2.8 Endomorphisms

Rong-Jaye Chen

Department of Computer Science, National Chiao Tung University

ECC 2008

Outline

Definition of endomorphism

- **•** Definition
- Example
- **•** Transformation of rational functions
- Degree of endomorphism
	- **•** Definition
	- Example

Frobenius map Proposition 2.20

Theorem 2.21

- **C** Lemma 2.23
- **C** Lemme 2.25

- **Proposition**
	- **Proposition 2.27**
	- Proposition 2.28

Rong-Jaye Chen 2.8 Endomorphisms

Definition of endomorphism

 \boxtimes Define Endomorphism of E:

homomorphism $\alpha : E(\overline{K}) \to E(\overline{K})$

 α is given by rational functions

i.e.

 Ω $\alpha(x, y) = (R_1(x, y), R_2(x, y))$ with rational functions (quotients of polynomials) $R_1(x, y)$, $R_2(x, y)$ with coefficients in \overline{K} , $\forall (x, y) \in E(\overline{K})$

$$
\mathbf{2} \ \alpha(P_1 + P_2) = \alpha(P_1) + \alpha(P_2)
$$

Example

Example

 $E: y^2 = x^3 + Ax + B, \alpha(P) = 2P$ Then α is a homomorphism and $\alpha(x, y) = (R_1(x, y), R_2(x, y))$, where $R_1(x,y) = \left(\frac{3x^2 + A}{2y}\right)$ $2y$ $\bigg)^2 - 2x$ $R_2(x,y) = \left(\frac{3x^2 + A}{2y}\right)$ $2y$ $\int 3x - \left(\frac{3x^2 + A}{2x} \right)$ $2y$ $\left\langle \right\rangle ^{2}$ $-y$ ∴ α is an endomorphism of E.

Transformation of rational functions

 \mathbb{R} Rewrite

$$
R(x, y) = \frac{p_1(x) + p_2(x)y}{p_3(x) + p_4(x)y} \left(\times \frac{p_3(x) - p_4(x)y}{p_3(x) - p_4(x)y}\right)
$$

$$
\to R(x, y) = \frac{q_1(x) + q_2(x)y}{q_3(x)} \qquad (2.10)
$$

$$
\text{ Since } \alpha(x, -y) = \alpha(-(x, y)) = -\alpha(x, y)
$$

\n
$$
\rightarrow R_1(x, -y) = R_1(x, y) \text{ and } R_2(x, -y) = -R_2(x, y)
$$

- \mathbb{B} If R_1 is written in the form (2.10), then $q_2(x) = 0$
- \mathbb{B} If R_2 is written in the form (2.10), then $q_1(x) = 0$

ECC 2008
5/21

Rong-Jaye Chen 2.8 Endomorphisms

Transformation of rational functions (Continue)

\boxtimes So we assume

 $\alpha(x, y) = (r_1(x), r_2(x)y)$ with rational $r_1(x), r_2(x)$

write $r_1(x) = p(x)/q(x)$

 \mathbb{B} If $q(x) = 0$ for some (x, y) , then assume $\alpha(x, y) = \infty$

 \mathbb{B} If $q(x) \neq 0$, then $r_2(x)$ is defined. (Ex.2.14)

Rong-Jaye Chen 2.8 Endomorphisms

ECC 2008

Definition

 \mathbb{B} Define degree of endomorphism α :

$$
\mathsf{deg}(\alpha) = \max \{ \mathsf{deg}(\, p(x) \,), \mathsf{deg}(\, q(x) \,) \}
$$

If $\alpha = 0 \rightarrow deg(0) = 0$

 \Box Define $\alpha \neq 0$ is a separable endomorphism :

If r'_1 $\gamma_1'(x)\neq 0 \quad \Leftrightarrow \quad$ at least one of $p'(x)$ and $q'(x)$ is not zero

Rong-Jaye Chen 2.8 Endomorphisms

ECC 2008

Example 2.5

Example

Endomorphism $\alpha(P) = 2P$ (char. \neq 2,3):

$$
R_1(x,y) = \left(\frac{3x^2 + A}{2y}\right)^2 - 2x
$$

$$
\rightarrow r_1(x) = \frac{x^4 - 2Ax^2 - 8Bx + A^2}{4(x^3 + Ax + B)}
$$

ECC 2008

 $\deg(\alpha)=$ 4, and α is separable. $(\because q'(x)=4(3x^2+A)$ is not zero, including in char. 3, since if $A=$ 0, then x^3+B has multiple roots!)

Example 2.6

Example

In char. 2 (By Section 2.7), $\alpha(P)=2P$ in $y^2+xy=x^3+a_2x^2+a_6$

$$
\alpha(x,y)=(r_1(x),R_2(x,y))
$$

$$
r_1(x) = \frac{x^4 + a_6}{x^2} \qquad \therefore \deg(\alpha) = 4
$$

$$
p'(x) = 4x^3 = 0
$$
, $q'(x) = 2x = 0$ $\therefore \alpha$ is not separable

In general, E/K , $char(K) = p$, endomorphism $\alpha(Q) = pQ$ \rightarrow deg $(\alpha)=p^2,\,\alpha$ is not separable. (See Proposition 2.27)

> Rong-Jaye Chen 2.8 Endomorphisms

ECC 2008
9/21

Frobenius map

 \boxtimes Define Frobeius map:

$$
E/\mathbb{F}_q: \quad \phi_q(x,y) = (x^q, y^q)
$$

 \bowtie Lemma 2.19:

Let E be defined over \mathbb{F}_q . Then ϕ_q is an endomorphism of E of degree q, and ϕ_q is not separable

Proposition 2.20

Proposition 2.20

Let $\alpha \neq 0$ be a separable endomorphism of an elliptic curve E. Then

 $deg \alpha = \#Ker(\alpha),$

where $Ker(\alpha)$ is the kernel of the homomorphism $\alpha : E(\overline{K}) \to E(\overline{K})$. If $\alpha \neq 0$ is not separable, then

 $deg \alpha > \#Ker(\alpha)$.

ECC 2008

Rong-Jaye Chen 2.8 Endomorphisms

Proof

$$
\text{ and Write } \alpha(x, y) = (r_1(x), y_2(x)) \text{ with } r_1(x) = p(x)/q(x)
$$

If α is separable, then r'_1 $y_{1}' \neq 0$ so $p'q - pq'$ is not the zero polynomial.

Let S be the set of $x\in\overline{K}$ such that $(pq'-p'q)(x)q(x)=0$

Let
$$
(a, b) \in E(\overline{K})
$$
, satisfying
\n $a \neq 0, b \neq 0, (a, b) \neq \infty$
\n $\deg(p(x) - aq(x)) = \max\{\deg(p), \deg(q)\} = \deg(\alpha)$
\n $a \notin r_1(S)$
\n $(a, b) \in \alpha(E(\overline{K}))$

∵ $pq'-p'q$ is not zero polynomial, ∴ S is a finite set.

Proof - continue

 \blacksquare Given $(a, b) \in E(\overline{K})$ We claim exactly deg(α) points $(x_1, y_1) \in E(\overline{K})$ such that $\alpha(x_1, y_1) = (a, b).$

For such a point,

$$
\frac{p(x_1)}{q(x_1)} = a, \quad y_1 r_2(x_1) = b
$$

Since $(a, b) \neq \infty$, ∴ $q(x_1) \neq 0$, $r_2(x_1)$ is defined.

$$
\therefore y_1 = \frac{b}{r_2(x_1)} \quad \text{so we only need to count values of } x_1
$$

By assumption (2), $p(x) - aq(x) = 0$ has $\deg(\alpha)$ roots, counting multiplicities.

ECC 2008

Proof - continue

 \mathbb{B} Suppose x_0 is a multiple root. Then

 $p(x_0) - a q(x_0) = 0$ and $p'(x_0) - a q'(x_0) = 0$

multiplying $p = aq$ and $aq' = p'$ yields

$$
ap(x0)q'(x0) = ap'(x0)q(x0)
$$

$$
\therefore a \neq 0 \quad \to \quad x_0 \text{ is a root of } pq' - p'q
$$

so $x_0 \in S$.

Therefore, $a = r_1(x_0) \in r_1(S)$, contrary to assumption (3).

∴ $p - aq$ has no multiple roots, and therefore has $deg(\alpha)$ distinct roots.

∵ there are exactly deg(α) points with $\alpha(x_1, y_1) = (a, b)$, the kernel of α has deg(α) elements.

ECC 2008

 $\mathbb B$ If α is not separable, trivial now.

Rong-Jaye Chen 2.8 Endomorphisms

Theorem 2.21

Theorem 2.21

Let E be an elliptic curve defined over a field K. Let $\alpha \neq 0$ be an endomorphism of E. Then $\alpha : E(\overline{K}) \to E(\overline{K})$ is surjective.

Proof:

\n- ✓ Let
$$
(a, b) \in E(\overline{K})
$$
.
\n- Since $\alpha(\infty) = \infty$, we may assume that $(a, b) \neq \infty$.
\n- Let $r_1(x) = \frac{p(x)}{q(x)}$.
\n- Consider two cases:
\n

$$
\bullet \ \ p(x) - aq(x) \ \hbox{is not constant polynomial}
$$

2
$$
p(x) - aq(x)
$$
 is constant polynomial

Proof - continue

- \mathbb{B} If $p(x) aq(x)$ is not constant polynomial, then it has a root x_0 . Choose $y_0 \in \overline{K}$ to be either square root of $x_0^3 + Ax_0 + B$. Then $\alpha(x_0,y_0)$ is defined and equals (a,b') for some $b'.$ Since $b^2 = a^3 + Aa + B = b^2 \rightarrow b' = \pm b$ If $b' = b$, we're done. If $b' = -b$, then $\alpha(x_0, -y_0) = (a, -b') = (a, b)$
- \mathbb{B} If $p(x) aq(x)$ is constant polynomial. \rightarrow see Textbook p: 51

Lemma 2.23

Lemma 2.23

Let E be the elliptic curve $y^2=x^3+Ax+B$. Fix a point (u,v) on E . **Write**

$$
(x, y) + (u, v) = (f(x, y), g(x, y)),
$$

where $f(x, y)$ and $g(x, y)$ are rational functions of x, y (the coefficients depend on (u, v)). Then

$$
\frac{\frac{d}{dx}f(x,y)}{g(x,y)} = \frac{1}{y}.
$$

ECC 2008

NB. $\frac{d}{dx} f(x, y) = f_x(x, y) + f_y(x, y)y'$

Lemma 2.25

Lemma 2.25

Let $\alpha_1, \alpha_2, \alpha_3$ be nonzero endomorphisms of an elliptic curve E with $\alpha_1 + \alpha_2 = \alpha_3$. Write

$$
\alpha_j(x,y)=(R_{\alpha_j}(x),yS_{\alpha_j}(x)).
$$

Suppose there are constants $c_{\alpha_1}, c_{\alpha_2}$ such that

$$
\frac{R'_{\alpha_1}(x)}{S_{\alpha_1}(x)} = c_{\alpha_1}, \ \frac{R'_{\alpha_2}(x)}{S_{\alpha_2}(x)} = c_{\alpha_2}.
$$

Then

$$
\frac{R'_{\alpha_3}(x)}{S_{\alpha_3}(x)} = c_{\alpha_1} + c_{\alpha_2}
$$

Proposition 2.27

Rong-Jaye Chen 2.8 Endomorphisms

Proposition 2.27

Let E be an elliptic curve defined over a field K, and let n be a nonzero integer. Suppose that multiplication by n on E is given by

$$
n(x,y)=(R_n(x),yS_n(x))
$$

for all $(x, y) \in E(\overline{K})$, where R_n and S_n are rational functions. Then

$$
\frac{R'_n(x)}{S_n(x)} = n.
$$

Therefore, multiplication by n is separable if and only if n is not a multiple of $char(K)$.

Proposition 2.28

Proposition 2.28

Let E be an elliptic curve defined over \mathbb{F}_q , where q is a power of the prime p . Let r and s be integers, not both 0. The endomorphism $r\phi_q + s$ is separable if and only if $p \nmid s$

Proof:

 \boxtimes Write the multiplication by r endomorphism as

$$
r(x,y)=(R_r(x),yS_r(x)).
$$

Then

$$
(R_{r\phi_q}(x), yS_{r\phi_q}(x)) = (r\phi_q)(x, y) = (R_r^q(x), y^q S_r^q(x))
$$

$$
= \left(R_r^q(x), y(x^3 + Ax + B)^{(q-1)/2} S_r^q(x)\right).
$$

Proof - continue

Rong-Jaye Chen 2.8 Endomorphisms

\boxtimes Therefore,

$$
c_{r\phi_q}=R'_{r\phi_q}/S_{r\phi_q}=qR_r^{q-1}R'_r/S_{r\phi_q}=0.
$$

Also, $c_s = R'_s/S_s = s$ by Proposition 2.27. By Lemma 2.25,

$$
R'_{r\phi_q+s}/S_{r\phi_q+s} = c_{r\phi_q+s} = c_{r\phi_q} + c_s = 0 + s = s.
$$

Therefore, $R'_{r\phi_q+s}\neq 0$ if and only if $p\nmid s$.

