Fully Homomorphic Encryption

陳榮傑

交通大學資工系 Cryptanalysis Lab 2013/07/03

Agenda

Fully homomorphic encryption

Query encrypted data

Query data privately

FHE (1/6)

- Fully homomorphic encryption
 - Store your encrypted data on the public cloud, an untrusted server
 - Query the data
 - Make Boolean queries on the data
 - Get a useful response from the server
 - Without the server just sending all of the data to you

FHE (2/6)

- Homomorphic encryption
 - Idea: privacy homomorphism
 - Rivest, Adleman, and Dertouzos proposed the concept in 1978.

FHE (3/6)

- Partial homomorphic encryption schemes
 - RSA (multiplication mod m) 1977

$$\mathcal{E}(x_1) \cdot \mathcal{E}(x_2) = x_1^e x_2^e \mod m = (x_1 x_2)^e \mod m = \mathcal{E}(x_1 \cdot x_2)$$

Goldwasser-Micali (XOR) 1984

$$\mathcal{E}(b_1) \cdot \mathcal{E}(b_2) = x^{b_1} r_1^2 x^{b_2} r_2^2 = x^{b_1 + b_2} (r_1 r_2)^2 = \mathcal{E}(b_1 \oplus b_2)$$

Paillier (addition mod m) 1999

$$\mathcal{E}(x_1) \cdot \mathcal{E}(x_2) = (g^{x_1} r_1^m) (g^{x_2} r_2^m) = g^{x_1 + x_2} (r_1 r_2)^m = \mathcal{E}(x_1 + x_2 \mod m)$$

FHE (4/6)

- Fully homomorphic encryption
 - A public-key encryption scheme
 - KeyGen, Enc, Dec
 - Evaluate

```
Evaluate(pk, C, \psi_1, ..., \psi_t) \approx Enc(pk, C(\pi_1, ..., \pi_t))
```

for all pk, all circuits C, all ψ_i = Encrypt(pk, π_i).

FHE (5/6)

- Gentry proposed the first FHE 2009
 - Support AND and XOR gates on ciphertext
 - For c_1 =Enc(m_1), c_2 =Enc(m_2) Evaluate(pk, AND, c_1 , c_2) = Enc(pk, ($m_1 AND m_2$)) Evaluate(pk, XOR, c_1 , c_2) = Enc(pk, ($m_1 XOR m_2$))
 - Universal property
 - AND: a *AND* b
 - OR: (a AND b) XOR (a XOR b)
 - NOT: a XOR 1

FHE (6/6)

3 Steps

Step 1 - Bootstrapping:

- Step 2 Ideal Lattices: Decryption in lattice-based systems has low circuit complexity. Ideal lattices used to get + and × ops.
- Step 3 Squashing the Decryption Circuit: the encrypter helps make decryption circuit smaller by starting decryption itself! Like server-aided decryption.

Query Encrypted Data (1/2)

- Searchable encryption
 - PEKS (Public-key encryption with keyword search)
 - Equality
 - HVE (Hidden vector encryption)
 - Conjunctive of equality, range, and subset
 - IPE (Inner product encryption)
 - Conjunctive/disjunctive

Query Encrypted Data (2/2)

• Test if $a_1a_2a_3a_4 = b_1b_2b_3b_4$

Output: 0(match), 1(mismatch)

Query Data Privately (1/2)

- Send an encrypted query regarding stored data
 - E.g., on Google's servers
- Get a useful concise response

Query Data Privately (2/2)

- Alice wants to search something on Google's search engine privately
 - Alice encrypts her query
 - Google encrypts data on the server by Alice's public key and evaluates search circuit for Alice
 - Google returns the encrypted results to Alice
 - Alice decrypts the encrypted results