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Decoding Frequency Permutation Arrays under
Chebyshev Distance

Min-Zheng Shieh and Shi-Chun Tsai,Member, IEEE

Abstract—A frequency permutation array (FPA) of length
n = mλ and distanced is a set of permutations on a multiset
over m symbols, where each symbol appears exactlyλ times
and the distance between any two elements in the array is at
least d. FPA generalizes the notion of permutation array. In
this paper, under the Chebyshev distance, we first prove lower
and upper bounds on the size of FPA. Then we give several
constructions of FPAs, and some of them come with efficient
encoding and decoding capabilities. Moreover, we show one of
our designs is locally decodable, i.e., we can decode a message
bit by reading at most λ+1 symbols, which has an interesting
application to private information retrieval.

Index Terms—Frequency permutation array, Permutation
arrays, Chebyshev distance, Permanent, Locally decodablecode

I. I NTRODUCTION

In 1965, Slepian [13] considered a code of lengthn
for permutation modulation. It consists of all permutations

on the multiset{
λ1

︷ ︸︸ ︷
µ1, . . . , µ1, . . . ,

λm
︷ ︸︸ ︷
µm, . . . , µm} whereµ1 <

µ2 < · · · < µm and λ1 + λ2 + · · · + λm = n. In this
paper, we consider a special case of Slepian’s code. Let
µ1 = 1, µ2 = 2, . . . , µm = m andλ1 = λ2 = · · · = λm = λ.
Let Sλ

n be the set of all permutations on the multiset

{

λ
︷ ︸︸ ︷

1, . . . , 1, . . . ,

λ
︷ ︸︸ ︷
m, . . . ,m}. A frequency permutation array

(FPA) is a subset ofSλ
n for some positive integersm, λ and

n = mλ. A (λ, n, d)-FPA is a subset ofSλ
n and the distance

between any pair of distinct permutations is at leastd under
any metric, such as Hamming distance, Chebyshev distance
dmax, etc. A permutation array (PA) is simply a special
case of an FPA by choosingλ = 1. With a fixed length
n, an FPA has a smaller set of symbols than a PA. Thus,
codes with FPA have a better information rate than those
with PA. A widely adopted approach to building PAs under
Hamming distance, see for example [3], is using distance-
preserving mappings or distance-increasing mappings from
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n. Most of those encoding1 schemes are efficient but
there are only a few efficient decoding algorithms. Swart and
Ferreira [14] gave a decoding algorithm for an application
on power line communication. Linet al. [11] proposed a
couple of novel constructions with efficient encoding and
decoding algorithms for PAs underdmax. FPA was proposed
by Huczynska and Mullen [5] as a generalization of PA. They
gave several constructions of FPA under Hamming distance
and bounds on the maximum array size.

Recently, researchers have found that PAs have applica-
tions in areas such as power line communication (e.g. [12],
[18], [19] and [20]), multi-level flash memories (see [6] and
[7], [15]). Similar to the application of PAs on power line
communication, we can encode a message as a frequency
permutation fromSλ

n . Then the message is transmitted asm-
FSK2 signals. The nature of frequency permutations provides
higher information rate without losing immunity to impulse
noise and permanent frequency disturbances3 mentioned in
Vinck’s work[20].

For flash memory applications, different from the approach
by Jianget al. [6], [7], we can use FPA to provide multi-
level flash memory with error correcting capabilities. For
example, suppose a multi-level flash memory, where each
cell hasm states, which can be changed by injecting or
removing charge into or from it. Over injecting or charge
leakage will alter the state as well. We can use the charge
ranks ofn cells to represent a permutation fromSλ

n , i.e., the
cells with the lowestλ charge levels represent symbol 1, and
so on. With our efficient encoding and decoding algorithms,
a (λ, n, d)-FPA can be used in a flash memory system to
represent information and correct errors caused by charge
level fluctuation.

A locally decodable code has an extremely efficient decod-
ing for any message bit by reading at most a fixed number
of symbols from the received word. Suppose that a FPA is
applied to a multi-level flash memory where the length of

1We consider only encoding and decoding schemes for error correcting
codes in this paper. Some other works, such as Babaev’s [1], consider
encoding as computing the binary representation for some permutation, and
decoding as computing the permutation represented by some binary string.
The schemes of [1] are efficient, but they do not exhibit any error correcting
capability.

2For i ∈ {1, . . . , m}, we sendi by a wave of some unique frequency
fi. The frequency of wave is irrelevant to the frequency parameter λ in the
definition of FPA.

3A permanent frequency disturbance is a disturbance wave of some
constant frequency. It is irrelevant toλ.
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a codeword is nearly a block of cells (about105)[2]. This
feature allows us to retrieve the desired message bits from
a multi-level flash without accessing the whole block. With
the locally decodable property, we can raise the robustness
of the code without loss of efficiency. On the other hand,
locally decodable codes have been under study for years, see
[16] for a survey and [21], [4] for recent progress. They are
related to a cryptographic protocol calledprivate information
retrieval (PIR for short).

In this paper, we extend the ideas in [10] and [11] to
constructing FPAs underdmax. In section II, we prove lower
and upper bounds on the maximum cardinality of FPAs. We
derive Gilbert type and sphere packing bounds by bounding
size of balls under Chebyshev distance in subsection II-A.
Moreover, we give several constructions to obtain some
lower bounds, see subsection II-B. In section III, we show
a pair of efficient encoding and decoding algorithms for
FPAs constructed in a simple manner. In addition, we show
that they are locally decodable codes underdmax. As a
consequence, the construction of FPA can also be used for
constructing PIR.

Notations: Let n = mλ throughout the paper unless stated
otherwise. We use[n] to represent the set{1, . . . , n}. Let xi
be thei-th entry of vectorx. For twok-dimensional vectors
x andy, let dmax(x,y) = maxi∈[k] |xi − yi|. We say two
permutationsx andy ared-close to each other under metric
δ(·, ·) if δ(x,y) ≤ d. The identity permutationIλ

n in Sλ
n

is (

λ
︷ ︸︸ ︷

1, . . . , 1, . . . ,

λ
︷ ︸︸ ︷
m, . . . ,m). For π = (p1, . . . , pn) ∈ S1

n

and an-dimensional vectorx = (x1, . . . , xn), we define
π ◦ x = (xp1

, xp2
, . . . , xpn) and π−1 ◦ π = I1

n. For
example,(2, 1, 5, 3, 4, 6) ◦ (1, 1, 2, 2, 3, 3) = (1, 1, 3, 2, 2, 3)
and (2, 1, 5, 3, 4, 6)−1 = (2, 1, 4, 5, 3, 6).

II. L OWER AND UPPER BOUNDS

Let F∞(λ, n, d) be the cardinality of the maximum
(λ, n, d)-FPA andV∞(λ, n, d) be the number of elements
in Sλ

n being d-close to the identityIλ
n underdmax. In this

section, we first give a Gilbert type lower bound and a
sphere packing upper bound onF∞(λ, n, d) by bounding
V∞(λ, n, d). Then we generalize the method in [10] to
obtain several constructions that yields some inequalities for
bounding the cardinality of FPAs.

A. Gilbert type and sphere packing bounds

First, we show that anyd-radius ball inSλ
n underdmax

has the same cardinality.

Claim 1. For anyx = (x1, . . . , xn) ∈ Sλ
n , there are exactly

V∞(λ, n, d) y’s in Sλ
n such thatdmax(x,y) ≤ d.

Proof: Since everyi ∈ [m] appears exactlyλ times inx,
there exists a permutationπ ∈ S1

n such thatx = π◦Iλ
n . As a

consequence, we have thatdmax(I
λ
n , z) = dmax(x, π ◦z) for

any z ∈ Sλ
n . Let Z = {z : z ∈ Sλ

n , dmax(I
λ
n , z) ≤ d}, Y =

{π ◦ z : z ∈ Z} and Ȳ = Sλ
n\Y . For anyy ∈ Y , we have

dmax(x,y) = dmax(I
λ
n , π

−1 ◦ y) ≤ d, sinceπ−1 ◦ y ∈ Z.
While for y′ ∈ Ȳ , dmax(x,y

′) = dmax(I
λ
n , π

−1 ◦ y′) > d.
Therefore, only|Y | = |Z| = V∞(λ, n, d) permutations inSλ

n

ared-close tox.

Theorem 1.
∣
∣Sλ

n

∣
∣

V∞(λ, n, d− 1)
≤ F∞(λ, n, d) ≤

∣
∣Sλ

n

∣
∣

V∞(λ, n, ⌊d−1
2 ⌋)

.

Proof: To prove the lower bound, we use the fol-
lowing algorithm to generate a(λ, n, d)-FPA with size≥
|Sλ

n|
V∞(λ,n,d−1) .

1) C ← ∅, D ← Sλ
n .

2) Add an arbitraryx ∈ D to C, then remove all
permutations that is(d− 1)-close tox from D.

3) If D 6= ∅ then repeat step 2, otherwise outputC.

D has initially |Sλ
n | elements and each iteration of step 2

removes at mostV∞(λ, n, d − 1), so we conclude|C| ≥
|Sλ

n|
V∞(λ,n,d−1) .

Now we turn to the upper bound. Consider a(λ, n, d)-FPA
C∗ with the maximum cardinality. Any two⌊d−1

2 ⌋-radius
balls centered at distinct permutations inC∗ do not have any
common permutation, since the minimum distance isd. In
other words, the⌊d−1

2 ⌋-radius balls centered at permutations

in C∗ are all disjoint. We have|C∗| ≤
|Sλ

n|

V∞(λ,n,⌊ d−1

2
⌋)

.

It is clear that|Sλ
n | =

n!
(λ!)n/λ . It is already known that

V∞(1, n, d) equals the permanent of some special matrix
[11]. In this paper, we generalize previous analysis to give
asymptotic bounds for Theorem 1. The permanent of ann×n
matrix A = (ai,j) is defined as

per(A) =
∑

π∈Sn

n∏

i=1

ai,πi .

Define a symmetricn × n matrix A(λ,n,d) =
(

a
(λ,n,d)
i,j

)

,

wherea(λ,n,d)i,j = 1, if
∣
∣⌈ iλ⌉ − ⌈

j
λ⌉

∣
∣ ≤ d; elsea(λ,n,d)i,j = 0.

Note that a permutation(x1, . . . , xn) is d-close to Iλ
n if

and only if a(λ,n,d)i,xi
= 1 for every i ∈ [n]. Now we

considerA(λ,λm,d). Since theλ copies of a symbol are
considered identical while computing the distance and the
entries indexed from(ℓλ−λ+1) to ℓλ of Iλ

λm represent the
same symbol for everyℓ ∈ [m], it implies that row(ℓλ−λ+1)
through rowℓλ of A(λ,λm,d) are identical and so are columns
indexed from(ℓλ − λ + 1) to ℓλ for every ℓ ∈ [m]. Thus,
we haveA(λ,λm,d) = A(1,m,d)⊗ 1λ where⊗ is the operator
of tensor product and1λ is a λ × λ matrix with all entries
equal to 1. For example, takeλ = 2, m = 5 andd = 2:

A(1,5,2) =









1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1









,12 =

(
1 1
1 1

)



3

A(2,10,2) =



















1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1



















Let r(1,m,d)
i be the row sum ofA(1,m,d)’s i-th row. We have:

r
(1,m,d)
i =







d+ i if i ≤ d,
2d+ 1 if d < i ≤ m− d,
m− i+ 1 + d if i > m− d.

Then for i ∈ [m] and j ∈ [λ], the row sum of the
(iλ − λ + j)-th row of A(λ,λm,d) is λr

(1,m,d)
i , due to

A(λ,λm,d) = A(1,m,d) ⊗ 1λ. We first calculateV∞(λ, n, d)
by usingper

(
A(λ,n,d)

)
.

Lemma 1.

V∞(λ, n, d) =
per

(
A(λ,n,d)

)

(λ!)n/λ
.

Proof:

per
(
A(λ,n,d)

)

= |{x ∈ S1
n : ∀i, a

(λ,n,d)
i,xi

= 1}|
= |{x ∈ S1

n : maxi |⌈
i
λ⌉ − ⌈

xi

λ ⌉| ≤ d}|
= (λ!)n/λ|{y ∈ Sλ

n : maxi |⌈
i
λ⌉ − yi| ≤ d}|

= (λ!)n/λ|{y ∈ Sλ
n : dmax(I

λ
n ,y) ≤ d}|

= (λ!)n/λV∞(λ, n, d)

The first equality holds sinceA(λ,n,d) is a (0, 1)-matrix and
by the definition of permanent. We can convertx ∈ S1

n into
y ∈ Sλ

n by settingyi = ⌈xi

λ ⌉, and there are exactly(λ!)n/λ

x’s in S1
n converted to the samey. Thus, we know the

third equality holds. Therefore, the lemma holds by moving
(λ!)n/λ to the left-hand side of the equation.

We still need to estimateper
(
A(λ,n,d)

)
in order to get

asymptotic bounds. Kløve [8], [9] reported some bounds
and methods to approximateper

(
A(1,n,d)

)
. We extend his

analysis forper
(
A(λ,n,d)

)
.

Lemma 2. per
(
A(λ,n,d)

)
≤ [(2dλ+ λ)!]

n
2dλ+λ .

Proof: It is known (Theorem 11.5 in [17]) that for(0, 1)-
matrix A, per(A) ≤

∏n
i=1(ri!)

1
ri where ri is the sum of

the i-th row. Since the sum of any row ofA(λ,n,d) is at
most2dλ+λ, we haveper(A) ≤

∏n
i=1 [(2dλ+ λ)!]

1
2dλ+λ =

[(2dλ+ λ)!]
n

2dλ+λ

We give per
(
A(λ,n,d)

)
a lower bound by using the van

der Waerden permanent theorem (see p.104 in [17]):the
permanent of ann × n doubly stochastic matrixA (i.e., A
has nonnegative entries, and every row sum and column sum
of A is 1.) is no less thann!nn . Unfortunately,A(λ,n,d) is not
a doubly stochastic matrix, since the row sums and columns

sums range fromdλ+ λ to 2dλ+ λ. We estimate the lower
bound via a matrix derived fromA(λ,n,d) as follows.

Lemma 3. per
(
A(λ,n,d)

)
≥ (2dλ+λ)n

22dλ
· n!
nn .

Proof: Let Ã = 1
2dλ+λA

(λ,n,d), which has the sum
of any row or column bounded by1, but is not a doubly
stochastic matrix. Observe that every row sum ofÃ is 1
except the firstdλ and lastdλ rows. Fori ∈ [d] andj ∈ [λ],
both row (iλ − λ + j) and row(n − iλ + j) sum to d+i

2d+1 .
Now we construct ann×n matrixB from Ã with each row
sum equal to1 as follows:

For i ∈ [d] andj ∈ [λ], add 1
2dλ+λ to

1) the first(d− i+ 1)λ entries of row(iλ− λ+ j);
2) the last(d− i+ 1)λ entries of row(n− iλ+ j).

The row sums of the firstdλ and lastdλ rows ofB are now
(d−i+1)λ
2dλ+λ + d+i

2d+1 = 1.
We turn to check the column sums ofB. Since Ã is

symmetric and by the definition ofB, we know B is
symmetric as well. Thus we have thatB is doubly stochastic
andper(B) ≥ n!

nn .
To boundper

(
A(λ,n,d)

)
, observe that the entries of the

first dλ and lastdλ rows ofB are at most 2
2dλ+λ times of

the corresponding entries ofA(λ,n,d), and the other rows are
exactly 1

2dλ+λ times of the corresponding rows ofA(λ,n,d).

We haveper
(
A(λ,n,d)

)
≥ (2dλ+λ)n

22dλ per(B) ≥ (2dλ+λ)n

22dλ
n!
nn .

Theorem 2.

n!

[(2dλ− λ)!]
n

2dλ−λ
≤ F∞(λ, n, d) ≤

22λ·⌊
d−1

2
⌋nn

(2λ · ⌊d−1
2 ⌋+ λ)n

.

Proof: The theorem follows by plugging Lemmas 1, 2
and 3 to Theorem 1.

B. Constructions and related bounds

In [10], Kløve et al. gave several constructions for permu-
tation arrays and they obtained better bounds via observing
some properties of the constructions.

1) Construction 1:We first give an explicit constructions
as follows.

Definition 1. Given λ, m, and d such thatd dividesm.
We defineC1(λ,m, d) = {(x1, . . . , xmλ) ∈ Sλ

mλ : ∀i ∈
[mλ], xi ≡ i (mod d)}.

Theorem 3. If m = ad, C1(λ,m, d) is a (λ,mλ, d)-FPA of

cardinality
(

(aλ)!
(λ!)a

)d

.

Proof: Since C1(λ,m, d) ⊆ Sλ
mλ, C1(λ,m, d) has

frequencyλ and lengthmλ. To show the minimum distance,
consider two different elementsx,y ∈ C1(λ,m, d) and
assume theiri-th entries are different, i.e.,xi 6= yi. Since
xi ≡ yi (mod d), we haved divides(xi − yi) and we have
|xi − yi| ≥ d. Hence the minimum distance is at leastd.
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Now we turn to the cardinality ofC1(λ,m, d). For each
j ∈ [d], define a family of index sets

Xj = {(k−1)d+j : k ∈ [aλ]} = {j, d+j, . . . , (aλ−1)d+j}.

For anyx ∈ C1(λ,m, d) and anyi ∈ Xj, we havexi ≡
j (mod d) andxi can be any member in{j, d+ j, . . . , (a−
1)d+j} = {(k−1)d+j : k ∈ [a]}. Note that each(k−1)d+j
appears exactlyλ times inx. Thus for eachj ∈ [d], there
are (aλ)!

(λ!)a possible combinations forx at the indices inXj.

Thus, |C1(λ,m, d)| =
(

(aλ)!
(λ!)a

)d

and the theorem holds.
Theorem 3 implies the following lower bound on the

cardinality of(λ, n, d)-FPAs.

Corollary 1. If m = ad, thenF∞(λ, n, d) ≥
(

(aλ)!
(λ!)a

)d

.

The information rate of this construction is higher than
the lower bound in theorem 2 under certain parameters. The
code length, information length, and the bounds are counted
in bits. Since|Sλ

λm| and |C1(λ,m, d)| do not have to be
powers of 2, the bit-length could be a fractional number.
Table I illustrates some codes of 100-symbols. In the first
three rows, we discover the information length is longer than
the lower bound and it is closer to the upper bound whenλ
is greater. For the last four rows, we fixλ = 1. When thed
is small, see row 4 and 5,C1 even does not reach the lower
bound. But for larged, C1 still has a chance to outperform
the lower bound.

Code Info. Lower Upper
λ m d length length bound bound
10 10 5 306.9 87.5 14.8 140.0
5 20 5 386.6 167.2 110.8 220.0
2 50 5 474.8 255.4 233.1 340.2
1 100 5 524.8 305.4 319.6 436.2
1 100 10 524.8 217.9 226.1 355.4
1 100 20 524.8 138.1 130.3 257.6
1 100 50 524.8 50.0 1.4 150.9

TABLE I: Parameters for constructionC1

2) Simple recursive constructions:We give several re-
cursive constructions for FPAs. These constructions could
give codes with higher information rate than construction 1,
however they might require a better initial code thanC1.
The first one is by concatenation. Forx = (x1, . . . , xp) and
y = (y1, . . . , yq), let x|y denote(x1, . . . , xp, y1, . . . , yq).

Definition 2. Given a(λ, λm, d)-FPA Cλ and a(ρ, ρm, d)-
FPA Cρ. Define

Cλ ∗ Cρ = {cλ|cρ : cλ ∈ Cλ, cρ ∈ Cρ}

Theorem 4. Given a(λ, λm, d)-FPA Cλ and a (ρ, ρm, d)-
FPACρ, Cλ ∗Cρ is a (λ+ρ, λm+ρm, d)-FPA of cardinality
|Cλ| · |Cρ|.

Proof: Considerx,x′ ∈ Cλ and y,y′ ∈ Cρ. x|y 6=
x′|y′ if and only if x 6= x′ or y 6= y′, hence the cardinality

of Cλ ∗Cρ is |Cλ| · |Cρ|. Since Chebyshev distance between
x|y and x′|y′ is max{dmax(x,x

′), dmax(y,y
′)}, we have

the minimum distance ofCλ ∗ Cρ is at least

min
x,x′∈Cλ

y,y′∈Cρ

x|y 6=x
′|y′

{dmax(x,x
′), dmax(y,y

′)} = d.

The frequency and length ofCλ ∗Cρ are trivially λ+ ρ and
λm+ρm, respectively. We concludeCλ∗Cρ is a(λ+ρ, λm+
ρm, d)-FPA of cardinality|Cλ| · |Cρ|.

Corollary 2. For integersλ, ρ, m and d, F∞(λ+ ρ, λm+
ρm, d) ≥ F∞(λ, λm, d)F∞(ρ, ρm, d).

The second recursive construction is by interleaving tech-
nics. For anℓ-tuple c and integersr, j, let ν(c, r, j) =

rc + (j − 1) · 1 where1 =

ℓ
︷ ︸︸ ︷

(1, . . . , 1).

Definition 3. Given a(λ, n, d)-FPAC and a positive integer
r. Define

C2(C, r) = {ν(c1, r, 1)| · · · |ν(cr, r, r) : ∀i ∈ [r], ci ∈ C}

Theorem 5. Given C and r as above,C2(C, r) is a
(λ, rn, rd)-FPA of cardinality|C|r.

Corollary 3. F∞(λ, rn, rd) ≥ F∞(λ, n, d)r.

The following recursive constructions use extrak new
symbols. We give three kinds ofk-symbol extension con-
structions. Assume we havex = (x1, . . . , xλm) ∈ Sλ

λm and
y = (y1, . . . , ykλ) ∈ [m+k]kλ such that for anyi ∈ [m+k],
there are at mostλ entries iny equal toi. Our goal is to
extendx into an element inSλ

λ(m+k). Observe that initially
y|x may not be a legitimate element inSλ

λ(m+k). However
we can re-assign values to some ofx’s entries such thaty|x
is in Sλ

λ(m+k). To do that we define a total order for the
entries inx, i.e., for i, j ∈ [λm], we sayxi is larger thanxj
if the value ofxi is strictly larger thanxj ’s, or whenxi = xj
and i < j. Let γi be the number of entries iny equal toi.
The extension algorithmφk(y,x) operates as follows:

1. for i = m+ k downto1 do
2. set the largestλ− γi unchanged entries inx to i

and mark them as changed;
3. nexti
4. returny|x;

For example, letk = 2, y = (1, 2, 3, 4) andx = (1, 2, 1, 2),
then we haveφk(y,x) = (1, 2, 3, 4, 1, 4, 2, 3).

It is easy to check thatφk(y,x) returns a permutation
of frequencyλ and lengthmλ + kλ. Since every symbol
appears at mostλ times in y, we haveγj ≤ λ for every
j ∈ [m+ k], and there areλ− γj + γj = λ entries equal to
j in y|x after thej-th iteration. Moreover, those entries will
not be changed afterwards. This showsφk(y,x) transforms
y|x into a legitimate element inSλ

λ(m+k).
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For positive integersk, t with k ≤ t, we consider a
selective functionf : [k] → [t], which selectsk ele-
ments in order from[t], i.e., f(i) is the i-th smallest one
among the selectedk elements. For anyπ ∈ Sλ

kλ and
any t-tuple s with 1 ≤ s1 < · · · < st ≤ m + k,
define ψk,t,s(f, π) =

(
sf(π1), . . . , sf(πkλ)

)
. For example,

set λ = 3, k = 3, t = 4, s1 = 1, s2 = 3, s3 = 5,
s4 = 7, f(x) = x + 1, and π = (1, 2, 3, 2, 2, 3, 1, 3, 1),
we haveψk,t,s(f, π) = (s2, s3, s4, s3, s3, s4, s2, s4, s2) =
(3, 5, 7, 5, 5, 7, 3, 7, 3). We defineΨk,t,s(C) = {ψk,t,s(f, π) :
f is a selective function from[k] to [t] andπ ∈ C} for
C ⊆ Sλ

kλ. We give two constructions by extendingx with
y ∈ Ψk,t,s(S

λ
kλ) and withy ∈ Ψk,k,s(C) whereC is an FPA.

Both recursive constructions inherit the minimum distanceof
the base FPA.

Definition 4. Given positive integersk, t with t ≥ k, a
(λ, λm, d)-FPA C and a t-tuple s with 1 ≤ s1 < s2 <
· · · < st ≤ m+ k and si+1 − si ≥ d for i ∈ [t− 1]. Define
C3(C, k, t, s)= {φk(y,x) : x ∈ C,y ∈ Ψk,t,s(S

λ
kλ)}.

Definition 5. Given a positive integersk, a (λ, λm, d)-FPA
C, a (λ, λk, δ)-FPA C′ and ak-tuples with 1 ≤ s1 < s2 <
· · · < sk ≤ m+k andsi+1−si ≥

⌈
d
δ

⌉
for i ∈ [t−1]. Define

C4(C,C
′, k, s)= {φk(y,x) : x ∈ C,y ∈ Ψk,k,s(C

′)}.

Both C3(C, k, t, s) and C4(C,C
′, k, s) are (λ,mλ +

kλ, d)-FPAs. To prove this, we argue that the distance be-
tween any pair of codewords is at leastd when they are
constructed from distincty’s or distinctx’s. Therefore, we
need the following lemma.

Lemma 4. For two selective functionsf and g mapping
from [k] to [t] and π, ρ ∈ Sλ

kλ, let y = ψk,t,s(f, π) and
y′ = ψk,t,s(g, ρ). We havedmax(y,y

′) ≥ d whenf 6= g or
π 6= ρ. Moreover,dmax(y,y

′) ≥ d · dmax(π, ρ) whenf = g
and π 6= ρ.

Proof: Let F = {f(i) : i ∈ [k]} and G = {g(i) :
i ∈ [k]}. If f 6= g, there existsi∗ such thati∗ ∈ F\G.
Thereforef(πj) = i∗ 6= g(ρj) implies yj 6= y′j. We have
dmax(y,y

′) ≥ |yj − y′j| ≥ d. If f = g and π 6= ρ, then
there existsj∗ such thatπj∗ 6= ρj∗ . Assume|πj∗ −ρj∗ | = δ,
we havedmax(y,y

′) ≥ |yj∗ − y′j∗ | ≥ |sf(πj∗ ) − sf(ρj∗ )| ≥
δmini∈[t−1](si+1 − si) ≥ δd.

Lemma 5. If for every i ∈ [m + k], y has either λ
entries equal toi or no such entry, then forx,x′ ∈ Sλ

λm,
dmax(φk(y,x), φk(y,x

′)) ≥ dmax(x,x
′).

Proof: By the assumption ony, we knowγi is either
λ or 0. Thus in every iteration ofφk(y, z) either 0 or λ
symbols inz are changed. Suppose that we runφk(y,x)
andφk(y,x′) in parallel. According toφk, there are either
λ entries or nothing changed in each iteration. Without loss
of generality, letj be the index such thatxj − x′j = d. Note
that the algorithm changes only one kind of symbol in each
iteration. Thereforex′j must be changed at leastxj − x′j =
d iterations later afterxj is changed and the magnitude is

smaller thanxj ’s. This impliesdmax(φk(y,x), φk(y,x
′)) ≥

dmax(x,x
′).

Now, we prove the following theorems.

Theorem 6. C3(C, k, t, s) is a (λ,mλ + kλ, d)-FPA of
cardinality

(
t
k

) (kλ)!
(λ!)k
|C|.

Proof: Consider codewordsz = φk(ψk,t,s(f, π),x) and
z′ = φk(ψk,t,s(g, ρ),x

′). If f 6= g or π 6= ρ, then we have
dmax(z, z

′) ≥ dmax(ψk,t,s(f, π), ψk,t,s(g, ρ)) ≥ d by lemma
4. If f = g andπ = ρ, thendmax(z, z

′) ≥ dmax(x,x
′) ≥ d

by lemma 5 andC is a (λ, λm, d)-FPA. Note that there are
(
t
k

)
selective functions from[k] to [t] and (kλ)!

(λ!)k permutations
in Sλ

kλ, thus the theorem holds.

Corollary 4. F∞(λ,mλ + kλ, d) ≥
(
t
k

) (kλ)!
(λ!)kF∞(λ,mλ, d)

for k ≤ t and td < m+ k.

Theorem 7. C4(C,C
′, k, s) is a (λ,mλ + kλ, d)-FPA of

cardinality |C′| · |C|.

Proof: Consider codewordsz = φk(ψk,k,s(f, π),x) and
z′ = φk(ψk,k,s(g, ρ),x

′). Since there is only one selective
function from [k] to [k], we havef = g. If π 6= ρ, then
we havedmax(z, z

′) ≥ δ · dδ = d by lemma 4 andC′ is a
(λ, kλ, δ)-FPA. If π = ρ, thendmax(z, z

′) ≥ dmax(x,x
′) ≥

d by lemma 5 andC is a(λ, λm, d)-FPA. Hence the theorem
holds.

Corollary 5. F∞(λ,mλ + kλ, d) ≥ F∞(λ, kλ, δ) ·
F∞(λ,mλ, d) for k ·

⌈
d
δ

⌉
< m+ k.

Finally, we provide another symbol extension construction
which allows us to obtain a FPA of greater cardinality while
the minimum distance is decreased by1. Similar to the
constructionC3, we relax the constraints ony by allowing
some symbols appearing less thanλ times iny.

Lemma 6. If for everyi ∈ [m+ k], y has at mostλ entries
equal toi, thendmax(φk(y,x), φk(y,x

′)) ≥ dmax(x,x
′)−

1, for anyx,x′ ∈ Sλ
mλ.

Proof: Consider thej-th entries ofx andx′, and without
loss of generality, letxj −x′j = d > 0. Assumexj andx′j is
theα-th and theβ-th smallest entry inx andx′ respectively.
α andβ must be in the formxjλ− p andx′jλ− q for some
p, q ∈ {0, λ − 1}. Sincexj − x′j = d, we haveα − β ≥
dλ− λ+ 1.

Suppose that we runφk(y,x) and φk(y,x′) in parallel.
According to φk, there are at mostλ entries changed in
each iteration. The iteration difference between the itera-
tions whenx′j and xj are respectively changed is at least
⌊
α−β
λ

⌋

≥
⌊
dλ−λ+1

λ

⌋
= d − 1. The corresponding entries in

the output have difference at leastd−1, and thus we conclude
dmax(φk(y,x), φk(y,x

′)) ≥ dmax(x,x
′)− 1.

Lemma 6 shows that the distance at most decreases 1
after applyingφk(y, ·). From this point of view, we can
trade minimum distance for larger code size. For integer
k, t and t-tuple s, let Q(k, t, s) be the set of vectors of
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length kλ consisting of symbols in{s1, . . . , st} such that
no symbol appears more thanλ times. Note that for any
simple sets, Q(k, t, s) has the same cardinality, thus we
defineq(k, t) = |Q(k, t, s)|.

Definition 6. Given positive integersk, t with t ≥ k, a
(λ,mλ, d + 1)-FPA C and a t-tuple s, 1 ≤ s1 < s2 <
· · · < st ≤ m+ k and si+1 − si ≥ d for i ∈ [t− 1]. Define
C5(C, k, t, s) = {φk(y,x) : x ∈ C,y ∈ Q(k, t, s)}.

Theorem 8. For d ≥ 1, C5(C, k, t, s) is a (λ,mλ+ kλ, d)-
FPA of cardinalityq(k, t)|C|.

Proof: Consider codewordsz = φk(y,x) and z′ =
φk(y

′,x′) wherey,y′ ∈ Q(k, t, s) andx,x′ in C. We know
that dmax(z, z

′) ≥ d wheny 6= y′, since for somei ∈ [kλ],
|yi−y′i| ≥ minj∈[t−1] sj+1−sj ≥ d. By lemma 6, ify = y′,
thendmax(z, z

′) ≥ dmax(x,x
′) ≥ d+1− 1 = d > 0. These

facts implyz 6= z′ if y 6= y′ or x 6= x′. By the construction
of C5, it is clear that the cardinality isq(k, t)|C|.

Corollary 6. F∞(λ,mλ+kλ, d) ≥ q(k, t)F∞(λ,mλ, d+1)
for k ≤ t and td < m+ k.

Let C(λ,d) = {π ∈ Sλ
(d+1)λ : π1, . . . , πλ ∈ {1, d +

1} andπλ+1 ≤ · · · ≤ π(d+1)λ}. The code constructed by
the simple encoding algorithm in the next section can also
be obtained by

1. C1 = C(λ,d);
2. for i = 2 to k do
3. Ci = C5(C

i, 1, 2, (1, d+ i));
4. next
5. OutputCk;

However, the minimum distance of the output isd. In other
words, the procedure above never decrease the minimum
distance on line 3. This fact implies that our analysis on
the minimum distance ofC5(C, k, t, s) is not tight.

III. C ONSTRUCTION WITHEFFICIENT ENCODING AND

DECODING

In this section, we give a construction with efficient encod-
ing and decoding algorithms. The idea of this construction is
based on the previous work by Linet al. [11]. We generalize
their algorithm for constructing FPAs. Furthermore, we give
the first local decoding algorithm for FPAs under Chebyshev
distance.

A. Encoding algorithm

We give an encoding algorithmEλ
n,k which convertk-bit

message into a permutation inSλ
n wheren ≥ k + λ.

Algorithm Eλ
n,k

Input: (m1, . . . ,mk) ∈ Zk
2

Output: (x1, . . . , xn) ∈ Sλ
n

1. max← n; min← 1;
2. for i← 1 to k do

3. if mi = 1
4. then {xi ← ⌈max

λ ⌉; max← max− 1;}
5. else {xi ← ⌈min

λ ⌉; min← min+ 1;}
6. for i← k + 1 to n do
7. xi ← ⌈

min
λ ⌉; min← min+ 1;

8. Output(x1, . . . , xn);

The encoding algorithmEλ
n,k maps binary vectors from

Zk
2 to Sλ

n . For examples, the output ofE2
10,4(0, 1, 0, 0)

is (1, 5, 1, 2, 2, 3, 3, 4, 4, 5), and E2
10,4(0, 1, 1, 1) outputs

(1, 5, 5, 4, 1, 2, 2, 3, 3, 4). It is clear thatEλ
n,k runs inO(n)

time while encoding anyk-bit message. Next we investigate
the properties of the code obtained byEλ

n,k. Let Cλ
n,k be the

image ofEλ
n,k.

Theorem 9. Cλ
n,k is a (λ, n, ⌊n−k

λ ⌋)-FPA with cardinality
2k.

Proof: Consider two messagesp = (p1, . . . , pk) and
q = (q1, . . . , qk) ∈ Zk

2 . Let xp and xq be the outputs of
Eλ

n,k, respectively. Letr be the smallest index such thatpr 6=
qr. Without loss of generality, we assumepr = 1, qr = 0 and
there are exactlyz zeroes amongp1, . . . , pr−1. Consequently,
xpr is set to⌈max

λ ⌉ = ⌈
n−r+1+z

λ ⌉ andxqr is set to⌈min
λ ⌉ =

⌈ 1+z
λ ⌉ by Eλ

n,k . The distance betweenxp andxq is:

⌈
n− r + 1 + z

λ

⌉

−

⌈
1 + z

λ

⌉

>
n− r + 1 + z

λ
−

1 + z

λ
− 1

=
n− r

λ
− 1

≥
n− k

λ
− 1, sincer ≤ k.

The first inequality holds by the fact of ceiling function:
a ≤ ⌈a⌉ < a + 1, for any real numbera. Note that the
distance has integer value only here. Ifn−k

λ is integer then
the distance is at least

⌊
n−k
λ

⌋
; else it is at least

⌈
n−k
λ − 1

⌉
,

which is
⌊
n−k
λ

⌋
exactly, i.e., the distance between any two

codewords inCλ
n,k is at least⌊n−k

λ ⌋. Since every message is
encoded into a distinct codeword, we haveCλ

n,k = 2k.
SinceCλ

n,k is a (λ, n, ⌊n−k
λ ⌋)-FPA, we letd = ⌊n−k

λ ⌋ for
convenience.

B. Unique decoding algorithm

Unique decoding algorithms for classic error correcting
codes are usually much more complicated than their encoding
algorithms. While, our proposed decoding algorithmUλ

n,k

remains simple.

Algorithm Uλ
n,k

Input: (x1, . . . , xn) ∈ Sλ
n

Output: (m1, . . . ,mk) ∈ Zk
2

1. max← n; min← 1;
2. for i← 1 to k do
3. if |xi − ⌈max

λ ⌉| < |xi − ⌈
min
λ ⌉|
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4. then {mi ← 1; max← max− 1;}
5. else {mi ← 0; min← min+ 1;}
6. Output(m1, . . . ,mk);

The running time ofUλ
n,k is clearlyO(k), even faster than

the encoding algorithm. We show its correctness as follows.

Theorem 10. Given a permutationx = (x1, . . . , xn) which
is d−1

2 -close toEλ
n,k(m) for somem ∈ Zk

2 , algorithmUλ
n,k

outputsm correctly.

Proof: By contradiction, assumeUλ
n,k outputs m̂ =

(m̂1, · · · , m̂k) 6= m. Let Eλ
n,k(m) = (y1, . . . , yn), r be the

smallest index such thatmr 6= m̂r and z be the number
of zeroes inm1, . . . ,mr−1. At the beginning of ther-th
iteration,max = n− r+1+ z andmin = 1+ z because for
every i < r, mi = m̂i. Without loss of generality, assume
1 = mr 6= m̂r = 0. Note thatyr is set to⌈max

λ ⌉=⌈
n−r+1+z

λ ⌉
by Eλ

n,k. While m̂r is decoded to 0 byUλ
n,k, we have

|xr − ⌈
max
λ ⌉| ≥ |xr − ⌈

min
λ ⌉|. Thus,

dmax(x, E
λ
n,k(m)) ≥ |xr − yr| = |xr − ⌈

max
λ ⌉|

≥ 1
2

(
|xr − ⌈

max
λ ⌉|+ |xr − ⌈

min
λ ⌉|

)

≥ 1
2

(
⌈max

λ ⌉ − ⌈
min
λ ⌉

)

= 1
2

(
⌈n−r+1+z

λ ⌉ − ⌈ 1+z
λ ⌉

)
≥ d

2 .

The last inequality is true, since we know⌈n−r+1+z
λ ⌉ −

⌈ 1+z
λ ⌉ ≥

⌊
n−k
λ

⌋
= d from the proof of Theorem 9. This

contradicts thatx is d−1
2 -close toEλ

n,k(m).

C. Local decoding algorithm

Next we show a local decoding algorithmLλ
n,k, which is

a probabilistic algorithm.

Algorithm Lλ
n,k

Input: i ∈ [n], (x1, . . . , xn) ∈ Sλ
n

Output: mi, the i-th message bit
1. J ← {i+ 1, . . . , n};
2. do
3. Uniformly and randomly pickj ∈ J ;
4. if xi > xj then output 1;
5. if xi < xj then output 0;
6. J ← J − {j};
7. loop;

Lλ
n,k allows us to decodei-th message bit more effi-

ciently than Uλ
n,k, but it may give a wrong result with

certain probability. To illustrate this fact, we consider
two permutationsx = (1, 4, 1, 2, 2, 3, 3, 4, 5, 5), y =
(1, 5, 1, 2, 2, 3, 3, 4, 4, 5) = E2

10,4(0, 1, 0, 0) and the result of

L2
10,4(2,x). Sincedmax(x,y) = 1 ≤

⌊ 10−4

2 ⌋−1

2 , U2
10,4(x)

outputs(0, 1, 0, 0). L2
10,4(2,x) should output1, but whenj

is picked as9 or 10 at line 3, L2
10,4(2,x) outputs0.

We discuss its efficiency and error probability in this
subsection. We prove that it reads at mostλ + 1 entries of
the received word in Lemma 7, hence its running time is
O(λ). It has a chance to output wrongly, but we show that
the error probability is small in Theorem 11. Furthermore,

Lλ
n,k always outputs correct message bit when it was given

a codeword as input, see Corollary 7.

Lemma 7. Given a permutationx = (x1, . . . , xn) ∈ Cλ
n,k

and an indexi ∈ [k], Lλ
n,k terminates withinλ iterations.

Proof: By contradiction, assumeLλ
n,k does not output

before the end of theλ-th iteration. Forℓ ≤ λ, let jℓ be
the index picked in theℓ-th iteration. For everyℓ ≤ λ, we
havexi = xjℓ , otherwiseLλ

n,k outputs at theℓ-th iteration.
Therefore, there are at leastλ+1 entries ofx equal toxi. It
impliesx /∈ Cλ

n,k, a contradiction. There is somexjℓ 6= xi,
andLλ

n,k outputs in theℓ-th iteration.

Theorem 11. Given a permutationx = (x1, . . . , xn) δ-close
to a codewordEλ

n,k(m) = (y1, . . . , yn) ∈ Cλ
n,k for somem

and an indexi ∈ [k], Lλ
n,k outputsmi with probability at

least1− 2δ+1
d at its first iteration.

Proof: Without loss of generality, we assumemi =
0, yi = t and let u be the maximum number among
yi+1, . . . , yn, i.e., at the start of thei-th iterationmin = t and
max = u while encoding. Assume there areγ numbers equal
to t amongy1, . . . , yi−1, and there areγ′ numbers equal to
u amongyi+1, . . . , yn. According to the encoding algorithm,
we have

{yi+1, . . . , yn} = {

λ−γ−1
︷ ︸︸ ︷

t, . . . , t,

λ
︷ ︸︸ ︷

t+ 1, . . . , t+ 1, . . . ,

γ′

︷ ︸︸ ︷
u, . . . , u}.

Sincedmax(x, E
λ
n,k(m)) ≤ δ, we have|xj − yj| ≤ δ and

|xi − yi| ≤ δ. The probability thatLλ
n,k does not outputmi

at the first iteration is:

Pr[xi ≥ xj ] ≤ Pr[yi + δ ≥ xj ]
≤ Pr[yi + δ ≥ yj − δ]
= Pr[yi + 2δ ≥ yj].

There are at most2δλ+ λ− γ − 1 possibleyj ’s less than or
equal toyi + 2δ. Thus,

Pr[xi ≥ xj ] ≤
(2δ + 1)λ− γ − 1

n− i
≤

2δλ+ λ

dλ
=

2δ + 1

d
.

Therefore, the probability thatLλ
n,k outputsmi correctly at

the first iteration is at least1− 2δ+1
d .

Corollary 7. Given a codewordx = Eλ
n,k(m) for somem

and an indexi, Lλ
n,k outputsmi correctly.

Proof: By Lemma 7, there existsℓ ≤ λ such thatLλ
n,k

terminates at theℓ-th iteration. Letj be the index picked at
theℓ-th iteration, we havexj 6= xi, wherej > i. Note thatx
is a codeword:xi < xj impliesmi = 0 andxi > xj implies
mi = 1. Hence,Lλ

n,k outputsmi correctly.
A private information retrieval (PIR) system consists of

q servers. All servers know a codewordx = (x1, . . . , xn)
representing a messagem = (m1, . . . ,mk), and a user
wants to know one bitmi of m via query a symbol
from each server. We say a PIR hasretrievability r if the
user can obtain the message bit with probabilityr. Let
D(s, i) be the distribution of entry queried from servers
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when the user tries to retrievemi. A PIR hasprivacy p if
maxi,j∈[k],s∈[q] ∆(D(s, i),D(s, j)) ≤ p, where∆(·, ·) is the
statistical distance. A(q, r, p)-PIR is a q-server PIR with
retrievability r and privacyp. A (q, r, p)-PIR has perfect
retrievability if r = 1 and perfect privacy ifp = 0.

With our FPACλ
n,k, we construct a(λ+1, 1, p)-PIR with

perfect retrievability and privacyp > 0. The scheme is
simple:

• For a messagem, we putx = Eλ
n,k(m) on all λ + 1

servers.
• We retrievemi byLλ

n,k by querying entries from servers
in a random order.

The perfect retrievability is guaranteed by Corollary 7. How-
ever, in order to retrievemi, xi must be queried from some
servers at certain positionsℓ > i, and we haverp > 0. We
leave the improvement on the privacyp as our future work.

ACKNOWLEDGMENT

We would like thank Torleiv Kløve for his helpful com-
ments and discussion, which inspire us to construct new
FPAs.

REFERENCES

[1] A. A. Babaev, “Procedures of encoding and decoding of permutations,”
Cybernetics and Systems Analysis, vol. 20, no. 6, pp. 861–863, Nov.
1984.

[2] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni,Flash memories.
Kluwer Academic Publishers, 1999.

[3] J. C. Chang, R. J. Chen, T. Kløve and S. C. Tsai, “Distance-preserving
mappings from binary vectors to permutations,”IEEE Trans. Inform.
Th., vol. 49, pp. 1054–1059, Apr. 2003.

[4] K. Efremenko, “3-query locally decodable codes of subexponential
length,” Proc. ACM Symp. Th. of Computing, 2009.

[5] S. Huczynska and G. L. Mullen, “Frequency permutation arrays,”
Journal of Combinatorial Designs, vol. 14, pp. 463–478, 2006.

[6] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank Modulation
for Flash Memories,” inProc. IEEE Internat. Symp. on Inform. Th.,
2008, pp. 1731-1735.

[7] A. Jiang, M. Schwartz and J. Bruck, “Error-Correcting Codes for Rank
Modulation,” in Proc. IEEE Internat. Symp. on Inform. Th., 2008, pp.
1736-1740.

[8] T. Kløve, “Spheres of Permutations under the Infinity Norm - Permu-
tations with limited displacement,”Reports in Informatics, Dept. of
Informatics, Univ. Bergen,Report no. 376, 2008.

[9] T. Kløve, “Generating functions for the number of permutations with
limited displacement,” The Electronic Journal of Combinatorics, 16
(2009), #R104.

[10] T. Kløve, T.-T. Lin, S.-C. Tsai and W.-G. Tzeng, “Permutation Arrays
Under the Chebyshev Distance,”IEEE Trans. Inform. Th., vol. 56, pp.
2611-2617, June 2010.

[11] T. T. Lin, S. C. Tsai and W. G. Tzeng, “Efficient Encoding and
Decoding with Permutation Arrays,” inProc. IEEE Internat. Symp.
on Inform. Th., 2008, pp. 211-214.

[12] K. W. Shum, “Permutation coding and MFSK modulation forfre-
quency selective channel,”IEEE Personal, Indoor and Mobile Radio
Communications, vol. 13, pp. 2063–2066, Sept. 2002.

[13] D. Slepian, “Permutation Modulation,”Proc. of the IEEE, vol. 53, pp.
228 – 236, Mar. 1965.

[14] T. G. Swart and H. C. Ferreira, “Decoding Distance-preserving Permu-
tation Codes for Power-line Communications,”Proc. IEEE AFRICON,
Windhoek, Namibia, Sept. 26-28, 2007.

[15] I. Tamo and M. Schwatz, “Correcting Limited-MagnitudeErrors in the
Rank-Modulation Scheme,”Proc. Inform. Th. and App. Workshop, San
Diago, CA, USA, Jan. 2010.

[16] L. Trevisan, “Some Applications of Coding Theory in Computational
Complexity,” Quaderni di Matematica, vol. 13, pp. 347-424, 2004.

[17] J. H. van Lint, R. M. Wilson,A Course in Combinatiorics., 2nd ed.
Cambridge, U.K.: Cambridge Univ. Press, 2001.
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