') —
1, for anyz,z’ € S, .

Proof: Consider the/-th entries ofr andx’, and without
loss of generality, let:; — 2, = d > 0. Assumez; andz’; is
the a-th and thes-th smallest entry inc andx’ respectlvely.

« and 3 must be in the formx; A — p andz’;\ — ¢ for some
p,q € {0,A = 1}. Sincez; — 2/, = d, we havea — 3 >
d\N— A+ 1.
Suppose that we rug(y, ) and ¢x(y,x’) in parallel.
Amax(Or (Y, ), Ok (Y, x")) > dimax(z, x'). According to ¢, there are at mosh entries changed in
each iteration. The iteration difference between the itera

Proof: By the assumption ory, we know~; is either i hens' and . ively ch 4 is at least
A or 0. Thus in every iteration of(y, z) either 0 or A ONS Whenz; and.; are respeclively changed Is at leas
= 1. The corresponding entries in

symbols inz are changed. Suppose that we rip(y, x) LaTﬁ > {%J =d-

and ¢ (y,x’) in parallel. According togy, there are either the output have difference at least 1, and thus we conclude

) entries or nothing changed in each iteration. Without 1085,ax (0% (Y, ), ¢k (Y, ")) > dmax(x, ') — 1. [ ]

of generality, letj be the index such that; — 2 = d. Note Lemma 6 shows that the distance at most decreases 1
that the algorithm changes only one kmd of symbol in eadfter applying ¢ (y,-). From this point of view, we can
iteration. Thereforer’, must be changed at leasf — 2, = trade minimum distance for larger code size. For integer
d iterations later afterc; is changed and the magnitude ig:, ¢ and ¢-tuple s, let Q(k,t,s) be the set of vectors of

Lemma 5. If for everyi € [m + k|, y has either A
entries equal tai or no such entry, then fox, ' € S3

am?



length kX consisting of symbols in{si,...,s;} such that 3. if m; =1

no symbol appears more thantimes. Note that for any 4. then {z; < []; max « mazx — 1;}
simple sets, Q(k,t,s) has the same cardinality, thus web. else {z; « [2]; min < min + 1;}
defineq(k,t) = |Q(k, t, 8)|. 6. for i < k+1tondo

7. T — (m)f"]; min +— min + 1;

Definition 6. Given positive integers:,t with ¢ > k, a
(A, mA\,d+ 1)-FPA C and at-tuple s, 1 < 51 < $3 <
+< s, <m-+kands; 1 —s; >dforie[t—1]. Define The encoding algorithme? , Maps binary vectors from
C5(C.k,t,8) ={¢n(y,x) :x € C,y € Q(k, 1, s)}. Z5 to S). For examples, the output of%, ,(0,1,0,0)
Theorem 8. For d > 1, Cs(C, k.1, 8) is a (A mA+ kA, d)- 1S (1.5:1,2:2.3.3,4,4.5), and Lf 4(()&1’1’1) outputs
FPA of cardinalityg(k, ¢)|C]. (_1,5,5,4_, 1,2,2,333,4) It is clear thatE;; ;. runs inO(n)
time while encoding any:-bit message. Next we investigate
Proof: Consider codewords = ¢x(y,x) and 2’ = the properties of the code obtained BY, ,. Let C, , be the
(Y, x') wherey, y' € Q(k,t,s) andz, ' in C. We know jmage ofEfl\ L
that dmax (2, 2’) > d wheny # v/, since for some € [k)],
lyi —vi| > minje_q1) 5541 —s; > d. By lemma 6, ify = v/,
theNdmax (2, 2') > dmax(z, ') > d4+1—1=d > 0. These 2

©

Ooutput(zy, ..., ,);

Theorem 9. C2)  is a (A, n, [25%])-FPA with cardinality
k

facts implyz +2z ify#£y or x ;é cc’_. By the construction Proof: Consider two messages = (pi,...,p) and
of Cj, it is clear that the cardinality ig(k,t)|C|. B 4= 1(q1,....,q) € Zk. Let zP andx? be the outputs of

Corollary 6. Fao (A, mA+kA, d) > q(k, t)Fao (A, mA, d+1) E) ., respectively. Let be the smallest index such that #

for k <t andtd < m + k. g-. Without loss of generality, we assumpe= 1, ¢, = 0 and
there are exactly zeroes among;, . . ., p.—1. Consequently,

Let A = {x € S(d+1 c s € {Ld+ 4P s set to[er] = [2=rtltz] andzd is set to[ 2] =

1} andmyiy < -0 < 7Td+1)>\} The code constructed byﬂ*ﬂ by E; , . The distance betweer? andz is:
the simple encoding algorithm in the next section can also

be obtained by {n—r—i—l—i—z-‘ F—F’Z-‘
1.C =D, A B Y
2.f0rz—2t0kd0 n—r+1+z 1+z

3. Ci'=C5(0C%1,2,(1,d+1)); > b\ Y -1
4. next _ n-roy

5. OutputC*; N A

However, the minimum distance of the outputdisin other > n_k_ 1, sincer < k.

words, the procedure above never decrease the minimum
distance on line 3. This fact implies that our analysis on The first inequality holds by the fact of ceiling function:

the minimum distance of’s(C, k, ¢, s) is not tight. a < [a] < a+1, for any real numbe% Note that the
distance has integer value only here ™~ is integer then

the distance is at least’5~ |; else it is at leasf 2~ — 1],

which is [ 25%]| exactly, i.e., the distance between any two

codewords |er & Is at least| *5* k. Since every message is
In this section, we give a construction with efficient encodncoded into a distinct codeword we hg@Qk —9 m

ing and decoding algorithms. The idea of this constructson i SlnceC’Ak is a (A, n, |25 ])-FPA, we letd = | 2% | for

based on the previous work by Lét al. [11]. We generalize gnvenience.

their algorithm for constructing FPAs. Furthermore, weegiv

the first local decoding algorithm for FPAs under Chebysheé/

distance.

II. CONSTRUCTION WITHEFFICIENT ENCODING AND
DECODING

Unique decoding algorithm

Unique decoding algorithms for classic error correcting
codes are usually much more complicated than their encoding
algorithms. While, our proposed decoding :';1Igoritt1r‘|:)y,g

We give an encoding algorlthlﬁk,C which convertk-bit  remains simple.

> .
message into a permutation #, wheren > k + \. Algorithm Ur)L\,k

A. Encoding algorithm

Algorithm E, Input: (x1,...,2,) € S
Input: (mai,...,mg) € Z§ Output: (my,...,my) € Z§
Output: (z1,...,2,) € S) 1. max < n; min < 1;

1. maz < n; min < 1; 2. fori < 1tok do

2. for i< 1tok do 3. if |z — [222]] < oy — [22])



4 then {m; + 1; max + max — 1;} Lﬁ,k always outputs correct message bit when it was given
5. else {m; < 0; min < min + 1;} a codeword as input, see Corollary 7.
6

Output(ma, ..., mu); Lemma 7. Given a permutatione = (x1,...,2,) € O,?,,C

The running time ot} , is clearlyO(k), even faster than and an index € [k], L;)  terminates within\ iterations.

the encoding algorithm. We show its correctness as follows. N
Proof: By contradiction, assumé;, , does not output

Theorem 10. Given a permutations = (z1, ..., Zn) Wthh before the end of thew-th iteration. FOr¢ < A let j, be
is 4=1-close toE; , (m) for somem € Z§, algorlthm nk the index picked in the-th iteration. For every < A, we
outputsm correctly. havex; = x;,, otherwiseL, , outputs at the/-th iteration.

Therefore, there are at Iea\;ﬂ— 1 entries ofx equal tox;. It

Proof: By contradiction, assumé]A outputsm =
y ok P implies « ¢ CA,C, a contradiction. There is soms, # x;,

(mla"' amk) 7é m. Let Eri\,k(m) = (yla"'ayn) r be the

A
smallest index such that,. # m, and z be the number and L7, ;. outputs in the/-th iteration. u
of zeroes inmy,...,m,_1. At the beginning of ther-th  Theorem 11.Given a permutatior = (z1, ..., z,) J-close
iteration,max = n—r+1+z andmin = 1+ z because for to a codeworde) , (m) = (y1,...,yn) € CA * for somem

everyi < r, m; = ;. Without loss of generality, assumeand an indexi € [k], L} , outputsm; with probability at
1 =m, # m, = 0. Note thaty, is set to(mim] (=22 east] — 2041 at its first iteration.
by E, ,. While /i, is decoded to 0 by, ,, we have

|z, — [’maz‘” > |2y — I‘mln‘” Thus, Proof: Without loss of general_ity, we assume; =
0, v = t and letu be the maximum number among
dmax (@, B)) (M) > [z, —yp| = [z, — [22]] Yitl,-- -, Yn, i.€., at the start of theth iterationmin = ¢ and
> % (Jor — [2227] + |o — [22]])  max = u while encoding. Assume there ayeiumbers equal
> 2 ([mpe] — [me) to ¢t amongyi, ...,y;_1, and there are’ numbers equal to
=1 ((L’LHZW [H=27) > 4. w amongy,+1, . - ., Yn. According to the encoding algorithm,
The last inequality is true, since we knofw—"H+z] — we have
(2] > |2 = d from the proof of Theorem 9. This A ,_/A% 4
contradicts thatr is 4;*-close toE, ,(m). m {Vir,un) = {t st Lt L )
Since dmax(x, B, (m)) < §, we have|z; — y;| < ¢ and
C. Local decoding algorithm |z; — y;| < 6. The probability thatZ}) , does not outputn;
Next we show a local decoding algorithfiy, ,, which is at the first iteration is:
a probabilistic algorithm. Prlz; > x;] < Prly; +6 > z;]
Algorithm L} < Prlyi+62>y; 4]
Input: i € [n], (z1,...,2,) € S} = Prlyi +26 2 yy].
Output: m;, thei-th message bit There are at mosto A + A — v — 1 possibley;’s less than or
1. J«{i+1,....,n}; equal toy; + 26. Thus,
2. do
3. Uniformly and randomly pick € J; Prlz; > z;] < @0+ DrA-7-1 252;_ A 25; L
4. if 2; > z; then output 1; noi
5. if 2; < x; then output O; Therefore, the probability thalf,ﬁ,]C outputsm,; correctly at
6. J—J-{j} the first iteration is at least — 2‘27“. [ |
7. loop;

Corollary 7. Given a codeword: = E, , (m) for somem
L), allows us to decode-th message bit more effi- and an index;, L, , outputsm; correctly.

cientlry than ng, but it may give a wrong result with

Proof: By Lemma 7, there existé < X such thatL? ,
certain probability. To illustrate this fact, we conside

ferminates at thé-th iteration. Letj be the index plcked at

two permutationsz = (1 4,1,2,2,3,3,4,5,5), y the ¢-th iteration, we have:; # z;, wherej > i. Note thatx
(1,5,1,2,2,3,3,4,4,5) = Bfy.4(0, 1’0’0])0Td the result o isa codewordzx; < z; impliesm; = 0 andx; > x; implies
L30.4(2,). Sincedmax(w,y) = 1 < @ Ufy4(®) m; = 1. Hence,L; , outputsm; correctly. ]
outputs(0, 1,0,0). L2, ,(2,z) should outputl, but when; A private information retrieval (PIR) system consists of
is picked as9 or 10 at line 3, L3, 4(2,) outputs0. q servers. All servers know a codewoxtl = (z1,...,zy)
We discuss its efficiency and error probability in thisepresenting a message = (mg,...,mg), and a user

subsection. We prove that it reads at mast 1 entries of wants to know one bitm; of m via query a symbol
the received word in Lemma 7, hence its running time fsom each server. We say a PIR hitrievability r if the
O(A). It has a chance to output wrongly, but we show thaiser can obtain the message bit with probability Let
the error probability is small in Theorem 11. Furthermoré(s,i) be the distribution of entry queried from server



when the user tries to retrieve,. A PIR hasprivacy p if
max; jer,sefq A(D(s,1),D(s,5)) < p, whereA(:,-) is the
statistical distance. Agq,r,p)-PIR is ag-server PIR with
retrievability » and privacyp. A (¢,r,p)-PIR has perfect
retrievability if » = 1 and perfect privacy ip = 0.

With our FPAC;) ., we construct &\ + 1,1, p)-PIR with
perfect retrievability and privacy > 0. The scheme is
simple:

« For a messagen, we putz = E, ,(m) on all A\ + 1

servers.

o We retrievem; by Lﬁjk by querying entries from servers

in a random order.
The perfect retrievability is guaranteed by Corollary 7wHo

ever, in order to retrieven;, ; must be queried from some

servers at certain positiorfs> i, and we havep > 0. We
leave the improvement on the privapyas our future work.
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