5.3 The MOV Attack

Rong-Jaye Chen

Department of Computer Science, National Chiao Tung University

ECC 2008

Rong-Jaye Chen
5.3 The MOV Attack

Outline

Rong-Jaye Chen
5.3 The MOV Attack

Introduction

- The MOV attack, named after Menezes, Okamoto, and Vanstone (1993), uses the Weil pairing to convert discrete log problem in $E(F_q)$ to one in $F_{q^m}^*$
- ☑ Let *E* be an elliptic curve over \mathbb{F}_q . Let *P*, *Q* ∈ *E*(\mathbb{F}_q). Let *N* be the order of *P*. Assume that

$$gcd(N,q) = 1.$$

Want to find k such that Q = kP.

R	ong-	Jaye	Chen
5.3	The	MOV	Attack

Lemma 5.1

Lemma 5.1

$$P, Q \in E(F_q), N = ord(P), gcd(N, q) = 1$$

 $\exists k \text{ such that } Q = kP \text{ if and only if } NQ = \infty \text{ and } e_N(P, Q) = 1$

Rong-Jaye Chen	
5.3 The MOV Attack	

Proof of Lemma 5.1

Proof:

Similar Source Sour

$$Q = kP \rightarrow NQ = kNP = \infty$$

also $e_N(P, Q) = e_N(P, P)^k = 1^k = 1$

⊠ "if" part:

$$gcd(N, q) = 1$$
, we have $E[N] \simeq \mathbb{Z}_N \oplus \mathbb{Z}_N$
Choose a point R such that $\{P, R\}$ is a basis of $E[N]$
Then $Q = aP + bR$

By Corollary 3.10, $e_N(P, R) = \zeta$ is a primitive *N*th root of unity.

If
$$e_N(P, Q) = 1$$
, then $1 = e_N(P, Q) = e_N(P, P)^a e_N(P, R)^b = \zeta^b$
 $\rightarrow b \equiv 0 \pmod{N}$
 $\rightarrow bR = \infty$
 $\rightarrow Q = aP$

Rong-Jaye Chen 5.3 The MOV Attack

ECC 2008 5 / 8

MOV attack - (1)

- ☑ Choose m , such that $E[N] \subset E(F_{q^m})$ By Corollary 3.11, $\mu_N \subset F_{q^m}$
- \bowtie MOV attack (Want to solve Q = kP for k.)
 - **O** Choose a random point $T \in E(F_{q^m})$
 - 2 Compute M = ord(T)
 - Solution Let $d = \operatorname{gcd}(M, N)$, and let $T_1 = (M/d)T$ Then $d = \operatorname{ord}(T_1)$, $d \mid N$, so $T_1 \in E[N]$
 - Compute $\zeta_1 = e_N(P, T_1)$ and $\zeta_2 = e_N(Q, T_1)$ Then both $\zeta_1, \zeta_2 \in \mu_d \subseteq F_{q^m}^*$
 - Solve discrete logarithm problem

$$\zeta_2 = \zeta_1^k \quad \text{in } F_{q^m}^*$$

This will give $k \pmod{d}$

Repeat with random points T until the lcm of d's is N. This determines k (mod N)

Rong-Jaye Chen 5.3 The MOV Attack

MOV attack - (2)

Potentially, m could be large, in which case the discrete log problem in group $F_{q^m}^*$ is just as hard as the original discrete log problem in $E(F_q)$. However, for supersingular curves, we can usually take m = 2.

Rong-Jaye Chen		
5.3 The MOV Attack		

ECC 2008

Proposition 5.3

Proposition 5.3

 E/F_q , suppose $a = q + 1 - \#E(F_q) = 0$ If $\exists P \in E(F_q)$ of order N, then $E[N] \subset E(F_{q^2})$

Proof:

(1)
$$\phi_q^2 - a\phi_q + q = 0$$

 $\rightarrow \phi_q^2 = -q$ (:: $a = 0$)

(2) Let
$$S \in E[N]$$

 $\because ord(P) = N$, $\#E(F_q) = q + 1$
 $\rightarrow N \mid q + 1 \iff -q \equiv 1 \pmod{N}$
By (1),
 $\phi_q^2(S) = -qS = 1 \cdot S = S$
By Lemma 4.5, $S \in E(F_{q^2})$

Ron	g-Jaye	Chen
5.3 Th	e MOV	Attack

ECC 2008 8 / 8

