
1

Hash Functions



2

Hash Functions

A hash function h takes as input a message of arbitrary 
length and produces as output a message digest of 
fixed length. 

0 1 0

0

001 1 1

1 11

…

…

… Long Message

Hash Function

160-Bit Message Digest



3

Hash Functions

Certain properties should be satisfied:

1. Given a message m, the message digest h(m) can 

be calculated very quickly.

2. Given a y, it is computationally infeasible to find 

an m’ with h(m’)=y (in other words, h is a one-way,

or preimage resistant, function).

3. It is computationally infeasible to find messages m1 

and m2 with h(m1) = h(m2) (in this case, the function

h is said to be strongly collision-free, or collision

resistant).



4

Hash Functions

Remarks:

 A hash function h is weakly collision-free

(or second preimage resistant): 

For given x, it is computational infeasible to find   

x’ ≠ x with h(x’) = h(x)

 A hash h is strongly collision-free 

=> h is weakly collision-free 

=> h is one-way .



5

Hash Functions

(Example) Discrete log hash function

Let p and q=(p-1)/2 be primes. Let α, β be two 

primitive roots for p.  Then, there is a such that 

αa≡β (mod p).

The hash h maps integers mod q2 to integers mod p. 

Let  m = x0+x1q with 0≤x0, x1≤q-1.                  

Define   h(m) = αx0βx1 (mod p)



6

Hash Functions

The following shows that the function h is probably 
strongly collision-free.

(Proposition) If we know messages m ≠ m’ with 
h(m)=h(m’), then we can determine the discrete 
logarithm a=logαβ. (The discrete log problem

is assumed hard.)

<Proof> m = x0+x1q, m' = x’0+x’1q

h(m) = h(m’)  αx0βx1 ≡ αx’0βx’1(mod p)

αa(x1-x’1)-(x’0-x0) ≡ 1 (mod p)

a(x1-x’1) ≡ x’0-x0 (mod p-1)



7

Hash Functions

Let d = gcd(x1-x’1, p-1).  There are exactly d solutions 

for a.  But the only factors of p-1 are 1, 2, q, p-1.

Since 0≤x1, x’1≤q-1, it follows that 

-(q-1)≤x1-x’1≤q-1. Therefore if x1-x’1 is not zero,

then d is not q or p-1, so d=1 or 2.  Therefore there 

are at most two possibilities for a. 

On the other hand, if if x1-x’1 is zero then m=m’, 

contrary to our assumption.         #



8

Simple Hash

 Simple hash

 Discrete log hash is too slow.

 Start with a message m of arbitrary length L. We 
may break it into n-bit blocks.

 We shall denote these n-bit blocks as m=[m1, m2, 
m3, …, mk], and the last block mk is padded with 
zeros to ensure that it has n bits.

 h(m) = m1 m2 m3 … mk

But it is easy to find two messages that hash to the 
same value. (so it is not collision resistant)



9

The Secure Hash Algorithm

 MD4 proposed by Rivest in 1990

 MD5 modified in 1992

 SHA proposed as a standard by NIST in 1993, and was adopted 

as FIPS 180

 SHA-1 minor variation, published in 1995 as FIPS 180-1

 FIPS 180-2, adopted in 2002, includes SHA1, SHA-256, SHA-384, 

and SHA-512

 A collision for SHA was found by Joux in 2004

 Collisions for MD5 and several other popular hash functions were 

presented in 2004, 2005, by Wang, Feng, Lai and Yu.



10

The Secure Hash Algorithm

 SHA-1(Secure Hash Algorithm)

 iterated hash function

 160-bit message digest

 word-oriented (32 bit) operation on bitstrings

 Padding scheme extends the input x by at most 
one extra 512-bit block

 The compression function maps 160+512 bits to 
160 bits

 Make each input affect as many output bits as 
possible



11

The Secure Hash Algorithm

 SHA-1-PAD(x)

 comment: |x|  264 - 1

 d  (447-|x|) mod 512

 l  the binary representation of |x|, where |l| = 64

 y  x || 1 || 0d || l   (|y| is multiple of 512)



12

The Secure Hash Algorithm

 Operations used in SHA-1

 X  Y bitwise “and” of X and Y

 X  Y bitwise “or” of X and Y

 X  Y bitwise “xor” of X and Y

 X bitwise complement of X

 X + Y integer addition modulo 232

 ROTLs(X) circular left shift of X by s position 
(0  s  31)

In textbook, X ← s, instead. 



13

The Secure Hash Algorithm

 ft(B,C,D) = 

 (B  C)  ((B)  D) if 0  t  19

 B  C  D if 20  t  39

 (B  C)  (B  D)  (C  D) if 40  t  59

 B  C  D if 60  t  79



14

The Secure Hash Algorithm

 Kt = 

 5A827999 if 0  t  19

 6ED9EBA1 if 20  t  39

 8F1BBCDC if 40  t  59

 CA62C1D6 if 60  t  79



15

The Secure Hash Algorithm

 Algorithm SHA-1(x)

 extern SHA-1-PAD

 global K0,…,K79

 y  SHA-1-PAD(x) denote y = M1 || M2 ||..|| Mn, 

where each Mi is a 512 block

 H0  67452301,  H1  EFCDAB89,  H2 

98BADCFE,   H3  10325476,  H4  C3D2E1F0



16

The Secure Hash Algorithm

 for i  1 to n

 denote Mi = W0 || W1 ||..|| W15, where each Wi

is a word

 for t  16 to 79

do Wt  ROTL1(Wt-3   Wt-8  Wt-14  Wt-16)

 A  H0,  ,B  H1,  C  H2,  D  H3,  E  H4

 for t  0 to 79

temp  ROTL5(A) + ft(B,C,D) + E +Wt + Kt

ED, DC, CROTL30(B), BA, Atemp

 H0  H0 + A,  H1  H1 + B,  H2  H2 + C,  

H3  H3 + D,  H4  H4 + E

 Return (H0 || H1 || H2 || H3 || H4)



17

Birthday Attacks

 Birthday paradox

 In a group of 23 randomly chosen people, at least 
two will share a birthday with probability at least 
50%. If there are 30, the probability is around 70%. 

 Finding two people with the same birthday is the 
same thing as finding a collision for this particular 
hash function.



18

Birthday Attacks

 The probability that all 23 people have different 
birthdays is

Therefore, the probability of at least two having the

same birthday is 1- 0.493=0.507

 More generally, suppose we have N objects, where N 
is large. There are r people, and each chooses an 
object. Then

493.0)
365

22
1)...(

365

2
1)(

365

1
1(1 

NreP 2/2

1)match a is there( 



19

Birthday Attacks

 Choosing r2/2N = ln2, we find that if r≈1.177    , 
then the probability is 50% that at least two people 
choose the same object.

 If there are N possibilities and we have a list of 
length      , then there is a good chance of a match.

 If we want to increase the chance of a match, we 
can make a list of length of a constant times     .

N

N

N



20

Birthday Attacks

(Example) We have 40 license plates, each ending

in a 3-digit number. What is the probability that two 

of the license plates end in the same 3 digits?

(Solution) N=1000, r=40

1. Approximation:

2. The exact answer:

551.01 10002/402

 e

546.0)
1000

39
1)...(

1000

2
1)(

1000

1
1(1 



21

Birthday Attacks

 What is the probability that none of these 40 license 
plates ends in the same 3 digits as yours?

 The reason the birthday paradox works is that we 
are not just looking for matches between one fixed 
plate and the other plates. We are looking for 
matches between any two plates in the set, so there 
are more opportunities for matches.

961.0)
1000

1
1( 40 



22

Birthday Attacks

 The birthday attack can be used to find collisions for 
hash functions if the output of the hash function is 
not sufficiently large.

 Suppose h is an n-bit hash function. Then there are 
N = 2n possible outputs. We have the situation of list 
of length r≈      “people” with N possible “birthdays,” 
so there is a good chance of having two values with 
the same hash value.

 If the hash function outputs 128-bit values, then the 
lists have length around 264 ≈1019, which is too large, 
both in time and in memory.

N



23

Birthday Attacks

 Suppose there are N objects and there are two 
groups of r people. Each person from each group 
selects an object. What is the probability that 
someone from the first group choose the same 
object as someone from the second group?

 Eg. If we take N=365 and r=30, then 

Nre

P

/2

1

)groups obetween twmatch  a is there(



915.01

groups) obetween twmatch  a is there(

365/302

 e

P



24

Birthday Attacks

 A birthday attack on discrete logarithm

 We want to solve αx≡β (mod p).

 Make two lists, both of length around

1st list: αk (mod p) for random k.

2nd list: βα-h (mod p) for random h.

 There is a good chance that there is a match

αk ≡ βα-h (mod p), hence x=k+h.

Compared with BSGS: 

BSGS algorithm is deterministic while the birthday 

attack algorithm is probabilistic.

p


