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[1] Elliptic curves over R

e Definition
Let a,beR, 4a°+27b* %0

:{(x, y) € Rx R‘y2 =x’+ax+Db }U{O }

e Example:
E:y°=x’—4x
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e Group operation +
The point of infinity, O, will be the identity element

Given P;Q = E1 P — (Xl’ yl)iQ — (XZ’ y2)

P+O=0+P
If X, =x,,and y, =-V,,thenP+Q =0
(le.—P= _(X1’ yl) = (Xl’_yl))

P=(x,y)

o
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e Group operation +

Given P’QEEipz(Xl’yl)’Q:(XZ’yz)
Compute R=P+Q =(X,,Y,)

o> Addition (P=Q) -
\_

/1 — y2 _yl i
o, ~ X
=° — X, — X, i
Ys =0 —X3)A -y, |
o Doubling (P=Q) =0 &

P _3x +a 7< i

O~

X, = A° —2X, :
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e Example (addition):
Given E:y* =x°—25x

o P=(x,¥,)=(0,0), Q=(%,,¥,)=(-50), P+Q= (X5, Ys)

X, —%X —5-0
X, =A* —% —%X,=0°-0—(-5)=5

_(Xl_ 3)/1—yl_(0—5)><0—0—0
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e Example (doubling):
Given E:y* =x°—25x

O P=(x,Y1)=(-46), 2P=(X,,Y,)

_ 3% +a _3(-4)-25_23

a _ —
2y, 2x6 12
2
AQZf—QMZEQ —2Ag®=g§1
12 144
1681\ 23 62279
= (X, — X,)A =| —4-— ——6=—
Y2 = (0 =%)A =Y, (: 144:JX12 1728
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[2] Elliptic Curves over GF(p)

e Definition
Let P>3abeZ,, 4a°+27b* =0 (mod p)
E:{(x, y)eprZp‘y2 =x*+ax+b (mod p) }U{O }

¥
a2

e Example: 2
19
« /2 3 1%
E:y"=x"+Xx over Z 17
23 16
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U 1 2345672 9 101112131415161718192021 22 x

Elliptic curve equation: 2 =x¥ + x over .:’-7'23

= (NG
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e Example:
E:y*=x"+x+6 over Z,
Find all (x, y) and O:

o Fix x and determine y
o O s an artificial point

12 (x, y) pairs plus O,
and have #E=13

© 0 N O O & WO DN PEFP O X

=
o

X>+X+6 quadres? vy

6

A N O O B~ OO W 01

no
no
yes
yes
no
yes
no
yes
yes
no
yes

4,7
5,6

2,9

2,9
3,8

2,9
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e Example (continue):
There are 13 points on the group E(Z,,) and so any non-
identity point (i.e. not the point at infinity, noted as O) Iis a
generator of E(Z,,).

Choose generator o =(2,7)
Compute 2a =(X,,Y,)
3x°+a 3(2)+1 13
2y,  2x7 14
X, =1 —2x% =(8)°" —2x(2)=5 mod 11
=(X, —X,)A—Y, =(2-5)x8—-7=2 mod 11

A = —2x31=2%x4=8 mod 11
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e Example (continue):
Compute 3 = (X3, Ys)

A =y2_y1:§_;=2 mod 11
X, — X, —
X,=A°—%X —X,=2°-2-5=8 mod 11

—(X1_ 3)/1— A _(2—8)><2—7 =3 mod 11
S0, we can compute
a=27) 2a=(52) 3a=(83)
4o =(10,2) 5a =(3,6) 6a =(7,9)
la=(7,2) 8a=(35) 9« =(10,9)
10 =(8,8) 1la=(59) 12a=(2,4)
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e Example (continue):
Let’'s modify ElIGamal encryption by using the elliptic curve

E(Z,4).
Suppose that a =(2,7) and Bob’s private key is 7, so

p=Ta=(72)

Thus the encryption operation is
e, (x,k)=(k(2,7),x+k(7,2))

where xe E and 0<k <12, and the decryption operation is

de (Y1, Yo) =Y, = 7Y,
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e Example (continue):
Suppose that Alice wishes to encrypt the plaintext x = (10,9)
(which is a point on E).
If she chooses the random value k = 3, then
=3(2,7) =(8,3) and
=(10,9) +3(7,2) = (10,9) + (3,5) = (10,2)

Hence y=((83),(10,2)). Now, if Bob receives the ciphertext y,
he decrypts it as follows:

x = (10,2) — 7(8,3) = (10,2) — (3,5)
— (10,2) + (3,6) = (10,9)
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[3] Properties of Elliptic Curves

e Over afinite field Z,, the order of E(Z)) Is denoted by
#E(Z,).
e Hasse's theorem

p+1—2ﬁ <#HE < p+1+2ﬁ.

e Group structure of E(Z))
Let E be an elliptic curve defined over Z,, and p>3. Then
there exists positive integers n, and n, such that

(E)=Z, xZ,

Further,
n,/n, and n,|(p—1)
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[4] Computing Point Multiples on Elliptic Curves

e Use Double-and-Add
(similar to square-and-multiply)
Algorithm:
DOUBLE-AND-ADD (P,(c,4,..-.¢,)), ¢, €{0,1}
Q«O
for 1<-1-1 downto O
(Q<«2Q
do <if ¢, =1
| then Q<«Q+P
return (Q)
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e Example:
Compute 3895P
389%5P=P+P+---4+P

3894 addi%ifonsneeded

=(111100110111),P
=2(2(2(2(2(2(2(2(2(2(2P+P)+P)+P)))+P)+P))+P)+ P)+ P
— 11doublings and 8 additions needed
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e Use Double-and-(Add or Subtract)

o Elliptic curve has the property that additive inverses are
very easy to compute.

o Signed binary representation
e Example:

11=8+2+1=16-4-1

SO
(c,,C5,Cy,C,C)=(0,1,0,1,1) or (1,0,-1,0,-1)

are both signed binary representation of 11.
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e Non-adjacent form (NAF)
A signed binary representation (c_,, ..., Cy) of an integer c is
said to be in non-adjacent form provided that no two
consecutive ci’'s are non-zero.

o The NAF representation of an integer is unique.

o A NAF representation contains more zeros than the
traditional binary representation of a positive integer.
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e Transform a binary representation of a positive integer c
iInto a NAF representation

Example:

111 10011 011 1
\J

111 10011 100 -1
\J

111 10100-100 -1
\J

1000 -10100-100 -1

Hence the NAF representation of (1,1,1,1,0,0,1,1,0,1,1,1) is
(1,0,0,0,-1,0,1,0,0,-1,0,0,-1)
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e Double-and-(Add or Subtract)
Algorithm 6.5:
DOUBLE-AND-(ADD OR SUBTRACT) (P,(¢,,,....G,)), ¢, €{0, %1}

Q«O
for i «1-1 downto O
Q<«2Q
If ¢ =1
then Q <« Q+P
elseif c, =-1
| then Q«-Q-P
return (Q)

do

J\
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e Example:
Compute 3895P
3895P=P+P+---4+P

3894 addi?ironsneeded

=(111100110111),P
=2(2(2(2(2(2(2(2(2(2(2P+P)+P)+ P)))+P)+P))+P)+ P)+ P
— 11doublings and 8 additions needed

= (1000(-1)0100(-1)00(-1) ), P
= 2(2(2(2(2(2(2(2(2(2(2(2P))) - P)) + P))) - P))) - P
— 12 doublings and 4 (additions or subtractions) needed
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[5] Elliptic Curve DLP

e Basic computation of ECC

0 Q=kp= HitE

where P is a curve point, k is an integer

e Strength of ECC
o Given curve, the point P, and kP
It is hard to recover k
- Elliptic Curve Discrete Logarithm Problem (ECDLP)
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Security of ECC versus RSA/ElGamal

o Elliptic curve cryptosystems give the most security per bit of any

known public-key scheme.

o The ECDLP problem appears to be much more difficult than the
Integer factorisation problem and the discrete logarithm problem

of Z,. (no index calculus algo!)

o The strength of elliptic curve cryptosystems grows much faster

with the key size increases than does the strength of RSA.
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Elliptic Curve Security

Symmetric Key Size | RSA and Diffie-Hellman | Elliptic Curve Key Size
(bits) Key Size (bits) (bits)
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

NIST Recommended Key Sizes
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ECC Benefits

ECC is particularly beneficial for application where:

o computational power is limited (wireless devices, PC cards)

o integrated circuit space is limited (wireless devices, PC cards)
o high speed is required.

o Intensive use of signing, verifying or authenticating is required.

o sighed messages are required to be stored or transmitted
(especially for short messages).

o bandwidth is limited (wireless communications and some computer
networks).
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[6] Signature Scheme: ECDSA

e Digital Signature Algorithm (DSA)

o Proposed in 1991
o Was adopted as a standard on December 1, 1994

e Elliptic Curve DSA (ECDSA)

o FIPS 186-2 in 2000

@
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Digital Signature Algorithm (DSA)

=0 mod 64,
512<1 <1024

e Let p be a L-bit prime such that the DL problem
In Z,* Is intractable, and let ¢ be a 160-bit prime
that divides p-1. Let o be a gy, root of 1 modulo p.

Define K={ (p,q,q,a,3): F=a“ mod p }

p,q,a,B are the public key, a is private
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e For a (secret) random number k, define
sig (x,k)=(y,d), where
v=(aX mod p) mod g and

e For a message (x,(y,0)), verification is done by
performing the following computations:

e,=SHA-1(x)*d* mod g
e,=y*0t mod g
ver(x,(y,0))=true iff. ( mod p) mod g=y
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Elliptic Curve DSA

e Letp be aprime, and let = be an elliptic curve
defined over F,. Let /A be a point on = having
prime order ¢, such that DL problem in <A>is
Infeasible.

Define K={ (p,q,E,A,m,B): B=mA }

p.d,.E,A,B are the public key, m is private
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e For a (secret) random number k, define sig, (x,k)=(r,s),
where kA=(u,v), r=u mod g and

e For a message (x,(r,s)), verification is done by performing the
following computations:

I=SHA-1(x)*s mod q

j=r*st mod q

(u,v)=1A+jB

ver(x,(r,s))=true if and only if
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