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!'_ Elliptic Curve Cryptography (ECC)



1. Elliptic Curves

= Over Fields of Characteristic p>3

= Curve form
E:Y2=X3+aX+b
wherea, b € F,, g = p"
4a3+27b2+0
= Group operation

given P,(Xxy,Y1) and P,(X,,Y,)
compute P5(x3,y;) = P;+P,

/(XP+Q1 yP+Q’)
-
P‘|‘Q \(\XP+Q’ yP+Q)




Example of EC over GF(p)

= Example: p=23,a=1,b=0
E.o(Z2)={(x,y)€Z5" 1 y? =x7 +x} {0}
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| Example of EC over GF(p)

= Addition (P,=P,)

Computational Cost
| +3 M

= Doubling (P,=P,)

Computational Cost
|+4 M
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1. Elliptic Curves

= Over Fields of Characteristic 2
= Curve form
E: Y2+ XY=X3+aX2+b
where a, b € F,, b#0, q = 2"
= Group operation

given P,(xy,y;) and P,(X,,Y,)
compute P5(X5,y3) = P;+P,



% Example of EC over GF(2™)

GF(2™)=Z,[x]/ p(x) ,Pp(X)=x*+x+1

E: yo+xy=x>+0g*x°+1
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* Example of EC over GF(2™)

= Addition (P,=P,)

Computational Cost
|+2M+S

=z Doubling (P,=P,)

Computational Cost
|+2M+S

po.



| 2. Elliptic Curve DLP

= Basic computation of ECC

P+P+..+P

k times

u Q = kP =
where P is a curve point, k is an integer

= Strength of ECC
= Given curve, the point P, and kP
It is hard to recover k

- Elliptic Curve Discrete Logarithm Problem
(ECDLP)
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Elliptic Curve Security

Symmetric | RSA and Diffie-Hellman | Elliptic Curve Years
Key Size Key Size Key Size
(bits) (bits) (bits)

80 1024 160 ~2010
112 2048 224 ~2030
128 3072 256
192 7680 384
256 15360 521

NIST Recommended Key Sizes

pll.



!'_ Pairing-based Cryptography (PBC)



1. Pairings

= Divisors

= Definition
= Principal Divisors

= Pairings
= [ate Pairings

= Weil Pairings
= More on Pairings
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Definition of Divisors

= E/K, Pe E(K), [P]:aformal symbol of P
(1) Definition
A divisor D on E is a finite linear combination of the formal symbols
with integer coefficients:

D:ZHJ'[P;], HJ‘EZ
J

(2) Definition
Div(E) : group of divisors in (1)
(3) Define degree and sum of a divisor

deg(3;a/lP)]) = 3 a; €Z B
sum(¥;aj[P}]) = %, a,P; € E(K)

pl4.



Functions on E

= E/K:y"=x+Ax+ B

(1) Definition
A function on £ is a rational function

f(x, ») € K(x, )

that is defined for at least one point in E(K) . (e.g. rational function
1/(* = x> — Ax — B) is not allowed.)

(2) Examples

E:y=x—-x

f(x, y) = x/y is defined at (0, 0) on E!

2= _ -0 at(,0)
y  xc-1
(3) Definition
A function fhasazeroat Pif f(P) =0
A function f has a pole at P if f(P) = o

p15.



Order of fat P

(1) Definition
For each P, 1 a function up (a uniformizer at P ) with up(P) = 0 and
such that every function f(x, y) can be written in

f=upg, with reZandg(P)#0, o
r = ordp(f) : orderof f at P

(2) Example

Y =x —x, u,0)(x, ¥) =y a uniformizer at (0, 0)
Ord({]‘ (})(x) =7

X =Y = Soord, 0)(x) = 2

and OF’d((}, 0)(.1?/)2) =1

pl6.



Principal Divisors (1/3)

(1) Definition
fisafunctonon £, f#0
the divisor of f

div(f) £ Z ordp(f)[P] € Diu(E)

PeE(K)

(2) Proposition
f # 0is afunctionon £ . Then
1. f has only finitely many zeros and poles

2. deg(div(f)) =0
3. If f has no zero or pole (so div(f) = 0 ), then f is a constant.

(3) Definition

A divisor D is a principal divisor if it is the divisor of a function.
l.e. D =div(f) , for some f

pl7.



Principal Divisors (2/3)

(4) Suppose Py, P,, P3 are 3 points on E that lie on the line
ax+by+c=0
Then f(x, y) = ax + by + ¢ has zeros at P, P,, P; . If b # 0 then f has
a triple pole at o .
Therefore

dfv(ax + by + C) — [P]] + [PQ] -+ [P3] — 3[00]
The line through P; = (x3, y3)and —P3isx—x3 =0.

div(x — x3) = [P3] + [-P3] — 2[0]

p18.



% Principal Divisors (3/3)

(4) Therefore,

div(ax+ by + ¢

) = div(ax + by + ¢) — div(x — x3)
X — X3

= [P1]+ [P2] = [-P3] — [0]
Since Pi+ P, =-Ps;onE. So

[P1]+[P2] = [Py + P2] + [e] +dfv(”“ by + C)

X — X3

D : divisor on E with deg(D) = 0
— 1 f on E with div(f) = D if and only if sum(D) = co

p19.



% Group Relation

P(E) : principal divisors on E

p20.



% Example (1/2)

sa E/Fy; v =x° +4x,
D = [(0, 0)] +[(2, )] + [(4, 5)] + [(6, 3)] = 4[co]
odeg(D) =0, sum(D) = oo
By theorem, D is a divisor of a function.
Let’s find the function.

(1) The line through (0, 0), (2,4)isy—-2x=0.

It is tangentto £ at (2, 4), so div(y — 2x) = [(0, 0)] + 2[(2, 4)] — 3[c0]
(2) The vertical line through (2, 4)isx-2=0,

divix=2)=1[(2, 4)] + [(2, —4)] — 2[ 0]

y—2x
x—2

L D=(2,-4)]+ div( ) + [(4, 5)] + [(6, 3)] — 3[o0]
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% Example (2/2)

=2 (Continue):
(3) Similarly,

[(4, 5)] +[(6, 3)] = [(2, 4)] + [eo] + a'fv(

y—2x

- D=[(2, -4)] + d:’v(

5 )+ (2, 4)] + div(

y+x+2
x—2

y+x+2
X =2

) = 2[ 0]

x—2

R D=dfv(x—Z)+d£v(y_2;)+dfv(y+x+2)

, (@—2x)(y+x+2))
= div

x—2

(4) y=2x)py+x+2)=)> —xy—2x> + 2y —4x

= x> —xy—2x* +2y
= (x = 2)(x* - y)
o D =div(x* —y)

( Since y* = x° + 4x)

p22.



% Pairings

=2 In the following slides, we use

[n]P for nP
n(P) for n| P]
(1) for div(f)

p23.



Preliminaries (1/2)

E is an elliptic curve defined over F,, whose characteristic is p.
r is a large prime which divides #E(F,), where ged(r, p) = 1.
,urz{ueﬁglu”z 1}.

The embedding degree k is the smallest positive integer such that
k
rlg—1.

Then, F = F,y(u,).

p24.



Preliminaries (2/2)

< (IF;A_)F ={u |ue IF:;&}.

9 (IE‘})” Is a subgroup of sz.

@ The group IF-“;J(F;)’ IS isomorphic to y,.
= E(F)[r] = {P € E(Fy) | [F]P = oo},
= F’E(Fqk) ={[r]P | p € E(Fqk)}.

@ rE(F,)is a subgroup of E(F ).
o |E(FE )]l = |EFE )/ rEE )|

@ In many cases of relevance for cryptography, one can represent
E(IF)/rE(F ) using the points of E(F)[r].

p25.



% Tate Pairing (1/2)

< Let f be a function and D = Zpnp(P) be a divisor, then

J(D) =Tlpf(P)™.

= Let P e E(Fqk)[r].
@ Since [r]P = oo, there is a function f such that (/) = r(P) — r(c0).
= Let Q € E(F ) /rE(F ).

@ Construct a divisor D = (O + §) — (5) by choosing an arbitrary point
S € E(F ) such that the supports of (/) and D are disjoint.

p26.



Tate Pairing (2/2)

The Tate pairing
<'= ')r : E(ng)[?‘] X E(Fqk)/rE(Fqk) — P;A/(F;k)r
Is defined by

For practical purposes, the reduced Tate pairing unifies the result of
the Tate pairing by

e(P,Q) = (P,O) V"

which maps into the group u, C ]F;k.
If k> 1or PerE(F,), then

e(P,P) = 1.

p27.



% Properties of Tate Pairing

= Bilinearity: For all P, Py, P, € E(F «)[r] and
0.0, 0; € E(F)/rE(F ),

(Pl + PQ! Q)."' - (P], Q)F(Pzz' Q)F

and

(P, 01+ O2)r = (P, OQ1)(P, 02),.

= Non-degeneracy:
@ Forall P € E(F )[r]\{oo}, there is some Q € E(F)/rE(EF) such that
(P, Q). # 1.

o Similarly, for all Q € E(F)/rE(F,) with O & rE(F ), there is some
P € E(F)[r] such that (P, Q), # 1.
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% The Idea of Miller’'s Algorithm

=2 To compute the Tate pairing, we need to construct a function f such
that (/) = r(P) — r(c0).

= Write f; for a function such that
(/i) = i(P) = ([{]P) — (i = 1)(c0).
Note that /| = 1

=2 Let / be the straight line across [i]P and [j]P, and v be the verticle line
across [i + j|P, then

(I/v) = ([i]P) + (L/1P) = ([i + jIP) — (0).

[
ﬁ+j — fff;;

p29.



Weil Pairing

E'is an elliptic curve defined over I, whose characteristic is p.
r is a large prime which divides #E£(F,), where ged(r, p) = 1.
k" is the smallest positive integer such that £[r] c E(F ).

Let P, O € E|r] and construct degree zero divisors D = (P + §) — (5),
D" = (0 + T) - (T) such that the supports of D and D’ are disjoint.

Let (/) =rD, and (g) = rD’.
The Weil pairing is a map
eyt E[r] X E[r] = pr € F v
defined by
e-(P, Q) = f(D")/g(D).

p30.



% Properties of Weil Pairing

= Bilinearity: For all P, P’, O, O’ € E[r],

e(P+ P, 0) = e(P, Qe (P, 0)

and

ey (P, Q T Qr) = e (P, Q)EF(R QI)

= Non-degeneracy: Ife.(P,Q) =1 forall O € E[r], then P = 0.
=2 Alternating: e¢.(P,P)=1and so e, (P,0) =e.(0,P)".
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% Tate Pairing vs. Weil Pairing

= If & (Y, Y, ther

e(P, Q)
e(Q,P)

e (P, Q) =

=2 The Tate pairing requires working over F_« while the Weil pairing
requires the potentially much larger field F ..

@ Ifr{(q—1)and ged(r,q) =1, thenk =£k".

p32.



More on Pairings

=2 Distortion Maps:
o Let P € E(F,) have prime order r, and suppose k > 1.

@ Suppose E(F ) has no points of order .

@ Let ¢ be an endomorphism of £ such that ¢(P) ¢ E(F,).
@ o(P.¢(P) # 1.

@ The endomorphism ¢ is called a distortion map.
=a If an elliptic curve £ has a distortion map, then E is supersingular.

=1 Use distortion maps, and restrict the pairing to a single cyclic
subgroup.

@ In this case, O = [m]P.
Q Symmetry:
e(Q, ¢(P)) = e([m]P, p(P)) = e(P, [m]p(P)) = e(P, $(Q)).

p33.



Distortion Maps

Elliptic curve data

E: y? =x? +a over F,, wherep = 2 (mod 3)
#E(F,) =p + 1
Distortion map (x,y) = ({3x,y), where 3 = 1.

E: y* =x® +x over F,, where p = 3 (mod 4)
HE(F,) = p + 1

Distortion map (x,y) - (—x,iy), where i = —1.

E: y? =x’+a over F,z, where p =5 (mod 6)

and a € F2,a € [, is a square which is not a cube.
#E(F,2) =p* —p+1
Distortion map (x,y) +~ (xP/(ya®=2/3),yP/aP-1/2),
where y € F s satisfies y* = a.

Ei: y*+y=x>+x+a; over F,,wherea; = 0anda, =1
#E(F,) = 2! +20#1/2 £ 1 (1 odd)

Distortion map (x,y) = (u®x + s%y + u®sx + s), where u € F,2
and s € F,s satisfyu* +u+1=0ands*+ (u+1)s+1=0.

E;: y* =x% —x+a; over F;,wherea; =landa, = -1

#E (F,) = 3' 4+ 3M141/2 4 1 (1 odd)

Distortion map (x,y) = (o — x,iy), wherei € F;z and a € Fya
satisfyi* = —land o® —a—a; = 0.

p34.



Modified Pairings

= E(F,) is supersingular with r | #£(F,) for some prime r.

=2 ¢ Is the distortion map of £.

=2 The embedding degree £ > 1 and assume E(F ) has no points of

order 2.

= Put Gy = (P), where P € E(F;)\{co}, and G3 = p;.

= Modified Pairings:

o Q, R € G].
Q@ The modified pairing
e : G| X G] — G3

is defined by
e(Q,R) = e(Q, d(R))

@ It has bilinearity, symmetry, and non-degeneracy.
p35.



% 2. Cryptography from Pairings

= Key Distribution Schemes

= Identity-based Non-interactive Key Distribution
= Three-party Key Distribution

= Signature Schemes

» Identity-based Signature
= Short Signature

p36.



% ID-based Non-interactive Key Distribution

= Sakai, Ohgishi, and Kasahara (SCIS 2000)
= Setup & Extract: The same as Identity-Based Encryption

@ The system parameters: (G, G3, ¢, H, ).
@ User A: public key Q4 = H(ID,), and private key S 4 = [5]04.
@ User B: public key O = H(IDp), and private key Sz = [s]O5.

= Key Agreement:
@ User A computes é(S 4, Op) = e(0y4, Op)°.

@ User B computes (04, S53) = e(0O4, Op)°.

p37.



Three-party Key Distribution

= Joux (ANTS 2000)
= Setup:

@ The system parameters: (G, G3, e, P).

= Key Agreement:

@

@

User A select a number a, and broadcast [a]P.
User B select a number b, and broadcast [5]P.
User C select a number ¢, and broadcast [¢]P.
c]P)? = &(P, P)™*.
|P)" = &(P. P)"*.

User A computes é(

User B computes é(

User C computes &(]

D]

al

a

c

D]

_L_

P)ﬂ — E,{ P... P)m‘m_

p38.



ID-based Signature

: Cha and Cheon (PKC 2003)

. Setup & Extract: The same as Identity-Based Encryption
@ The system parameters: (G, Gs.é, P, Oy, H, H5).
where H> : {0, 1} x G| — £,
Sign: A want to sign the message M

@ Choose arandom e Z;.
Q Compute U = [1]04, h = Hy(M. U),and V = [t + h]S 4.
@ The signature o = (U, 1)

Verify: Someone verify the signed message (M, (U, V)).
@ Compute h = H,(M, U), and Q4 = H(ID,).
@ Check if &0y, U + [h]O,) = &P, V).
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I

Short Signature

Boneh, Lynn, and Shacham (ASIACRYPT 2001)
Setup:

@ The system parameters: (G, G3, e, P).
Extract: The user A chooses his own private key.

@ Choose x € Z; as the private key, and compute the public key

Q4 = [x]P
Sign: A want to sign the message M

@ The signature o = [x]H(M).
Verify:

@ Get the public key O, of A.

@ Check if &(c, P) = &(H(M), Q).

p40.



!'_ Applications of PBC



% 1. ID-based Encryption

= HiStOI'y
= Certificate-based Cryptography

= Identity-based Cryptography
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History

= Shamir (CRYPTO 1984) raised the open
problem.

= Two solutions:

= Pairing-based approach:
Boneh and Franklin (CRYPTO 2001)

= Based on the Quadratic Residuosity problem:
Cocks (Crypto and Coding 2001)
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% Certificate-based Cryptography

Certificate Authority
(CA)

KU, is random

Certificate(Bob, KUBob)\ (A'z':,h?;t'cat'o"
Bob

- ~ Certificate(Bob, KU;,;)

l KUgp l KR
Encrypt Decrypt
or p—-

Verify Sign

p44.



% Identity-based Cryptography

ID, ,, is arbitrary and meaningful
ex: Bob@hotmail.com

or 0912345678

and master key
Private Key Generator
(PKG)

Setup
generate params

Extract
generate KR,

(IDBob)

By 305 Al MASLEL Key Authentication
KRipg

l(params, IDg.)

Encrypt

or

Verify

| KRipgos

Decrypt
or

Sign

p45.



Protocol (1/2)

= Setup:

@ Common parameters: G, G3, é, and P.

@ PKG select a master key s, and keep in secret. The public parameter
Oy = Ppup = [5]P.

@ Two hash functions:
H:{0,1} — G, (Map to Point), and
H, : Gz — {0, 1}" for some chosen #.

@ The system parameters: (G, Gs, é, P, Oy, n, H, H}).
= Extract:

@ Giventhe ID of A ID,4 € {0, 1}*, the public key of Ais Q4 = H(ID,).

@ The private key of Ais 54 = [s]04.
p46.



% Protocol (2/2)

= Encrypt: Someone would like to encrypt message M for A.

@ Get the public key of Aby Q4 = H(ID,).
@ Choose arandom ¢ € Z.
@ The cipher C = (tP, M & H,(&(04, Op)").

= Decrypt: A receives the encrypted message C = (U, V)

@ Checkif rU = .
@ The message M = V& H,(&(S 4, U)).

p47/.



% 2. Searchable Encryption [BCOP 2003]

— Previous Encryption

6)

p48.



Goal

= (Goal: searching on encrypted data.
= Example:

@ Bob sends email to Alice encrypted under Alice’s public key.
@ Both contents and keywords are encrypted.

@ The email is stored on a mail server.

@ Alice want to specify a few keywords to read email.

@ The mail server should be able to search, but learn nothing else about
the email.

p49.



BCOP Scheme

Bob encrypts his email using a standard public key system.

He appends to the resulting ciphertext a Public-key Encryption with
Keyowrd S earch (PEKS) of each keyword.

To send a message M with keywords W, ..., W,,, Bob sends

EApuh(M) | PEKS(APHET&WI} | | PEKS(APHEHWH?)

There is a certain trapdoor T for a specific keyword W

The mail server can test whether 7 = W’ by use of PEKS(4 5, W)
and Ty.

If W # W’, the mail server learns nothing more about #”.
p50.



PEKS

=2 A public key encryption with keyword search scheme consists the
following polynomial time randomized algorithms:

@ KeyGen(s): takes a security parameter, s, and generates a
public/private key pair 4.5, Apriv-

@ PEKS(A4,,, W). for a public key 4,,, and a work W, produces a
searchable encryption of 7.

@ Trapdoor(A4 ., W): given Alice’s private key 4,,,, and a word W,
produces a trapdoor T .

o Test(A4,,s.S. Tw): given Alice’s public key 4,,,, a searchable encryption
S = PEKS(A ., W), and a trapdoor Ty = Trapdoor(A4,,, W), outputs
‘'ves' if W = W’ and ‘no’ otherwise.
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Construction of PEKS

=1 Using the Well pairing ¢ : G| X G; — G3, where |G| = |G3| = p.
=2 The hash functions: H; : {0,1}* > G, and H» : G3 — {0, 1}l°g»,
The PEKS works as follows:

@ KeyGen(s): The input security parameter determines the size, p, of the
groups G and Gs. The algorithm picks a random « € Z;, and a

generator P of G,. It outputs 4,,, = (P, O = [a]P} and 4, = a.

@ PEKS(A,.,. W): First compute 1 = e(H (W), [r]Q) € G3 for a random
= Z};. Qutput PEKS(A .. W) = {[r]P, H2(1)}.

@ Trapdoor(A4 .y, W): output Ty = [a]H (W) € G).
o Test(A,., S, Tw): letS = {4, B}. Test if Ha(e(Tw, A)) = B.

= e(Tw,A) = e(la]lH(W),[r]P) = e(H (W), P)"" = e(H(W),[r](la]P)) =
e(H, (W), [r]O)

p52.



3. Broadcast Encryption TN
[BGW2005] / \

\

M |

3’ Broadcast the ciphertext to all ( ’
users (under unsecure channe,) 4a’ Qualifie!j Recipients

\ can de7lrypt the message
/

I /
\ Charles /

1’ Decide Recipient List
(say Alice and Charles)
and Extract Key for them

2’ Encrypt under the public key
for the qualified recipients
(only one public key for all)

4b’ Unqualified Recipients l
cannot decrypt the message\
even all them collude
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Broadcast Encryption =
4
System Parameters

3’ Broadcast the ciphertext to all (
users (under unsecure channe,) 4a’ Qualifieb Recipients

\ can de%rypt the message
/

I /
\ Charles /

\ Ut Hdr and (depagess PK)
~to recover K

1’ Decide Recipient List S
(say Alice and Charles)
and give user private key d .,

2" Encrypt using public key PK
under this list Output (Hdr, K}

4b’ Unqualified Recipients

cannot decrypt the messagé
even all them collude



% BGW Scheme - Setup

s Setup(n)

n /N # Of intended users
« out: 17 private keys (d,, .. d ), one public key PK

Public Key: PK =(P,P,....,P,P_,,...P,,V)

ll’ n’ n+2,ll

Private Key: d. =a'v=a'yP=yP,i=i..n

Where P =a'P,v=yP

55
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i BGW Scheme - Encrypt

s Encrypt(S, PK)
n iN:SC {1,... n} public key PK
n OUt; @ pair (Hdr, K)
« Hdr is called the header. (aka broadcast
ciphertext)

«» K € Kis a message encryption key chosen
from a finite key set K.

Hdr = (tP,t(v+ > P

jes
K e( n+1, )

n+1— j

56
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i BGW Scheme - Decrypt

s Decrypt(s, i, di, Hdr, PK)

n If 7€ S, then the algorithm outputs a message
encryption key K € K.

Hdr = (tP,t(v+ > P, ;) =(C,.C))

jesS

P o
e( | ’C ) NOfe.’di :a'vza'yp :7Pi’i =1...n

e(d + Z n+1- j+|’ Pi:aiP,VZQ/P
jes, j#i

t(j/ai+2an+1_j+i )—t(_)/ai-i— Z an+1—j +i
=e(P,P) jes J<8, 1= =e(P -~ F’)t Session Key
If you don't have d,, you cannot

cross out this term to gain K 57
p57.




i BGW Scheme — Setup (Generalized)

s IDEA: run A parallel instances of special case
where each instance can broadcast to at
most B<n users

0 , L, l, ... o4 é
u SetupB(n)' n=AB,A= E 1..B B+1..2B 2B+1..3B  (A-2)B+1...(A-1)B (A-1)B+1..AB

n /N # Of intended users
« out: 17 private keys (d,, .. d ), one public key PK
Public Key: PK =(P,P,...,P;,P, Pog:Vis-Vy)

Private Key: d =a’v,=a’y,P=y.P,i=i..n

+2’lll’

. Writeiasi=(a-1)B+b
Where P =a'P,v, =y,P

i.e.az[iw,b:imodB
B
p58.



