# Elliptic Curve Cryptography



# Outline

- [1] Elliptic Curves over R
- [2] Elliptic Curves over GF(p)
- [3] Properties of Elliptic Curves
- [4] Computing Point Multiples on Elliptic Curves
- [5] ECDLP
- [6] ECDSA



# [1] Elliptic curves over R

#### • Definition

Let  $a, b \in \mathbf{R}, 4a^3 + 27b^2 \neq 0$ 

$$E = \left\{ (x, y) \in \mathbf{R} \times \mathbf{R} \middle| y^2 = x^3 + ax + b \right\} \cup \left\{ O \right\}$$

• Example:

$$E: y^2 = x^3 - 4x$$





#### • Group operation +

The point of infinity, O, will be the identity element Given  $P, Q \in E, P = (x_1, y_1), Q = (x_2, y_2)$ 

$$P + O = O + P$$





### • Group operation + Given $P, Q \in E, P = (x_1, y_1), Q = (x_2, y_2)$ Compute $R = P + Q = (x_3, y_3)$

• Addition  $(P \neq Q)$ 

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
$$x_3 = \lambda^2 - x_1 - x_2$$
$$y_3 = (x_1 - x_3)\lambda - y_1$$

• Doubling (P = Q)

$$\lambda = \frac{3x_1^2 + a}{2y_1}$$
$$x_3 = \lambda^2 - 2x_1$$
$$y_3 = (x_1 - x_3)\lambda - y_1$$





Example (addition): Given E: y<sup>2</sup> = x<sup>3</sup> - 25x
P = (x<sub>1</sub>, y<sub>1</sub>) = (0,0), Q = (x<sub>2</sub>, y<sub>2</sub>) = (-5,0), P+Q = (x<sub>3</sub>, y<sub>3</sub>)

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 0}{-5 - 0} = 0$$
  
$$x_3 = \lambda^2 - x_1 - x_2 = 0^2 - 0 - (-5) = 5$$
  
$$y_3 = (x_1 - x_3)\lambda - y_1 = (0 - 5) \times 0 - 0 = 0$$



• Example (doubling):  
Given 
$$E: y^2 = x^3 - 25x$$
  
•  $P = (x_1, y_1) = (-4, 6), \ 2P = (x_2, y_2)$   
 $\lambda = \frac{3x_1^2 + a}{2y_1} = \frac{3(-4)^2 - 25}{2 \times 6} = \frac{23}{12}$   
 $x_2 = \lambda^2 - 2x_1 = \left(\frac{23}{12}\right)^2 - 2 \times (-4) = \frac{1681}{144}$   
 $y_2 = (x_1 - x_2)\lambda - y_1 = \left(-4 - \frac{1681}{144}\right) \times \frac{23}{12} - 6 = -\frac{62279}{1728}$ 



# [2] Elliptic Curves over GF(p)

## • Definition Let $p > 3, a, b \in \mathbb{Z}_p$ , $4a^3 + 27b^2 \neq 0 \pmod{p}$ $E = \left\{ (x, y) \in \mathbb{Z}_p \times \mathbb{Z}_p \middle| y^2 \equiv x^3 + ax + b \pmod{p} \right\} \cup \{O\}$

• Example:

$$E: y^2 = x^3 + x$$
 over  $Z_{23}$ 





#### • Example:

 $E: y^2 = x^3 + x + 6$  over  $Z_{11}$ 

Find all (*x*, *y*) and O:

Fix x and determine y
O is an artificial point

12 *(x, y)* pairs plus O, and have #*E*=13

| X  | $x^3 + x + 6$ | quad res? | У   |
|----|---------------|-----------|-----|
| 0  | 6             | no        |     |
| 1  | 8             | no        |     |
| 2  | 5             | yes       | 4,7 |
| 3  | 3             | yes       | 5,6 |
| 4  | 8             | no        |     |
| 5  | 4             | yes       | 2,9 |
| 6  | 8             | no        |     |
| 7  | 4             | yes       | 2,9 |
| 8  | 9             | yes       | 3,8 |
| 9  | 7             | по        |     |
| 10 | 4             | yes       | 2,9 |



• Example (continue):

There are 13 points on the group  $E(Z_{11})$  and so any nonidentity point (i.e. not the point at infinity, noted as O) is a generator of  $E(Z_{11})$ .

Choose generator 
$$\alpha = (2,7)$$
  
Compute  $2\alpha = (x_2, y_2)$   
 $\lambda = \frac{3x_1^2 + \alpha}{2y_1} = \frac{3(2)^2 + 1}{2 \times 7} = \frac{13}{14} = 2 \times 3^{-1} = 2 \times 4 = 8 \mod 11$   
 $x_2 = \lambda^2 - 2x_1 = (8)^2 - 2 \times (2) = 5 \mod 11$   
 $y_2 = (x_1 - x_2)\lambda - y_1 = (2 - 5) \times 8 - 7 = 2 \mod 11$ 



**Elliptic Curves** 

10

• Example (continue): Compute  $3\alpha = (x_3, y_3)$   $\lambda = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 7}{5 - 2} = 2 \mod 11$   $x_3 = \lambda^2 - x_1 - x_2 = 2^2 - 2 - 5 = 8 \mod 11$  $y_3 = (x_1 - x_3)\lambda - y_1 = (2 - 8) \times 2 - 7 = 3 \mod 11$ 

So, we can compute

$$\alpha = (2,7) \qquad 2\alpha = (5,2) \qquad 3\alpha = (8,3)$$
  

$$4\alpha = (10,2) \qquad 5\alpha = (3,6) \qquad 6\alpha = (7,9)$$
  

$$7\alpha = (7,2) \qquad 8\alpha = (3,5) \qquad 9\alpha = (10,9)$$
  

$$10\alpha = (8,8) \qquad 11\alpha = (5,9) \qquad 12\alpha = (2,4)$$



• Example (continue):

Let's modify ElGamal encryption by using the elliptic curve  $E(Z_{11})$ .

Suppose that  $\alpha = (2,7)$  and Bob's private key is 7, so

$$\beta = 7\alpha = (7,2)$$

Thus the encryption operation is

$$e_{K}(x,k) = (k(2,7), x + k(7,2)),$$

where  $x \in E$  and  $0 \le k \le 12$ , and the decryption operation is

$$d_{K}(y_{1}, y_{2}) = y_{2} - 7y_{1}.$$



• Example (continue):

Suppose that Alice wishes to encrypt the plaintext x = (10,9) (which is a point on E).

If she chooses the random value k = 3, then

 $y_1 = 3(2,7) = (8,3)$  and  $y_2 = (10,9) + 3(7,2) = (10,9) + (3,5) = (10,2)$ 

Hence y = ((8,3), (10,2)). Now, if Bob receives the ciphertext y, he decrypts it as follows:

$$x = (10,2) - 7(8,3) = (10,2) - (3,5)$$
$$= (10,2) + (3,6) = (10,9)$$



# [3] Properties of Elliptic Curves

- Over a finite field  $Z_p$ , the order of  $E(Z_p)$  is denoted by  $\#E(Z_p)$ .
- Hasse's theorem

$$p+1-2\sqrt{p} \leq \#E \leq p+1+2\sqrt{p}.$$

• Group structure of  $E(Z_p)$ 

Let *E* be an elliptic curve defined over  $Z_p$ , and p>3. Then there exists positive integers  $n_1$  and  $n_2$  such that

$$(E,+) \cong Z_{n_1} \times Z_{n_2}$$

Further,

$$n_2 | n_1 \text{ and } n_2 | (p-1)$$



# [4] Computing Point Multiples on Elliptic Curves

• Use Double-and-Add

(similar to square-and-multiply) Algorithm: DOUBLE-AND-ADD  $(P, (c_{l-1}, ..., c_0)), c_i \in \{0, 1\}$ 

$$Q \leftarrow O$$
  
for  $i \leftarrow l-1$  downto 0  
do 
$$\begin{cases} Q \leftarrow 2Q \\ \text{if } c_i = 1 \\ \text{then } Q \leftarrow Q + P \end{cases}$$
  
return  $(Q)$ 





#### $=(111100110111)_2 P$

 $\rightarrow$  11 doublings and 8 additions needed



- Use Double-and-(Add or Subtract)
  - Elliptic curve has the property that additive inverses are very easy to compute.
  - Signed binary representation
    - Example:

$$11 = 8 + 2 + 1 = 16 - 4 - 1$$
,

SO

$$(c_4, c_3, c_2, c_1, c_0) = (0, 1, 0, 1, 1)$$
 or  $(1, 0, -1, 0, -1)$ 

are both signed binary representation of 11.



#### Non-adjacent form (NAF)

A signed binary representation  $(c_{l-1}, ..., c_0)$  of an integer *c* is said to be in non-adjacent form provided that no two consecutive ci's are non-zero.

- The NAF representation of an integer is unique.
- A NAF representation contains more zeros than the traditional binary representation of a positive integer.



 Transform a binary representation of a positive integer c into a NAF representation Example:

Hence the NAF representation of (1,1,1,1,0,0,1,1,0,1,1,1) is (1,0,0,0,-1,0,1,0,0,-1,0,0,-1)



1

#### Double-and-(Add or Subtract) Algorithm 6.5: DOUBLE-AND-(ADD OR SUBTRACT) (P,(c<sub>1-1</sub>,...,c<sub>0</sub>)), c<sub>i</sub> ∈ {0,±1}

$$Q \leftarrow O$$
  
for  $i \leftarrow l-1$  downto 0  
$$\begin{cases} Q \leftarrow 2Q \\ \text{if } c_i = 1 \\ \text{then } Q \leftarrow Q + P \\ \text{else if } c_i = -1 \\ \text{then } Q \leftarrow Q - P \end{cases}$$
  
return (Q)





#### $=(111100110111)_2 P$

 $\rightarrow$  11 doublings and 8 additions needed

 $= (1000(-1)0100(-1)00(-1))_2 P$ 

= 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2)))) - P))) + P))) - P))) - P))) - P))

 $\rightarrow$  12 doublings and 4 (additions or subtractions) needed



### [5] Elliptic Curve DLP

Basic computation of ECC

• 
$$Q = kP = \underbrace{P + P + \dots + P}_{k \text{ times}}$$
  
where P is a curve point, k is an integer

- Strength of ECC
  - Given curve, the point P, and kP
     It is hard to recover k
    - Elliptic Curve Discrete Logarithm Problem (ECDLP)



### Security of ECC versus RSA/ElGamal

- Elliptic curve cryptosystems give the most security per bit of any known public-key scheme.
- The ECDLP problem appears to be much more difficult than the integer factorisation problem and the discrete logarithm problem of  $Z_p$ . (no index calculus algo!)
- The strength of elliptic curve cryptosystems grows much faster with the key size increases than does the strength of RSA.



# **Elliptic Curve Security**

| Symmetric Key Size<br>(bits) | RSA and Diffie-Hellman<br>Key Size (bits) | Elliptic Curve Key Size<br>(bits) |
|------------------------------|-------------------------------------------|-----------------------------------|
| 80                           | 1024                                      | 160                               |
| 112                          | 2048                                      | 224                               |
| 128                          | 3072                                      | 256                               |
| 192                          | 7680                                      | 384                               |
| 256                          | 15360                                     | 521                               |

NIST Recommended Key Sizes



#### **ECC Benefits**

ECC is particularly beneficial for application where:

- computational power is limited (wireless devices, PC cards)
- integrated circuit space is limited (wireless devices, PC cards)
- high speed is required.
- intensive use of signing, verifying or authenticating is required.
- signed messages are required to be stored or transmitted (especially for short messages).
- bandwidth is limited (wireless communications and some computer networks).



### [6] Signature Scheme: ECDSA

• Digital Signature Algorithm (DSA)

- Proposed in 1991
- Was adopted as a standard on December 1, 1994
- Elliptic Curve DSA (ECDSA)
  - FIPS 186-2 in 2000



### **Digital Signature Algorithm (DSA)**

L=0 mod 64, 512≤L≤1024

 Let p be a L-bit prime such that the DL problem in Z<sub>p</sub>\* is intractable, and let q be a 160-bit prime that divides p-1. Let α be a q<sub>th</sub> root of 1 modulo p.
 Define K={ (p,q,α,a,β): β=α<sup>a</sup> mod p }

 $p,q,\alpha,\beta$  are the public key, a is private



### For a (secret) random number k, define sig (x,k)=(γ,δ), where γ=(α<sup>k</sup> mod p) mod q and δ=(SHA-1(x)+aγ)k<sup>-1</sup> mod q

 For a message (x,(γ,δ)), verification is done by performing the following computations:



### **Elliptic Curve DSA**

 Let p be a prime, and let E be an elliptic curve defined over F<sub>p</sub>. Let A be a point on E having prime order q, such that DL problem in <A> is infeasible.

p,q,E,A,B are the public key, m is private



- For a (secret) random number k, define sig<sub>k</sub>(x,k)=(r,s), where kA=(u,v), r=u mod q and s=k<sup>-1</sup>(SHA-1(x)+mr) mod q
- For a message (x,(r,s)), verification is done by performing the following computations:

i=SHA-1(x)\*s<sup>-1</sup> mod q
j=r\*s<sup>-1</sup> mod q
(u,v)=iA+jB
ver(x,(r,s))=true if and only if u mod q=r

