2.8 Endomorphisms

Rong-Jaye Chen

Department of Computer Science, National Chiao Tung University

ECC 2008

Rong-Jaye Chen				
2.8 E	Indomor	phisms		

Outline

- Definition of endomorphism
 - Definition
 - Example
 - Transformation of rational functions
- Degree of endomorphism
 - Definition
 - Example
- Frobenius map
 - Proposition 2.20
 - Theorem 2.21
 - Lemma
 - Lemma 2.23
 - Lemme 2.25
- - Proposition
 - Proposition 2.27
 - Proposition 2.28

Definition of endomorphism

Define Endomorphism of E:

homomorphism $\alpha: E(\overline{K}) \to E(\overline{K})$

 $\boldsymbol{\alpha}$ is given by rational functions

i.e.

• $\alpha(x, y) = (R_1(x, y), R_2(x, y))$ with rational functions (quotients of polynomials) $R_1(x, y), R_2(x, y)$ with coefficients in $\overline{K}, \forall (x, y) \in E(\overline{K})$

$$a(P_1+P_2) = \alpha(P_1) + \alpha(P_2)$$

Example

Example

 $E: \quad y^2 = x^3 + Ax + B, \ \alpha(P) = 2P$ Then α is a homomorphism and $\alpha(x, y) = (R_1(x, y), R_2(x, y))$, where $R_1(x, y) = \left(\frac{3x^2 + A}{2y}\right)^2 - 2x$ $R_2(x, y) = \left(\frac{3x^2 + A}{2y}\right) \left(3x - \left(\frac{3x^2 + A}{2y}\right)^2\right) - y$ $\therefore \alpha \text{ is an endomorphism of } E.$

ECC 2008

4/21

Transformation of rational functions

🖂 Rewrite

$$R(x,y) = \frac{p_1(x) + p_2(x)y}{p_3(x) + p_4(x)y} \qquad \left(\times \frac{p_3(x) - p_4(x)y}{p_3(x) - p_4(x)y} \right)$$
$$\rightarrow R(x,y) = \frac{q_1(x) + q_2(x)y}{q_3(x)} \qquad (2.10)$$

Since
$$\alpha(x, -y) = \alpha(-(x, y)) = -\alpha(x, y)$$

 $\rightarrow R_1(x, -y) = R_1(x, y)$ and $R_2(x, -y) = -R_2(x, y)$

- ☑ If R_1 is written in the form (2.10), then $q_2(x) = 0$
- Solution If R_2 is written in the form (2.10), then $q_1(x) = 0$

ECC 2008

5/21

Transformation of rational functions (Continue)

So we assume

 $\alpha(x,y) = (r_1(x), r_2(x)y)$ with rational $r_1(x), r_2(x)$

ECC 2008

6/21

write $r_1(x) = p(x)/q(x)$

 \bowtie If q(x) = 0 for some (x,y) , then assume $lpha(x,y) = \infty$

 \bowtie If $q(x) \neq 0$, then $r_2(x)$ is defined. (Ex.2.14)

Definition

 \bowtie Define degree of endomorphism α :

$$\deg(\alpha) = \max \{ \deg(p(x)), \deg(q(x)) \}$$

If $\alpha = 0 \rightarrow \deg(0) = 0$

 \bowtie Define $\alpha \neq \mathbf{0}$ is a separable endomorphism :

If $r'_1(x) \neq 0 \quad \Leftrightarrow \quad \text{at least one of } p'(x) \text{ and } q'(x) \text{ is not zero}$

ECC 2008

7/21

Example 2.5

Example

Endomorphism $\alpha(P) = 2P$ (char. \neq 2,3):

$$R_1(x,y) = (\frac{3x^2 + A}{2y})^2 - 2x$$

$$\to \quad r_1(x) = \frac{x^4 - 2Ax^2 - 8Bx + A^2}{4(x^3 + Ax + B)}$$

ECC 2008

8/21

deg(α) = 4, and α is separable. ($\therefore q'(x) = 4(3x^2 + A)$ is not zero, including in char. 3, since if A = 0, then $x^3 + B$ has multiple roots!)

Example 2.6

Example

In char. 2 (By Section 2.7), $\alpha(P) = 2P$ in $y^2 + xy = x^3 + a_2x^2 + a_6$

$$\alpha(x,y) = (r_1(x), R_2(x,y))$$

$$r_1(x) = \frac{x^4 + a_6}{x^2} \qquad \therefore \deg(\alpha) = 4$$

$$p'(x) = 4x^3 = 0$$
, $q'(x) = 2x = 0$ $\therefore \alpha$ is not separable

In general, E/K, char.(K) = p, endomorphism $\alpha(Q) = pQ$ $\rightarrow \deg(\alpha) = p^2$, α is not separable. (See Proposition 2.27)

> Rong-Jaye Chen 2.8 Endomorphisms

ECC 2008 9 / 21

Frobenius map

☑ Define Frobeius map:

$$E/\mathbb{F}_q: \quad \phi_q(x,y) = (x^q, y^q)$$

☑ Lemma 2.19:

Let *E* be defined over \mathbb{F}_q . Then ϕ_q is an endomorphism of *E* of degree *q*, and ϕ_q is not separable

Proposition 2.20

Proposition 2.20

Let $\alpha \neq 0$ be a separable endomorphism of an elliptic curve *E*. Then

 $\deg \alpha = \#Ker(\alpha),$

where $Ker(\alpha)$ is the kernel of the homomorphism $\alpha : E(\overline{K}) \to E(\overline{K})$. If $\alpha \neq 0$ is not separable, then

 $\deg \alpha > \#Ker(\alpha).$

ECC 2008

11/21

Proof

Solution Write
$$\alpha(x,y) = (r_1(x), yr_2(x))$$
 with $r_1(x) = p(x)/q(x)$

If α is separable, then $r'_1 \neq 0$ so p'q - pq' is not the zero polynomial.

Let S be the set of $x \in \overline{K}$ such that (pq' - p'q)(x)q(x) = 0

Let
$$(a, b) \in E(\overline{K})$$
, satisfying
a $\neq 0, b \neq 0, (a, b) \neq \infty$
deg $(p(x) - aq(x)) = \max\{\deg(p), \deg(q)\} = \deg(\alpha)$
a $\notin r_1(S)$
(a, b) $\in \alpha(E(\overline{K}))$

 $\therefore pq' - p'q$ is not zero polynomial, $\therefore S$ is a finite set.

Proof - continue

Siven $(a, b) \in E(\overline{K})$ We claim exactly deg (α) points $(x_1, y_1) \in E(\overline{K})$ such that $\alpha(x_1, y_1) = (a, b)$.

For such a point,

$$\frac{p(x_1)}{q(x_1)} = a, \quad y_1 r_2(x_1) = b$$

Since $(a,b) \neq \infty$, $\therefore q(x_1) \neq 0$, $r_2(x_1)$ is defined.

$$\therefore y_1 = \frac{b}{r_2(x_1)}$$
 so we only need to count values of x_1

By assumption (2), p(x) - aq(x) = 0 has deg(α) roots, counting multiplicities.

Rong-Jaye Chen 2.8 Endomorphisms

ECC 2008 13/21

Proof - continue

 \boxtimes Suppose x_0 is a multiple root. Then

 $p(x_0) - aq(x_0) = 0$ and $p'(x_0) - aq'(x_0) = 0$

multiplying p = aq and aq' = p' yields

$$ap(x_0)q'(x_0) = ap'(x_0)q(x_0)$$

$$\therefore a \neq 0 \quad \rightarrow \quad x_0 \text{ is a root of } pq' - p'q$$

so $x_0 \in S$.

Therefore, $a = r_1(x_0) \in r_1(S)$, contrary to assumption (3).

 $\therefore p - aq$ has no multiple roots, and therefore has deg(α) distinct roots.

: there are exactly deg(α) points with $\alpha(x_1, y_1) = (a, b)$, the kernel of α has deg(α) elements.

ECC 2008

14/21

 \bowtie If α is not separable, trivial now.

Theorem 2.21

Theorem 2.21

Let *E* be an elliptic curve defined over a field *K*. Let $\alpha \neq 0$ be an endomorphism of *E*. Then $\alpha : E(\overline{K}) \to E(\overline{K})$ is surjective.

Proof:

▷ Let
$$(a, b) \in E(\overline{K})$$
.
Since $\alpha(\infty) = \infty$, we may assume that $(a, b) \neq \infty$
Let $r_1(x) = p(x)/q(x)$
Consider two cases:

1
$$p(x) - aq(x)$$
 is not constant polynomial

2
$$p(x) - aq(x)$$
 is constant polynomial

Proof - continue

- If p(x) aq(x) is not constant polynomial, then it has a root x_0 . Choose $y_0 \in \overline{K}$ to be either square root of $x_0^3 + Ax_0 + B$. Then $\alpha(x_0, y_0)$ is defined and equals (a, b') for some b'. Since $b'^2 = a^3 + Aa + B = b^2 \rightarrow b' = \pm b$ If b' = b, we're done. If b' = -b, then $\alpha(x_0, -y_0) = (a, -b') = (a, b)$
- If p(x) aq(x) is constant polynomial. → see Textbook p: 51

Lemma 2.23

Lemma 2.23

Let E be the elliptic curve $y^2 = x^3 + Ax + B$. Fix a point (u, v) on E. Write

$$(x, y) + (u, v) = (f(x, y), g(x, y)),$$

where f(x, y) and g(x, y) are rational functions of x, y (the coefficients depend on (u, v)). Then

$$\frac{\frac{d}{dx}f(x,y)}{g(x,y)} = \frac{1}{y}.$$

ECC 2008

17/21

NB. $\frac{d}{dx}f(x,y) = f_x(x,y) + f_y(x,y)y'$

Lemma 2.25

Lemma 2.25

Let $\alpha_1, \alpha_2, \alpha_3$ be nonzero endomorphisms of an elliptic curve E with $\alpha_1 + \alpha_2 = \alpha_3$. Write

$$\alpha_j(x,y) = (R_{\alpha_j}(x), yS_{\alpha_j}(x)).$$

Suppose there are constants $c_{\alpha_1}, c_{\alpha_2}$ such that

$$rac{R'_{lpha_1}(x)}{S_{lpha_1}(x)} = c_{lpha_1}, \ rac{R'_{lpha_2}(x)}{S_{lpha_2}(x)} = c_{lpha_2}.$$

Then

$$\frac{R'_{\alpha_3}(x)}{S_{\alpha_3}(x)} = c_{\alpha_1} + c_{\alpha_2}$$

Rong-Jaye Chen 2.8 Endomorphisms

ECC 2008 18 / 21

Proposition 2.27

Proposition 2.27

Let *E* be an elliptic curve defined over a field *K* , and let *n* be a nonzero integer. Suppose that multiplication by *n* on *E* is given by

$$n(x,y) = (R_n(x), yS_n(x))$$

for all $(x, y) \in E(\overline{K})$, where R_n and S_n are rational functions. Then

$$\frac{R_n'(x)}{S_n(x)} = n.$$

Therefore, multiplication by n is separable if and only if n is not a multiple of char(K).

R	ong-J	laye	Chen
2.8	Endc	mor	phisms

19/21

Proposition 2.28

Proposition 2.28

Let *E* be an elliptic curve defined over \mathbb{F}_q , where *q* is a power of the prime *p*. Let *r* and *s* be integers, not both 0. The endomorphism $r\phi_q + s$ is separable if and only if $p \nmid s$

Proof:

 \bowtie Write the multiplication by r endomorphism as

$$r(x,y) = (R_r(x), yS_r(x)).$$

Then

$$(R_{r\phi_q}(x), yS_{r\phi_q}(x)) = (r\phi_q)(x, y) = (R_r^q(x), y^q S_r^q(x))$$

$$= \left(R_r^q(x), y(x^3 + Ax + B)^{(q-1)/2} S_r^q(x) \right).$$

Proof - continue

⊠ Therefore,

$$c_{r\phi_q} = R'_{r\phi_q}/S_{r\phi_q} = qR_r^{q-1}R'_r/S_{r\phi_q} = 0.$$

Also, $c_s = R'_s/S_s = s$ by Proposition 2.27. By Lemma 2.25,

$$R'_{r\phi_q+s}/S_{r\phi_q+s} = c_{r\phi_q+s} = c_{r\phi_q} + c_s = \mathbf{0} + s = s.$$

Therefore, $R'_{r\phi_{a}+s}\neq$ 0 if and only if $p\nmid s$.

Rong-Jaye Chen 2.8 Endomorphisms ECC 2008 21 / 21