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[1] Introduction

+

A signature scheme consists of two components: a
signing algorithm and a verification algorithm

Alice can sign a message x using a private signing
algorithm sig

The resulting signature sig(x) can subsequently be
verified using a public verification algorithm ver

Given a pair (x,y), the verification algorithm returns
an answer “true” or “false” depending on whether
the signature is valid.



i (Def) A sighature scheme is a 5-tuple
(P,AK,S,V):

= Pis a finite set of possible messages
= Ais a finite set of possible signatures
« Kis a finite set of possible keys

= For each key K, there is a signing algorithm sig, in
S and a verification algorithm ver, in V such that:
= ver(x,y) = true if and only if y=sig(x)

= A pair (X,y) is a signed message



+

= The functions sig, and ver, should be
polynomial-time computable functions

= Given a message ¥, it should be
computationally infeasible for anyone other
than Alice to compute a signature y such that
ver,(x,y)=true

= If Oscar can compute a pair (x,y) such that
ver,(x,y)=true and x was not previously
signed by Alice, vy is called a forgery



n=pq
d*e =1 (mod g(n))

Signing key
KR, = (d, n)

Verification key
KU, = (e, n)

RSA signature scheme
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i (RSA signature scheme)

= Let n=pq, p and g are primes. Define

k={ (n,p,q,d,e) : n=pq, de=1 mod ®(n) }
= For each K=(n,p,q,d,e) in K, define
y = sig(X) = x4 mod n

and
ver(X,y) = true if and only if x = y¢ mod n
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e Combine signing and encryption
Signing before encrypting is recommended. Since:

if Alice first encrypted x, then signed the result:
Z=€pyp(X) and y=sigpc(2)

Oscar can replace y by his own signature
y,=5igOscar(Z)

Bob may infer that the plaintext x originated with Oscar.
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Sighature Schemes

i [2] Security Requirements for

(1) Three attack models

= Key-only attack
Oscar possesses Alice’s public key

= Known message attack
Oscar possesses a list of messages previously signed
by Alice

= Chosen message attack
Oscar requests Alice’s signatures on a list of messages
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(2) Three possible adversarial goals

= Total break
Determine the signing key

= Selective forgery

Forge a valid signature on a message chosen by
someone else with non-negligible probability

» Existential forgery

Forge a valid signature on a message which hasn't

previously been signed by Alice
10
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(3) Forgeries based on RSA signature scheme

1. Existential forgery using a key-only attack
2. Existential forgery using a known message attack

3. Selective forgery using a chosen message attack
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1. Existential forgery using a key-only attack

For any v,
(x=Y¢, y) satisfies ver,(x,y) = true

The use of hash functions in conjunction with signature
schemes will eliminate this type of forging

12



+

2. Existential forgery using a known message
attack

The attack is based on the multiplicative property of RSA.

Suppose y,=sig,(X,), Y>=sig,(X,) are two messages
previously signed by Alice.

Then ver,(x;x, mod n, y,y, mod n)=true
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3. Selective forgery using a chosen message attack

= Suppose Oscar wants to forge a signature on the message
X, where x was possibly chosen by someone else. It is
simcﬁ)le matter for him to find x4,X, in Z, such that x=x;x,
mod n

= He asks Alice for the signatures on messages x, and X5,
which we denote by y, and y, respectively

= As in previous attack, y,y, mod n is the signature for the
message X=X;X, mod n
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(4) Three attacks related to hash in signature scheme

1. Oscar may start with a valid signed message (x,y), where
y=Signi(h(X)). Then he computes z=h(x) and attempts to
find x"#x such that h(x")=h(x).

If Oscar can do this, (x’,y) would be a valid signed
message

(existential forgery using a known message attack)

In order to prevent this type of attack, we require that h is
second preimage resistant
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2. Oscar first finds two messages x'#x such that
h(x)=h(x"). Oscar them gives x to Alice and
persuades her to sign the message digest h(x),
obtaining .

If Oscar can do this, (X',y) is a valid signed message
(existential forgery using a chosen message attack)

In order to prevent this type of attack, we require
that h is collision resistant
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3. It is often possible with certain signature schemes to
forge signatures on random message digests z (eg.
RSA Signature Scheme).

If Oscar can compute a signature on some message
digest z ( y=sig,;..(2) ), and then he finds a message x
such that z=h(x). This (x,y) is a valid signed message

(existential forgery using a key-only attack)

In order to prevent this type of attack, we require that

h be a preimage resistant hash function -



i [3] EIGamal Sighature Scheme

= ElGamal Signhature Scheme was proposed in 1985
= The scheme is non-deterministic

= Its security is based on Discrete Logarithm Problem

= The Discrete Logarithm Problem :

given an element B belonging to <a>, find an integer a such
that a®=

18
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i (ElGamal signature scheme)

= Let p be a prime such that DL problem in Z, is
intractable, and let a be a primitive element in
Z b S

P
Define K<={ (p,q,a,8) : =0 mod p }

p,a, B are the public key, a is the private key

= For a (secret) random number k, define
sig (X,kK)=(17, 5 ), where
v =akmod p and § =(x-a vy )k mod (p-1)

20
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= For a message (v, 6 ), define

ver (X, (7, 6 ))=true iff. BYy°=a* mod p

= If the signature was constructed correctly, the

verification will succeed since
BYy®=a2¥ak® = a* mod p

-

By definition of b
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s Example
We take p=467, a=2, a=127; then
B =212 mod 467=132

To sign the message x=100, Alice select k=213;
Then

v =2213 mod 467=29,

6 =(100-127%*29) * 2131 mod 466=51

(100, (29,51)) is the signed message
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Since (100, (29,51)) is valid, Bob will find that
BYyomod p = 132%° * 29°1 mod 467 = 189
s identical with

a* mod p = 2199 mod 467 = 189
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s Security of the ElGamal Signature Scheme

1. Selective forgery using a key only attack

Suppose Oscar tries to forge a signature (x,y) for a given
message X, without knowing a

If he chooses a value v and the tries to find J,
he must compute

6 =log. a*3"" mod p

It is an instance of DL problem

Unsuccessful forgery,,




i. Selective forgery using a key-only attack

= If he chooses a value 6 and the tries to find v,
he must solve the equation

BYy°mod p = a* mod p
for the unknown value y

= It is a problem for which no feasible solution is
known

Unsuccessful forgery,,
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3. Existential forgery using a key only attack

= If he chooses a value 6 and vy, then tries to find
X, he must compute

x = log, AYY°

It is an instance of DL problem

Unsuccessful forgery,




i. Existential forgery using a key only attack

= Unfortunately, an adversary is able to forge a signed
message which can pass the verification

Suppose i and j are integers in Z,; and gcd(j, p-1), the
adversary can assign » by
y=a'BIimod p

According to the above assignment, the verification
condition is

a* =/ 7(a'57)° mod p

27



it IS equivalent to

CIX'i5=,8 Y +jo mod p
The congruence will be satisfied if

x-i6 = 0 mod p-1, and
(1)

v +j6 = 0 mod p-1

Given i and j where gcd(j,p-1)=1, we can
solve (1) for x and &

28



a5 modp F
{ o0 =-7jtmod p-1 (j! exist

X = -7 ijtmod p-1

The adversary constructed a valid signature
X (7, 06))
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= Example
Let p=46/, a=2, 5=132.

Suppose the adversary chooses i=99 and j=179

vy = 297132179 mod 467 = 177
O =-y *1791 mod 466 =41
X = -y *¥99 * 179-1 mod 466 = 331

It will pass the verification:

(£ Yy°=132117 * 11741 = 303 mod 467
ax = 2231 = 303 mod 467
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| !3 Careless use of k will cause attacks:

1. When k is known, an adversary can obtain
Alice’s signing key since:

a = (x-kd ) *y -1 mod p-1
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. When identical k is used in signing two different
messages, an adversary can obtain Alice’s signing
key

Suppose (X1,(Y 1,6 1)) and (x,,(y », & ,)) are two
sighed messages, we have

AYy ©1=aX1 mod p

ALYy °2=a2 mod p
Thus

ax1>X2=y ®1°2mod p

32
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= Suppose y =d¥, then
aX1%2=ak® 15 2 mod p

which is equivalent to
Xl'X2=k( ) 1~ o) 2) mOd p'l

= Let d=gcd(64-6,, p-1), define

X'=(X;%,)/d, 6'=(61-65,)/d, p'=(p-1)/d

33
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= Then the congruence becomes
X'=k & " mod p’
thus
k=(x"*s"1) + (i * p’) mod p-1, for 0<i<d-1

Of these d candidate values, the correct k

which is really used by Alice can be determined
by testing the condition

y =akmod p

34
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= Example
We take p=17/, a=3, a=8; then
B=3%mod 17=16

Alice first signs x;=15 using k=5
(15, (5,11))

Then she signs x,=10 using k=5 again
(10, (5,10))

35



| !)scar obtains:

(X;=15, (y 1=5,6,=11))
(x,=10, (y ,=5, 6,=10))

Then he can compute
d=gcd( 6 -6 ,, p-1)=gcd(1,16)=1

Thus these is only one candidate value of r
k=("*6"1) mod p-1
=(5*1)mod 16 =5

36



ihen he can obtain Alice’s signing key by

a = (x-ks) *v 1 mod p-1
= (15-5*11) * 51 mod 16
=8 * 13 mod 16
=8
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4] Variants of the ElIGamal Signature

[
i Scheme

= Digital Signhature Algorithm (DSA)

= Proposed in 1991
= Was adopted as a standard on December 1, 1994

= Elliptic Curve DSA (ECDSA)
= FIPS 186-2 in 2000
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L=0 mod 64,
512<1L<1024

*)igital Signature Algorithm

= Let p be a L-bit prime such that the DL
problem in Z,* is intractable, and let q be a
160-bit prime that divides p-1. Let a be a g,
root of 1 modulo p.

Define k&={ (p,q,q,a,B): B=a® mod p }

D,q,q,B are the public key, a is private

39
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= For a (secret) random number k, define
sig (x,k)=(y,0), where
y=(ak mod p) mod g and
0=(SHA-1(x)+ay)k! mod g

= For a message gx ,(y,0)), verification is done by
performing the following computations:

e,;=SHA-1(x)*0! mod g
e,=y*0! mod q

ver(x,(y,0))=true iff. (a¢13¢2 mod p) mod g=y

40
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= Notice that the verification requires to
compute:

e;=SHA-1(x)*d! mod g
e,=y*0! mod g

when 0=0 (it is possible!), Alice should re-
construct a new signature with a new k

41



i DSA Example

= Take g=101, p=78g+1=7879, a=170, a=75;
then 3=4567

o 'll('o 5s(i)gn the message SHA-1(x)=22, Alice selects

Then Y=(170°° mod 7879) mod 101=94,
0=(22+75%94)50! mod 101=97

(X, (94,97)) is the sighed message

42
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= The signature (94,97) on the message digest
22 can be verify by the following computations:

01=97-1 mod 101=25
el=22*%25 mod 101=45
e2=94*25 mod 101=27

(170%%456727 mod 7879) mod 101 = 94 =y

43



i Elliptic Curve DSA

= Let p be a prime or a power of two, and let E
be an elliptic curve defined over F,. Let A be
a point on E having prime order g, such that
DL problem in <A> is infeasible.

Define A={ (p,q,E,A,m,B): B=mA }

p,q,E,A,B are the public key, m is private
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= For a (secret) random number k, define sig,(x,k)=(r,s),
where rA=(u,v), r=u mod g and
s=k1(SHA-1(x)+mr) mod g

= For a message $x,(r,s)), verification is done by
performing the following computations:

i=SHA-1(x)*s! mod g
j=r*s1 mod g
(u,v)=iA+jB

ver(x,(r,s))=true if and only if u mod g=r
45



