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[1] Elliptic curves over R

 Definition
Let

 Example:
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 Group operation +
The point of infinity, , will be the identity element
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 Group operation +
Given

Compute

 Addition

 Doubling
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 Example (addition):
Given
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 Example (doubling):
Given
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[2] Elliptic Curves over GF(p)

 Definition
Let

 Example:
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 Example:

Find all (x, y) and :

 Fix x and determine y

  is an artificial point

12 (x, y) pairs plus , 

and have #E=13

11

32 over    6: ZxxyE 
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 Example (continue):
There are 13 points on the group E(Z11) and so any non-

identity point (i.e. not the point at infinity, noted as ) is a 

generator of E(Z11).

Choose generator

Compute
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),(2 22 yx
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 Example (continue):
Compute

So, we can compute

)4,2(12)9,5(11)8,8(10
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 Example (continue):
Let’s modify ElGamal encryption by using the elliptic curve 

E(Z11).

Suppose that                  and Bob’s private key is 7, so

Thus the encryption operation is

where            and                 , and the decryption operation is

)7,2(

)2,7(7  

 ,)2,7(),7,2(),( kxkkxeK 

Ex 120  k

.7),( 1221 yyyydK 



Cryptanalysis LabElliptic Curves 13

 Example (continue):
Suppose that Alice wishes to encrypt the plaintext x = (10,9) 

(which is a point on E).

If she chooses the random value k = 3, then

Hence                         . Now, if Bob receives the ciphertext y, 

he decrypts it as follows:

)2,10()5,3()9,10()2,7(3)9,10(

and  )3,8()7,2(3

2

1





y

y

 )2,10(),3,8(y

)9,10()6,3()2,10(

)5,3()2,10()3,8(7)2,10(
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[3] Properties of Elliptic Curves

 Over a finite field Zp, the order of E(Zp) is denoted by 

#E(Zp).

 Hasse’s theorem

 Group structure of E(Zp)
Let E be an elliptic curve defined over Zp, and p>3. Then 

there exists positive integers n1 and n2 such that

Further,

.21#21 ppEpp 

21
),( nn ZZE 

)1(  and  212 pnnn
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[4] Computing Point Multiples on Elliptic Curves

 Use Double-and-Add
(similar to square-and-multiply)

Algorithm:

DOUBLE-AND-ADD      1 ,0   , ,,, 01  il cccP 

)(return  

  then  

1  if

2

  do  

0  downto  1for  

Q

PQQ

c

QQ

li

Q

i
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 Example:
Compute 3895P

 

needed additions 8 and doublings 11  
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 Use Double-and-(Add or Subtract)

 Elliptic curve has the property that additive inverses are 

very easy to compute.

 Signed binary representation

 Example:

so

are both signed binary representation of 11.

,141612811 

)1 ,0 ,1 ,0 ,1(or    )1 ,1 ,0 ,1 ,0() , , , ,( 01234 ccccc
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 Non-adjacent form (NAF)
A signed binary representation (cl-1, …, c0) of an integer c is 

said to be in non-adjacent form provided that no two 

consecutive ci’s are non-zero.

 The NAF representation of an integer is unique.

 A NAF representation contains more zeros than the 

traditional binary representation of a positive integer.
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 Transform a binary representation of a positive integer c

into a NAF representation
Example:

Hence the NAF representation of (1,1,1,1,0,0,1,1,0,1,1,1) is 

(1,0,0,0,-1,0,1,0,0,-1,0,0,-1)

1001001010001

100100101111

100111001111

111011001111
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 Double-and-(Add or Subtract)
Algorithm 6.5:

DOUBLE-AND-(ADD OR SUBTRACT)      1 ,0   , ,,, 01  il cccP 

)(return  

  then  

1  if else  

  then  

1  if

2

  do  

0  downto  1for  

Q

PQQ

c

PQQ

c

QQ

li

Q

i

i
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 Example:
Compute 3895P
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[5] Elliptic Curve DLP

 Basic computation of ECC

 Q = kP = 

where P is a curve point, k is an integer

 Strength of ECC

 Given curve, the point P, and kP

It is hard to recover k

- Elliptic Curve Discrete Logarithm Problem (ECDLP)


timesk 

P...PP 
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Security of ECC versus RSA/ElGamal

 Elliptic curve cryptosystems give the most security per bit of any 

known public-key scheme.

 The ECDLP problem appears to be much more difficult than the 

integer factorisation problem and the discrete logarithm problem 

of Zp. (no index calculus algo!)

 The strength of elliptic curve cryptosystems grows much faster 

with the key size increases than does the strength of RSA.



Cryptanalysis LabElliptic Curves 24

Elliptic Curve Security

Symmetric Key Size
(bits) 

RSA and Diffie-Hellman
Key Size (bits) 

Elliptic Curve Key Size
(bits) 

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 521

NIST Recommended Key Sizes 
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ECC Benefits

ECC is particularly beneficial for application where:

 computational power is limited (wireless devices, PC cards)

 integrated circuit space is limited (wireless devices, PC cards)

 high speed is required.

 intensive use of signing, verifying or authenticating is required.

 signed messages are required to be stored or transmitted 

(especially for short messages).

 bandwidth is limited (wireless communications and some computer 

networks).
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[6] Signature Scheme: ECDSA

 Digital Signature Algorithm (DSA)

 Proposed in 1991

 Was adopted as a standard on December 1, 1994

 Elliptic Curve DSA (ECDSA)

 FIPS 186-2 in 2000
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Digital Signature Algorithm (DSA)

 Let p be a L-bit prime such that the DL problem 

in Zp* is intractable, and let q be a 160-bit prime 

that divides p-1. Let α be a qth root of 1 modulo p.

Define K={ (p,q,α,a,β): β=αa mod p }

p,q,α,β are the public key, a is private

L=0 mod 64, 

512≤L≤1024
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 For a (secret) random number k, define

sig (x,k)=(γ,δ), where

γ=(αk mod p) mod q and

δ=(SHA-1(x)+aγ)k-1 mod q

 For a message (x,(γ,δ)), verification is done by 

performing the following computations:

e1=SHA-1(x)*δ-1 mod q

e2=γ*δ-1 mod q

ver(x,(γ,δ))=true  iff. (αe1βe2 mod p) mod q=γ
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Elliptic Curve DSA

 Let p be a prime, and let E be an elliptic curve 

defined over Fp. Let A be a point on E having 

prime order q, such that DL problem in <A> is 

infeasible.

Define K={ (p,q,E,A,m,B): B=mA }

p,q,E,A,B are the public key, m is private
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 For a (secret) random number k, define sigk(x,k)=(r,s),

where kA=(u,v), r=u mod q and

s=k-1(SHA-1(x)+mr) mod q

 For a message (x,(r,s)), verification is done by performing the 

following computations:

i=SHA-1(x)*s-1 mod q

j=r*s-1 mod q

(u,v)=iA+jB

ver(x,(r,s))=true if and only if u mod q=r


