An Algorithmic Approach to Local and Global
Resource Allocations

Mong-Jen Kao!

!'Department of Computer Science and Information Engineering, National Taiwan University.
d97021@csie.ntu.edu.tw

Contents

I Resource Allocation as an Algorithmic Problem
Organization of this Dissertation

1 Notations and Ground Knowledge *
1.1 Graph Theory e
1.2 Linear Programs & Duality
1.3 Parameterized Complexity Theory

2 Local Demand and Supply: the Capacitated Domination Problem
Problem Definition
Summary of the Content to Appear,

3 Supplying Global Demand: Quality Backbone Design & Maintenance
3.1 Metric Embeddings of Low DWA-Stretch
Problem Definition
State-of-the-Art
3.2 Cost-Efficiency Maximization
Problem Definition
State-of-the-Art
3.3 Summary of the Content to Appear

II Capacitated Domination Problem

4 Approximation Algorithms for General Graphs
4.1 Inn-Approximation for Inseparable Demand
4.2 (4Ilnn 4+ 2)-Approximation for Separable Demand
4.3 (2lnn + 1)-Approximation for Separable Demand with Unit Cost
4.4 A*-approximation for Separable Demand
4.4.1 Primal/Dual Linear Programs
4.4.2 The Greedy Charging Algorithm

5 Graphs of Bounded Treewidth

5.1 W][1]-Hardness w.r.t. Treewidth

5.2 Fixed-Parameter Tractability w.r.t. Treewidth and Maximum Capacity

5.3 A Constant Factor Approximation for Outerplanar Graphs with Separable
Demand
5.3.1 The Structure - General Ladders
5.3.2 Removing More Edges oL
5.3.3 Refined Charging Scheme
5.3.4 Overall Analysis

6 Planar Graphs
6.1 A Well-Known Framework - from Bounded Treewidth to Planar

10
11

13
13
14
15
16
16
18
18

21

22
22
24
28
29
30
31

34
34
37

39
40
43
45
46

48

6.2 A Constant Factor Approximations for Separable Demand .

6.3 (% — e) -Approximation Threshold for Inseparable Demand .

7 Other Algorithmic Results for Trees
7.1 A Linear Time Algorithm for Inseparable Demand *
7.2 NP-Completeness for Separable Demand

7.3 A Polynomial Time Approximation Scheme for Separable Demand

7.3.1 Relaxed Knapsack Problem

7.3.2 A Fully-Polynomial Time Approximation Scheme for the Relaxed Knap-

sack Problem
7.3.3 A Pseudo-Polynomial Time Algorithm **

7.3.4 Extension to Polynomial-Time Approximation Scheme

IIT Quality Backbone Design and Maintenance

8 Building Acyclic Backbones with Low DWA-Stretch
8.1 A Point-Set Cutting Lemma
8.1.1 Proof of the Cutting Lemma
8.1.2 Computing the Optimal Cut in Linear Time
8.2 Approximating Arbitrary Metrics L.
8.3 Approximating Euclidean Metrics by Their Spanning Trees

9 DMaintaining Acyclic Backbones under Link Failures
9.1 An Optimal Algorithm for an Arbitrary Underlying Graph .
9.2 An Efficient Algorithm for the Euclidean Metric.
9.3 General Metricso

10 Cost-Efficient Bi-Constrained Backbone Construction
10.1 Cost-Efficiency Maximization for Trees and Almost-Trees .
10.2 Graphs of Bounded Treewidth
10.3 An FPTAS for the Relaxed Cost-Efficiency Maximization .

11 Maximizing Cost-Efficiency under Structural Constraints
11.1 A Parametric Searching Approach and its Application . . .
11.2 General Steiner Constraints

IV Conclusion
Open Problems and Future Research Topics

Bibliography

Indexes

60

61
61
62
67
67
69

73
73
75
76

78
79
83
86

91
91
95

100
101

102

107

Part 1

Resource Allocation as an
Algorithmic Problem

Resource management is from all aspects one of the most important issues to be addressed
and whose attracted attention is never sufficient. Ranging from individuals, companies of mod-
erate property, to international enterprises or even government policy makers, the need to
manage and allocate the limited amount of resources in an efficient and effective way that leads
to a profitable outcome is a self-proving story which every manager will eventually understand
and tell.

One natural way to describe this scenario is to view resource management as a process of
distributing resources to supply demanding targets, which could possibly be individual objects
or their combinations of certain forms. The resources could either be generated by an universal
source producer or may come from multiple objects. With respect to different outcomes led by
different ways of assigning the resources, we expect a common measurement on the quality of
each different outcome in order to distinguish how good and how profitable it is. Then, among
possible combinations of different assignments, we, as a manager of the resources, wish to choose
the particular assignment which results in the best outcome. Therefore, resource management,
or, resource planning, is in fact a combinatorial optimization problem in a sense that, we have
a set of choices each with its own target value and we wish to select a choice from the set such
that the resulting target value is as large as possible.

In some cases, there exists locality constraints between the supply and the demand, and it
only makes senses to assign the resource to demanding objects from its vicinity. For example,
in wireless ad-hoc networks, a peer can only be reached after entering the area it guards, and
we will not be able to receive any signal (resource) outside our vicinity. Another example comes
from the scenario depicted by the well-known facility location problem. As the owner of the
brand of a chain coffee shop, we want to set up service points in order to attract as many
customers as possible. When setting up a service point, we get to serve the customers in the
neighboring area. As customers are unlikely to visit a distant coffee shop, we want to achieve a
reasonable balance between the budget spent and the customers received.

In other cases when we do not have locality constraints but geographical conditions instead
come into play, the resources are packed and delivered through intermediate stops via underlying
backbone connections to demanding targets. For example, in an international manufacture
enterprise, the administrative staff has to plan the overall production line. Starting from setting
up local manufacturers, locating worldwide retailers, to the delivery of the products from the
manufacturers to the retailers, not only the locations of the facilities matter but also the way how
the products are delivered will have great impact on the overall profit. In this case, in addition
to placing the facilities at suitable spots, we also have to arrange the underlying backbone for
which the products are shipped carefully to guarantee a safe and efficient delivery.

For yet another example for which the resource assignment, location of the facilities, and the
underlying backbone network are equally important, consider the real-time multicast streaming
network. We have a real-time streaming source of limited capacity and a considerably large set
of clients who wish to receive this stream. As the total amount of demand exceeds greatly from
the capacity the streaming source can provide, we either have to choose a set of lucky clients
who will monopolize the stream, or, we have to identify a set of proxies providers to further
casting the messages. In both situations, carefully planning and maintaining the underlying
connections on the message delivering paths is a necessity to ensure the streaming quality.

In this dissertation, we attempt to address the problem of resource allocation from an
algorithmic perspective. Specifically, the following two categories of problems are considered.

(i) Local Resource Allocation. The first category of problems we investigate in this
dissertation concern the scenario when we have locality constraints and the demand-supply
relations only exist between adjacent objects under the given locality conditions. A fundamental
and also the most commonly used concept to depicting this scenario is given as follows.

For each pair of objects, the question of whether one belongs to the vicinity of the other or
not is represented by a binary relation between these two objects. Depending on the context, this
binary relation could be either symmetric or asymmetric, i.e., in a symmetric binary relation,
if item P belongs to the vicinity of item Q, then item O also belongs to the vicinity of item P,
and vice versa. Note that, although many of the daily visible examples, such as road networks,
cable networks, or even social networks, suggest symmetric binary relations, there are situations
which give asymmetric ones. For example, in the transportation network, the vicinity for which
an individual can reach within a limited amount of time is strictly determined by the power
of the provided vehicle, and therefore the vicinity relation could be asymmetric if the vehicles
used by two individuals are not identical.

The amount of supply demanded by each individual object is quantized as a non-negative
real number. To provide the supply to demanding objects, a given subset of the objects can be
activated by paying a prescribed amount of prices, also quantized as non-negative real numbers,
to generate the supply. The amount of supply an object can provide after activation, or, the
capacity of an object, is quantized as a non-negative real number as well. The general objective
of this problem is to properly serve the demanding objects in a cost-efficient way, in a sense
that we wish to spend as least as possible while serving as much demand as possible. As a
combinatorial optimization problem, when the objective is to entirely supply the demanding
objects, we wish to minimize the total activation cost. Instead, when we have limited amount
of budget to spend, we wish to maximize the utilization, i.e., to fully supply as many objects as
possible. Considering the general objective of serving the demanding objects, there are several
interesting problems, which are also of practical importance, to address.

First, when the amount of supply each object can generate after activation is unlimited
while the amount of demand as well as the activation cost for each object is unit, the problem
is exactly one of the most fundamental and extensively-studied problem in algorithmic graph
theory [77], which is also known as the Dominating Set problem [42] in the literature. Starting
from this problem, an ample body of work has been proposed, studying both the problem
itself and possible extensions, including further structural restrictions on the set of activated
supply providers [87], slight relaxations on the locality constraints as well as the demand-supply
relations [41,63], and generalizations on the set of parameters, i.e., parameters other than units
and infinities [62].

Second, when the overhead of supply delivery is non-negligible, and we have to pay a cor-
responding extra price for each demand-supply assignment, then the problem becomes the
well-known Facility Location problem, which has occupied an important place in operations re-
search since the early sixties. During the past decades, a considerable amount of work regarding
both the facility location problem and its variations has been proposed [73,84].

When we are allowed to activate the supplying source multiple times in exchange of more
supply, then we say the scenario is capacitized. For example, in the construction of cellular
phone service network, depending on the number of potential customers, we will need different
base stations. In suburban areas, we prefer stations with smaller capacity and less expensive
cost while in the downtown, we need stations of larger capacity. From time to time, when
the number of customers increases and the base station of a certain area is about to saturate,
we will have to increase the amount of supply for that area. One way to resolve this issue
is to replace the original base station with a new one which is more powerful. On the other
hand, we can simply place another station in addition to the existing one. The above example
demonstrates the possibility of capacitation. In fact, the concept of capacitation has attracted
an intensive attention during the last decade, and what follows is a series of remarkable work,
considering resource allocation problems of all sorts, including dominating set, facility location,
and etc [20,53-55].

In the first part of this dissertation, with respect to local resource allocation, or, more pre-

cisely, resource allocation with locality constraints, we place our focus on a natural generalization
of the dominating set problem under the concept of capacitation, namely, the Capacitated Dom-
ination problem. Under the objective of finding optimal resource assignments, a comprehensive
study for this problem with respect to different scenarios is presented. The readers are referred
to Part II for an elaborate discussion of this topic.

(ii) Global Resource Planning via Backbone Construction. In the second half of this
dissertation, we attempt to address resource planning from an overall perspective. Considering
the intimate relation between the assignment of supply and the delivery that follows, when
the overhead to carrying supply from the sources to the demanding objects is non-negligible,
the planning of the underlying backbone structure will play a relatively important role in the
quality of the overall assignment. As a preliminary step to the investigation of the intricate
global resource planning with non-negligible transmitting overheads, I placed my focus on the
design of a quality underlying backbone with respect to different structural considerations. This
issue falls exactly into the holy grail of network design, which has occupied a central and focused
place in the history of computer science and which has also been studied extensively from both
theoretical and empirical aspects.

In general, when it comes to network design, we expect a way of connecting a given set
of sites by a subset of possible connecting links such that certain requirements are met. For
example, a typical problem in wireless sensor network design is to connect the set of sensors,
which are powered by batteries of limited capacity, in a way that desired data can be collected
while certain criteria, such as sensor lifetimes, stability, as well as the number of sensors required,
are optimized under certain given objectives. Similar problems arise in other applications such
as communication networks, transportation networks, VLSI chip routing design, etc.

In different applications, the constraints and requirements introduce themselves in different
ways, ranging from the way how the network is connected to the way how the quality of the
network is measured. In order to deal with such diversity, the network design problem can be
formulated in various ways. The space from which the sites are drawn is often the Euclidean
plane, but other metrics or distance functions are also possible. Another design issue comes from
the degrees of fault tolerance, which is a restriction to the network structure in advance. For
instance, trees are the simplest connected network structure which provides no fault tolerance
at all, in the sense that, when a link fails, the entire network is no longer connected and at
least one site is unreachable from some other site. When we wish to raise the degree of fault
tolerance, more links between the sites will be required as alternatives, and the corresponding
cost to plan the network will be higher. On the other hand, the quality of a network can be
measured in other ways as well. For example, in wireless sensor networks, to adapt with limited
transmission power of each sensor device, we require the distances, or, lengths of the links
between the sensors and the base stations to be upper-limited. For other scenarios in sensor
networks, we may require the number of links connecting to each sensor to be small, in order
to reflect the limited computing capability of each device.

In communication networks, the transmission time between any two nodes is often a major
criterion. One typical measure is the maximum transmission time between pairs of nodes.
This corresponds to the longest path between any two nodes. The problem of constructing a
spanning network of minimum diameter and also its variations have been studied extensively
in the literature [43,44,82]. Constrained by the geographical natures of the locations where the
sites are placed, this measure usually does not reflect the quality of the overall connections, as it
focuses merely on the transmitting time of the worst pair. Hence, another interesting measure
is proposed to consider the ratio between the distance of each pair in the network and the
corresponding distance in the original metric. In other words, in this measure, we are interested
in the detour of each pair of the sites in the network. The problem of planning a network with
small pairwise detours is known as the Spanner problem [70]. When we turn to the average

performance of a network, it is natural to consider the weighted sum of pairwise distances,
where the weight associated with each pair depends on the underlying application [2,51,92].

The efficiency and the latency for each delivery are fundamental to the performance evalu-
ation of most networks, including transportation networks, flow networks, and communication
networks. In this scenario, we wish to route the paths between the sites such that minimum
capacity of each link, or, the bandwidth, along each path is as large as possible, in a sense that
more can be delivered in each transport. This is called Bottleneck Path problem [83,86]. In
addition to constructing a quality network, issues regarding maintenance or modification, e.g.,
removing a malfunctioned link, introducing a new site, or, partially alter the links between the
sites of a given region under certain conditions in a dynamic way is also important to consider.
These issues correspond to the robustness of the network, i.e., the ability of the network against
the removal of cites or edges dynamically, due to random failures of cites or links.

For this part, a focused study on the construction of a quality underlying backbone network
with respect to two different object measurements is presented. First, without considering the
expense, we show that, provided an arbitrary metric, a spanning network with good average
performance guarantees can be constructed and maintained semi-dynamically and efficiently,
using the minimum number of links. Second, taking the expense into consideration, we move the
focus further to the cost-efficient network constructions. Situations under different constraints
and requirements are considered.

Organization of this Dissertation. Chapter §1 presents the definitions to the notations
used throughout the content and preliminary ground knowledges that are necessary to thor-
oughly depict the ideas and the algorithms.

Part II and Part III formally introduce the aforementioned issues which have been ad-
dressed within the scopes of local resource allocation and global resource planning via backbone
construction, respectively. In particular, algorithmic ideas with novelties for the addressed prob-
lems which lead to efficient solutions with quality guarantees will be the main dish to taste. For
situations seemingly lacking of good solutions, mathematical proofs are provided to show the
non-existence of efficient and quality solutions unless all such problems can be solved and the
entire computing theory collapses.

At the end, we will conclude with possible future directions to proceed as well as open
problems left to consider within the same scopes.

Chapter 1

Notations and Ground Knowledge *

1.1 Graph Theory
1.2 Linear Programs & Duality

1.3 Parameterized Complexity Theory

Chapter 2

Local Demand and Supply: the
Capacitated Domination Problem

The Dominating Set problem has been one of the most fundamental and well-known problems in
both graph theory and combinatorial optimization. Given a graph G = (V,E) and an integer
k, the dominating set problem asks for a subset D C V whose cardinality does not exceed k
such that every vertex in the graph either belongs to this set or has a neighbor which does. As
this problem is known to be NP-hard, approximation algorithms have been proposed in the
literature [9,45,52]. On the one hand, greedy algorithms are shown to achieve a guaranteed
ratio of (Inn) [52], where n is the number of vertices. The ratio is later proven to be tight
by Feige [30]. On the other hand, algorithms based on dual-fitting provide a guaranteed ratio
of A [45], where A is the maximum degree of the vertices in the graph. A polynomial-time
approximation scheme for planar graphs was given by Baker [9].

In terms of parameterized complexity, dominating set has its special place as well [25, 31,
71]. In contrast to the Vertex Cover problem, which is fized-parameter tractable (FPT) with
respect to solution size, dominating set is proven to be W{[2]-complete, in the sense that no
fixed-parameter tractable algorithm with respect to solution size exists unless FPT = W|2].
Although dominating set is a fundamentally hard problem in the parameterized W-hierarchy,
it has been used as a benchmark problem for sub-exponential time parameterized algorithms [5,
23,32] and linear size kernels have been obtained for planar graphs [6, 31,40, 71], and more
generally, for graphs that exclude a fixed graph as a minor.

In addition, a vast body of work has been proposed in the literature, considering possible
variations from purely theoretical aspects to practical applications. See [42,77] for a detailed
survey. In particular, variations of dominating set problem occur in numerous practical set-
tings, ranging from strategic decisions, such as locating radar stations or emergency services, to
computational biology and to voting systems. For example, Haynes et al. [41] considered Power
Domination problem in electricity networks [41,63] while Wan et al. [87] considered Connected
Dominating Set problem in wireless ad hoc networks.

A series of study on capacitated covering problems was initiated by Guha et al., [39], which
addressed the Capacitated Vertex Covering problem from a scenario of Glycomolecule ID (GMID)
placement. Under the concept of capacitation, each vertex can be activated in order to serve the
demanding edges by paying the corresponding activation cost. Several follow-up papers have
appeared since then, studying both this topic and related variations [22,34,35]. In particular,
Chuzhoy [22] proved that, when the multiplicities of the vertices are limited, i.e., the number
of times a vertex can be activated is limited, and the demand of each each is unit, this problem
is already at least as hard as Set Cover problem, and a logarithmic approximation is further
provided. Furthermore, when the demand is arbitrary and inseparable but the activation cost
is unit, they showed that this problem cannot be approximated at all, unless P = NP. When

the multiplicities are not limited but the edge demand is unit, they gave a 3-approximation for
this problem, which was later improved to 2 by Gandhi et al [34].

These problems are also closely related to the Capacitated Facility Location problem, which
considers the demand assignment in a metric space together with assignment cost and activation
cost and which has also drawn a lot of attention since 1990s. Approximation algorithms based
on LP-rounding and primal-dual analysis are provided. [50,84]. See also [20, 73].

Motivated by a local service-requirement assignment scenario, we considered a generalization
of the dominating set problem, called Capacitated Domination problem, in a series of work [53-55],
which is defined below.

Problem Definition

Let G = (V,E) be a graph with three non-negative parameters defined on each vertex u € V,
which will be referred to as the cost, the capacity, and the demand, further denoted by w(u),
c(u), and d(u), respectively. The demand of a vertex stands for the amount of service it requires
from its adjacent vertices, including the vertex itself, while the capacity of a vertex represents
the amount of service each multiplicity (copy) of that vertex can provide.

The demand assignment function f: V x V. — RT U {0} is a function which maps pairs of
vertices to non-negative real numbers. Intuitively, f(u,v) denotes the amount of demand of u
that is assigned to v.

Definition 2.1 (feasible demand assignment function). A demand assignment function f: V x
V — Rt U{0} is said to be feasible if

S foow) > dv),

u€ENgG[v]

for each v € V. That is, the demand of each vertex is fully-assigned to its closed neighbors.

Given a demand assignment function f, the corresponding capacitated dominating multi-set
D(f) is defined as follows. For each vertex v € V, the multiplicity of v in D(f) is defined to be

| Zueng S (w5 v)
rf(v) = {) w :

The cost of the assignment function f, denoted w(f), is defined to be

w(f) =) wlu) as(u).

ueV

Problem 1 (Capacitated Domination problem). Given a graph G = (V, E) with cost, capacity,
and demand defined on each vertex, the capacitated domination problem asks for a feasible
demand assignment function f such that w(f) is minimized.

Depending on the way how the demand is assigned, there are different models to consider. By
inseparable demand model we require that f(u,v) is either 0 or d(u), for each edge (u,v) € E,
while in separable demand model we do not have such constraints. Literally, in inseparable
demand model we require that the demand of a vertex must be fully-served merely by one of its
closed neighbors. Note that, a straight reduction from Subset Sum problem shows that, when the
demand is inseparable, it is already NP-hard to compute a feasible demand assignment function
from a given capacitated dominating multi-set, which is already known to be feasible. Therefore
it is essential to require that the demand assignment function be specified when dealing with
this problem.

10

Inseparable demand Separable demand

(41nn + 2)-approx.

General graphs (Inn)-approx. (21nn + 1)-approx., unit cost

A*-approx.

W/1]-hard, with respect to treewidth

Graphs of FPT w.r.t. treewidth, max. capacity, and max. demand
bounded
treewidth 19) (22k(log M+1)+log kn) O (2(2M+2N+1) log kn)
M: maximum capacity, N: maximum demand, k: treewidth
Outerpl
uterplanat Constant factor approx.
graphs

(% — e)—approx. threshold Constant factor approx.

Planar graphs
(1 + €) approx. in pseudo-polynomial time

Trees Exact algo. in linear time Poly-time approx. scheme

Table 2.1: An overall summary on the results provided in this dissertation for capacitated
domination problem, classified by the demand models and graph classes.

Summary of the Content to Appear

In Chapter §4, we consider this problem on general graphs. Logarithmic approximations with
respect to both separable and inseparable demand models are presented. Furthermore, a sophis-
ticated charging scheme based on linear program duality which leads to a A*-approximation for
separable demand is also presented. This establishes asymptotically matching bounds to the
classical dominating set problem up to constant factors.

From the perspective of parameterization, we consider graphs of bounded treewidth in Chap-
ter §5. First, this problem is showed to be W[1]-hard when parameterized by treewidth, re-
gardless of demand assigning model. Then, an exact fixed-parameter tractable algorithm with
respect to treewidth and the maximum capacity of the vertices is provided. Then, as for the
approximation side, we present a constant factor approximation algorithm for separable de-
mand model on outerplanar graphs, based on a hierarchical perspective on outerplanar graphs,
a further analysis on the primal linear program, and a refined charging scheme.

In Chapter §6, as for an overview to the problem complexity on planar graphs, both pseudo-
polynomial time approximation schemes and constant factor approximations for this problem
are presented, by generalizing the aforementioned results under a standard framework due to
Baker [9]. Although the former one follows the standard approach, the second one, however,
requires slight modification and careful augmentation of the algorithm. Furthermore, a (% - e)—
approximation threshold for planar graphs when the demand is inseparable is provided, for any
e> 0.

In Chapter §7, we consider this problem on trees. First, a linear time algorithm for insepara-
ble demand is presented. Based on the NP-hardness proof for separable demand, the bottleneck

11

of this problem on trees is formulated as a combinatorial optimization problem named Relaxed
Knapsack problem. Then, a polynomial time approximation scheme for separable demand model
on trees is presented, based on an fully-poly approximation scheme for the relaxed knapsack
problem. A summary of the aforementioned results to appear is depicted in Table. 2.1.

12

Chapter 3

Supplying Global Demand: Quality
Backbone Design & Maintenance

In this part, we move our focus to the theme of global resource planning and considered the
construction and maintenance of a quality backbone network. Two different categories of prob-
lems are studied. First, disregarding the cost required for each link, we discuss the problem of
how good a tree metric can achieve in terms of average performance. This problem is closely
related to low-stretch metric embedding problem and is interesting by its own flavor from the
line of research proposed in the literature. As the structure of a tree imposes great constraints
on the resulting pairwise distances, any embedding of a metric into a tree metric is known to
have maximum pairwise stretch of Q(logn). we show, however, from the perspective of average
performance, there exist tree metrics which preserve the sum of pairwise distances of the given
metric up to a small constant factor, for which can be proven to be no worse than twice what
we can possibly expect. Second, when the given metric is extracted from Euclidean space of
finite dimension d, we show the existence of spanning trees for the given point set such that the
sum of pairwise distances is preserved up to a constant which depends only on d.

Second, taking the expense to build the network into account, we switch our focus further
and discuss the problem of cost-efficient network construction. A framework of bi-objective op-
timization problems, where one objective is to be maximized while the other is to be minimized,
is considered. Under this objective, the problems of computing a maximum cost-efficiency net-
work under various additional constraints are investigated. In the following, we introduce these
two concepts separately in more detail.

3.1 Metric Embeddings of Low DWA-Stretch

The problem of approximating a given metric by a metric which is structurally simpler has been
a central issue to the theory of finite metric embedding and has been studied extensively in the
past decades. A particularly simple metric of interest, which also favors from the algorithmic
perspective, is a tree metric. By a tree metric we mean a metric induced by the shortest distances
between pairs of points in a tree containing the given points. Generally we would require the
distances in the given metric not to be underestimated in the target metric, which is crucial for
most of the applications, and we would like to bound the increase of the distances, distortion,
or stretch, from above. See [2,11,14,29]. On the other hand, a similar and equally important
problem in network design is to find a tree spanning the network, represented by a graph, that
provides a good approximation to the shortest path metric defined in the graph [2,7,27].

Let M = (V,d) and M’ = (V,d') be two metrics over the same point set V such that

13

d'(u,v) > d(u,v) for all u,v € V. For each u,v € V, let

stretch(u,v) =
be the pairwise stretch, or distortion, between the pair v and v. Different notions have been
suggested to quantify how well the distances of M are preserved in M, e.g.,

1. Maximum pairwise stretch [70], defined by max,, ,cv stretch(u,v), which is closely related
to the extensively studied Spanner problems.

2. Average pairwise stretch [2,27], defined as

1
VR Z stretch(u, v).

(|\2/) u,vEV

3. Distance-weighted average stretch [51,74,92], defined as

1 Zu vEV dl(”? U)
= d(u,v) - stretch(u,v) = : .
Zu;uev d(u7 U) u,UZGV Zu,vEV d(“? U)

This measure makes sense in real-time scenarios when it is less desirable and more costly
to raise the distances of distant pairs than that of close pairs. For example, the effect of
raising the delay of a pair from 2 seconds to 10 seconds is less tolerable than raising the
delay of another pair from 20 ms to 100 ms. Throughout this part we will also refer to
the sum of pairwise distances as the routing cost following the terminology used in the
literature.

Problem Definition

In this part, we considere the problem of how well a tree is able to preserve the sum of pairwise
distances, or, the distance-weighted average stretch, of an underlying metric. To be more precise,
let M = (V,d) and M’ = (V',d’) be two metrics. M’ is said to dominates M if V' O 'V and
for all u,v € V, we have d'(u,v) > d(u,v). As for the construction of good embeddings, we
consider the following two problems in Chapter §8.

Problem 2 (Tree Metric Embeddings of Low DWA-Stretch problem). Let M = (V,d) be a given
metric and D(M) be the set of dominating tree metrics of M. What is

ZU,UEV dl(“? U)

inf
(V9. d)eDM) >, ey d(u,v)

?

Problem 3 (Euclidean Spanning Tree of Low DWA-Stretch problem). Let V be a set of points in
the Euclidean space R?, |, v| be the straight-line distance between two points u,v € V, T(V)
be the set of spanning trees of V, and dr be the distance function of 7', for any 7' € T(V).

What is
. ZU,UEV dT (’U,, U)
inf ?

TET(V) Dy vev |87

Although we can consider the Euclidean metric extracted from V as we did in Problem 2,
dominating tree metrics of it do not necessarily correspond to any spanning tree of V. In fact, if
we apply the approaches for Problem 2 directly, the lack of balance guarantee in each partition
can make the resulting pairwise distances arbitrary large.

14

State-of-the-Art

Embedding metrics into tree metrics was introduced in the context of probabilistic embedding
by Alon et al., [7]. What follows was a series of notable work. Bartal [11] considered prob-
abilistic embeddings and proved that any metric can be probabilistically approximated by
tree metrics with expected maximum distortion O(log?n). This result was later improved
to O(lognloglogn) [12]. Bartal also observed that any probabilistic embedding into a tree has
distortion at least (logn). This gap was closed by Fakcharoenphol et al., [29], who showed
that for any metric, there exists tree metrics with O(logn) distortion.

Problem 4 (Tree Metric Embeddings of Low Weighted Average Stretch problem). Given a metric
M = (V,d) and a weight function w : V. x V — R*, find a dominating tree metric 7' of M

such that Zu,vEV Wyy - dr(u,v) < « Zu,vGV Wy - d(u,v).

As Charikar et al., [18] showed by linear program duality that computing probabilistic
embeddings of a given metric and Problem 4 described above are in fact dual problems, the
series of work led by Bartal [11,12,27,29] has provided improved approximation results for
a large set of problems, including buy-at-bulk network design problem; vehicle routing problem,
metric labeling problem, group Steiner tree problem, minimum cost communication network problem.
Refer to [12,18] for more detail and applications.

Kleinberg, Slivkins, and Wexler [57] initiated the study of partial embedding and scaling
distortion, which can be regarded as embedding with relaxed guarantees. In a series of following
work, Abraham et al., [1,4] proved that any finite metric embeds probabilistically in a tree metric
such that the distortion of (1—€) portion of the pairs is bounded by O(log 1), for any 0 < € < 1.

They also observed a lower bound of Q(4/1/¢), which is closed by Abraham et al., in [2].

In particular, Abraham et al., [4] showed that any metric can be probabilistically embedded
into a tree metric such that the ratio between the expected sum of pairwise distances is O(log ®),
where ® is the effective aspect ratio of given distribution. This provides an upper-bound to
Problem 2 we considered. However, the guarantee they provided is loose due to the constant
inherited from the guarantee on scaling distortion. See also [1-3]. Rabinovich [74] showed that
it is possible to embed certain special graph metrics into real line such that distance-weighted
average stretch is bounded by a constant.

For approximating arbitrary graph metrics by their spanning trees, a simple Q(n) lower
bound in terms of maximum stretch is known for n-cycles [75]. Alon, Karp, Peleg, and West [7]

considered a distribution over spanning trees and proved an upper bound of 90(Viognloglogn) ¢y
the expected distortion. Elkin et al., [27] showed how a spanning tree with O(log? nloglogn)
average stretch (over the set of edges) can be computed in polynomial time. In terms of average
pairwise stretch, Abraham et al., [2] showed the existence of a spanning tree such that, for any
0 < e < 1, the distortion of an (1 — ¢) fraction of the pairs is bounded by O(1/1/¢). Note that
this implies an O(1) average pairwise stretch.Smid [85] gave a simpler proof for this result when
the metric is Euclidean.

In terms of sum of pairwise distances in graphs (routing cost), Johnson et al., [51] showed
that computing the spanning tree of minimum routing cost is NP-hard. Polynomial time
approximations as well as approximation schemes have been proposed by Wong [88] and Wu et
al., [92]. Despite the efforts devoted, however, no general guarantees have been made on the ratio
between the routing cost of the optimal spanning tree and that of the underlying graphs. Other
reasonable variations have been considered as well, i.e., sum-requirement routing trees problem,
product-requirement routing trees problem, and multi-sources routing trees problem [89-91].

15

3.2 Cost-Efficiency Maximization

Realistic network construction problems are often characterized by complex constraints and
multiple, possibly conflicting, objectives, and are therefore formulated within the framework of
Multi-Criteria Optimizations [19].

There are several ways to model the optimality in the presence of multiple objective, for
example, local optimality and aggregate optimality. Let II be a multi-objective optimization
problem, I be the set of the instances of I, and f;: I — R, 1 < i < k, be the set of objective
functions of IT to be maximized. An instance x € I is called local optimal if there is no other
instance y € I such that f;(y) > fj(x) for at least one index 1 < j < k while f;j(y) > fi(x) for
all 1 <4 < k. In other words, z is local optimal if we cannot improve a single objective without
diminishing at least one of the other objectives.

While the local optimality seems to capture the notion of best solutions intuitively, there
may be many instances which are locally optimal for a multi-objective optimization problem.
One common way to further measuring the quality is to combine the objectives into a single
aggregated objective, followed by optimizing it as a single-criterion objective. Typical aggregate
functions include weighted sum or weighted extremums, that is, we try to maximize

k
F(z):= Zwi < filz) or G(x):=max{w; - fi(z) |1 <i<k},
i=1

where w; € R are constants. These weighted aggregate functions, however, must be guided in
that the decision maker has to supply a set of suitable weights at the risk of arbitrariness.

In this part, a framework of bi-criteria network construction problems is considered. This is
motivated by a scenario of investment where one objective, the profit, is to be maximized while
the other, the expense, is to be minimized. In addition, a target upper bound on the cost and
a lower bound on the profit are given. In other words, we are given a budget limit and a target
profit. There two objectives are aggregated by their ratio. This features two main advantages
over other aggregate functions. First, we do not need to supply any weights, and if we did, it
would not alter the notion of optimality. Second, any optimal solution with respect to the ratio
is also locally optimal with respect to these two objectives. In economics, this ratio, which is
termed as return on investment, is a common measure for assessing the quality of investments.

Problem Definition

The framework is defined as follows. Let G = (V,E) be a graph, which will be referred to as
the host. Throughout the remaining content I will use n and m to represent the cardinality of
V and E, respectively. In addition, a weight function w : £ — Z representing the profits and
a length function ¢ : E — N representing the costs of the edges are given as two parameters
as well. As a shorthand I will also denote w(e) and ¢(e) by w, and /., respectively. For any
subgraph H C G, which I will refer to as a pattern of G, define

w(H) = Z we and ((H):= Z le
ecE(H) ccE(H)

as the total weight and total length of the edge set of a subgraph H, respectively.

Definition 3.1 (Viable Patterns). Given two integers W € Z and £ € N, a pattern H of a
host G is said to be W-viable if
w(H) > W.

Similarly, it is L-viable if
((H) < L.

H is called (W, £)-viable if it is both W-viable and L-viable.

16

Definition 3.2 (Cost-efficiency). For any (pattern) H, the cost-efficiency of H is defined as

o(H) = 12)((}1_11))'

For a given host graph G with two target integers W and L, the ultimate objective of
the addressed framework is to find a connected (W, £)-viable pattern H with maximum cost-
efficiency. In particular, we consider the following problem in Chapter §10 as an opening of the
stage curtain.

Problem 5 (Bi-constrained Maximum Cost-Efficiency Pattern problem). Given a host graph
G = (V,E), a weight function w: E — Z, a length function £: E — N, and target inte-
gers W € Z and L € N, the bi-constrained maximum cost-efficiency pattern problem is to find
a connected (W, £)-viable pattern H of G which has the maximum cost-efficiency among all
possible patterns.

Problem 5 captures the essential idea of the considered framework. In most situations,
however, we will not have a strict budget limits when constructing the network. Instead, there
is usually a flexibility to a certain extent to deduce the overall profit in exchange of more
budget. For instance, it may be possible to spend more than the budget limit by loaning
additional money at the cost of some interest. The following definition provides a possible way
to model this concept.

Definition 3.3 (Penalized Cost-Efficiency). For a pattern H of G and target values W and
L, the L-deviation of H with respect to the length target £ is defined as

d(H) := max {0,¢(H) — L},

and the corresponding penalized cost-efficiency is defined as

w(H)
((H) + ¢ o(H)’

o(H) :=
where c is some non-negative constant.

Note that, the defined penalized cost-efficiency provides a simplest way of modelling the
penalization. Depending on the situation, one can also define penalization of other forms.
Provided the concept of penalization, the following problem is further considered.

Problem 6 (Relaxed Maximum Cost-Efficiency Pattern problem). Given a host graph G =
(V,E), a weight function w: E — Z, a length function £: E — N, and target values W € Z and
L € N, the relaxed maximum cost-efficiency pattern problem is to find a connected W-viable
pattern H of G which has the maximum penalized cost-efficiency among all possible patterns.

The requirement of a connected pattern provides a structural constrain of the simplest
form. In the last of this dissertation, we consider the Steiner Constraints as a further step. In
particular, in Chapter §11, the following problem is considered.

Problem 7 (Maximum Cost-Efficiency Steiner Pattern problem). Given a graph G = (V, E) with
a weight function w: E — Z and a length function £: E — N, and a set of terminals S C 'V, the
maximum cost-efficiency Steiner pattern problem is to find a connected pattern H of G such
that S C 'V and po(H) is maximized among all possible patterns containing the terminals S.

17

State-of-the-Art

An overview of recent developments in multi-objective optimization is given in [19]. Balint [10]
proves inapproximability for bi-objective network optimization problems, where the task is to
minimize the diameter of a spanning subgraph with respect to a given length on the edges,
subject to a limited budget on the total cost of the edges. Marathe et al. [68] study bi-objective
network design problems with two minimization objectives. Given a limited budget on the
first, they provide a polynomial time approrimation scheme for minimizing the second objective
among a set of feasible graphs. The considered objectives include total edge weight, diameter
and maximum degree.

The study of dense segments in bi-weighted sequences arises from the investigation of non-
uniformity of nucleotide composition with genomic sequences [49,67] and has received consid-
erable attention in bio-informatics. For this problem, we are given a sequence of pairs (a;, b;)
and we wish to find a subsequence I with length bounded by Lyin < > . ;b; < Lyge that
maximizes the density

D il Wi

Zie] bi’
where L, and L4, are two given constants. For uniform lengths, Lin et al. [64] give an
O (nlog Lyn) algorithm, which is improved to O(n) by Goldwasser et al. [38]. A linear time
algorithm for the non-uniform case is given by Chung and Lu [21]. Lee et al. [61] show how to
select a subsequence whose density is closest to a given density § in O(n log? n) time. Without
the upper bound on the length B they present an optimal O(nlogn)-time algorithm.

el

Subsequently, this problem has been generalized to graphs. Previous work on this problem
focuses mostly on the cases where the host is a tree subject to the two-sided constraint on the
length of the solution. Hsieh et al. [47,48] show that a maximum density path in a tree subject
to lower and upper length bounds can be computed in time O(L4,;n) and that it is NP-hard
to find a maximum density subtree in a tree, for which they also presented an O(L2,,.n) time
algorithm. Wu et al. [93,94] improve on this by presenting an optimal algorithm for computing
a maximum density path in a tree in time O(nlogn) in the presence of both a lower and upper
length bounds. They also give an O(n log? n) algorithm for finding a heaviest path in a tree in
the presence of length constraints [94], which is improved to O(nlogn) by Liu and Chao [65] .

Problems involving Steiner constraints have been widely studied in computer science for a
long time. For instance, it is known that the Steiner tree problem is NP-hard [37] and can be
approximated within a factor of 1.55 [80]. When parameterized by the number of terminals, this
problem is fized-parameter tractable [26], when parameterized by the number of non-terminals
in the solution it is W][2]-hard. The latter result is attributed to Bodlaender and can be
found in [66]. For the special case that the set of terminals contains all vertices of the graph,
Chandrasekaran [17] shows that a spanning tree with maximum density can be computed in
polynomial time.

3.3 Summary of the Content to Appear

In Chapter §8, a direct approach to tackle Problem 2 as well as a provably small upper-bound
is presented. Specifically, we adopt the notion of hierarchically well-separated trees (HSTs),
introduced by Bartal [12] and Fakcharoenphol [29], and show that, for any given metric M,
there exists a 2-HST, M, such that the distance-weighted average stretch of M’ is bounded by
14.24. The main ingredient of this result is a special point-set decomposition which relates two
seemingly-unrelated quantities, namely, the diameter of the point set and the sum of pairwise
distances between two separated subsets.

18

Bi-constrained Maximum Cost-Efficiency Pattern Problem

G H Constr. Results Reference

tw = 2 path bi-constr. NP-hard Thm. 10.1

tree path bi-constr. O(nlog®n) Thm. 10.3

tree +k edges path bi-constr | O(2Fk%nlog?n + nlog®n) Thm. 10.5

tw =k minor-closed | bi-constr 90k +klog N+N) | F| L, Thm. 10.6
tw=k minor-closed relaxed |20 +klog N+N) | F|m /e21og B Cor. 10.7

Maximum Cost-Efficiency Steiner Subgraph

G H Constr. Results Reference
* matching Vv O((m + nlogn)nlog (nM)) Cor. 11.3
tree tree with k leaves| |S|>1 O(k?nlog (nM)) Thm. 11.4
* path S| =1 NP-hard, ¢ APX Thm. 11.5
* * |[V(H)| <k S| =1 W/[1]-hard Thm. 11.7
planar * |[V(H)| <k S| =1 FPT Thm. 11.8
* path, [V(H)| <k| |S]|>1 [O((2¥*m + 3k=%)s%log (nM)) Thm. 11.9
* tree S| >1 NP-hard Thm. 11.10

Table 3.1: Summary of the results to appear for the cost-efficiency maximization problem. The
symbol * denotes an arbitrary graph.

If we do not require HSTs, it is also possible to apply our technique and construct the so-
called ultra-metrics, which is introduced by Abraham [2] and Bartal [13], with a similar stretch,
3.56. This provides a better and explicit guarantee than that provided in [4] (from > 64). For
the negative side, we show that there exist metrics for which no dominating tree metrics can
preserve the sum of pairwise distances to a factor better than 2. This shows that our result is
within twice the best one can achieve.

As a side-product, we prove the existence of spanning trees with O(d\/ﬁ) distance-weighted
average stretch for any point set in Euclidean space R¢. To this end, the point-set cutting
lemma is used to decompose the points recursively. In order to guarantee a constant blow-up in
the diameter of the spanning tree, however, instead of allowing arbitrary cuts, we show that it
is always possible to make a balanced decomposition such that the diameters of the partitioned
sets stay balanced. Our result provides a good guarantee when the dimension of the given
Euclidean graph is low, which is true for most communication network. Although it is possible
to apply the framework of [2,3] to obtain a spanning tree of constant distance-weighted average
stretch, the constant hidden inside is huge (> 10°) that makes it practically less useful. Both
of the aforementioned proofs are constructive.

In Chapter §10, we discuss the Bi-constrained Maximum Cost-Efficiency Pattern problem.
First, in terms of problem complexity, we prove that this problem is NP-hard, even if the host
has treewidth 2 and the pattern is a path. Then we show how a cost-efficient path in a tree can
be computed efficiently. This algorithm is extended to graphs that can be turned into a tree by

19

removing k edges, which implies this problem is FPT with respect to the difference between
the number of edges and the number of vertices. As a further step, we show how this problem
can be solved when the host graph has bounded treewidth and the pattern to be computed
is restricted to a given minor-closed family of graphs. This algorithm applies for the Relaxed
Maximum Cost-Efficiency Pattern problem as well. Then, a general framework which leads to a
fully-polynomial time approximation scheme for the relaxed maximum cost-efficiency pattern
problem is presented, provided that algorithms whose running time is pseudo-polynomial in the
maximum length is available.

In Chapter §11, we consider the maximum cost-efficiency problem under different structural
constraints. First, by adopting a generic technique from Chandrasekaran [17], we show how the
maximum cost-efficiency perfect matching problem can be solved efficiently. Then, a polynomial
time algorithm is presented for finding a maximum cost-efficiency subtree with k leaves in a
tree. Then, we switch the focus to Steiner constraints and proved that this problem is NP-hard
and cannot be approximated to any constant factor unless P = NP, even if the pattern is a
path and the terminal set SS contains only one vertex. Furthermore, when parameterized by
the number of vertices of the pattern, the maximum cost-efficiency pattern problem is proven
to be W/[1]-hard. In contrast, an fixed-parameter tractable algorithm for planar graphs is
provided. Then, the problem of computing a maximum cost-efficiency path is proven to be
fixed-parameter tractable when parameterized by the number of vertices on the path in general
graphs. However, finding a maximum cost-efficiency Steiner tree is then proved to be NP-hard.
Table 3.1 provides an overall summary for the results obtained for these problems.

20

Part 11

Capacitated Domination Problem

21

Chapter 4

Approximation Algorithms for
General Graphs

This chapter presents approximation algorithms for the capacitated domination problem on
general graphs. Let G = (V, E) be the input graph, whereas n = | V| is the number of vertices
and A* = deg|G] is the maximum closed degree. Depending on the way how the approximation
ratio is bounded, the results we presented are two folds.

(1) In terms of the number of vertices, logarithmic approximation algorithms with
respect to different demand models are presented. In particular, for inseparable demand
model, a (Inn)-approximation in §4.1 is provided. For separable demand model, a (41nn + 2)-
approximation in §4.2 is presented. Furthermore, when the weight of each vertex is identical, we
provide an improved approach in §4.3 which achieves an approximation ratio of (2lnn+1). This
is achieved by properly determining the greedy choice. The idea used for inseparable demand
model is relatively conceivable, nevertheless, it provides a hint towards separable demands for
which a proper choice is less obvious and requires efforts to bound the solution quality.

(2) In terms of maximum degree of the input graph, we present a A*-approximation
algorithm for separable demand model in §4.4. The idea is to apply a sophisticated primal-dual
fitting and charging argument on a linear program for this problem.

4.1 Inn-Approximation for Inseparable Demand

Let U be the set of vertices which have not yet been served (dominated). Initially, we have
U = V. For each vertex u € V, let N4[u] = U N N[u] be the set of undominated vertices in
the closed neighborhood of w.

In each iteration, the algorithm chooses a vertex of the greatest efficiency from V, where the
efficiency of a vertex, say u, is defined by the largest effectiveness-cost ratio, which is number
of vertices to be dominated by u over the total cost required by this assignment, among all
possible demand assignments from N, 4[u] to u. To be precise, let vy, 1, vy 2, . . . s Uy, |Nq[u)| denote
the undominated neighbors of u, Ny4[u], sorted in non-descending order of their demands. The
efficiency of u is defined to be

i .
d(u) = 19511%3;[“” W) a0’ where (i) = {

is the number of copies of u necessary to dominate vy 1,vy2,...,0u:. O(u) is defined to be
zero if Nyq[u] is empty. Let ug be the vertex of maximum efficiency, and 6~'(ug) denote the

22

ALGORITHM Inseparable-Log-Approx

1: U+—V

2: while U # ¢ do

3: Pick a vertex from V with the greatest efficiency, say u.
4: Assign the demand of {v%l, Vy,2, - - - ,vu,5_1(u)} to u.

5: U+ U\ {'UUJ,’UUQ,...,’Uuﬁfl(u)}.

6: end while

7

return the demand assignment function as the solution.

Figure 4.1: The high-level description of the (Inn)-approximation for the inseparable demand
model.

corresponding index such that the ratio
i
w(ug) - Tug (i)

is maximized. The algorithm removes the set of vertices to be dominated, vy,,1, Vug,2, - - -, Vug,6-1 (ug)»
from U and assigns their demands to ug. This process continues until U = ¢. A high-level
description of this algorithm is presented in Fig. 4.1.

Since the algorithm only removes vertices from U when their demand is assigned, it always
produces a feasible demand assignment function. In the following, we argue that this assignment
function is also a (Inn)-approximation.

For each iteration, say, j, let Opt(j) denote the cost of the optimal demand assignment
function for the remaining problem instance. Clearly, we have Opt(j) < Opt, where Opt is
the cost of the optimal demand assignment function for the original problem instance. Let the
cardinality of U at the beginning of iteration j be n;, and let k; = nj; — nj;1 be the number of
vertices that are newly dominated in iteration j.

Denote by S(j) the cost we spend in iteration j. Assume that the algorithm repeats for m
iterations. We have the following lemma.

Lemma 4.1. For each 7, 1 < j < m, we have

§() < - opi(j)

Proof. Since we always choose the vertex with the maximum efficiency, this efficiency is no less
than the efficiency of each vertex chosen in Opt(j), and therefore no less than any weighted
average of them, including n;/Opt(j). Therefore we have

kj > nj
S(j) ~ Opt(5)’

and the lemma follows. O

Theorem 4.2. Algorithm Inseparable-Log-Approx computes a (Inn)-approximation for the
capacitated domination problem with inseparable demands in O(n3) time, where n is the number
of vertices of the input graph.

23

Proof. Tt suffices to prove that this algorithm produces a logarithmic approximation. Take the
summation over each S(j) and observe that nj;1 = n; — kj;, we have

: k; : 1
PROESDS - opt) < > -] -opt<mn-op
1<j<m 1<j<m 1<j<n

where the second inequality follows from the fact that

ki 1 1 1 1 1
S gl e — — .
-+ + ot) -

nj —nj nj—1 n;—2 nj—k‘j+1:

nj41 <i§nj

To see that the time complexity is O(n?), notice that it requires O(n) time to compute a
most efficient move for each vertex, which leads to an O(n?) computation for the most efficient
choice in each iteration. The number of iterations is upper bounded by O(n) since at least one
vertex is satisfied in each iteration. O

4.2 (4Inn+ 2)-Approximation for Separable Demand

This section shows how a (4Inn + 2)-approximation can be computed when the demand is
separable. As the demand may be partially assigned during the algorithm, for each vertex
u € V, we denote by rd(u) the amount of demand of w that has not yet been served. For
convenience we also refer to this quantity, rd(u), as residue demand of u, and to the remaining
fraction, rd(u)/d(u), as the effectiveness of w. Initially rd(u) is set to be d(u), and will be
updated accordingly when a fraction of the residue demand is assigned. The vertex wu is said to
be dominated when rd(u) = 0.

In each iteration, the algorithm performs two stages of greedy choices. First, the algorithm
chooses the vertex of the most efficiency from V, where the efficiency is defined in a similar
fashion as in the previous section with some modification due to the separability of the demand.

For each vertex u € V, let Nyq[u] = {vu,l, Vy,2, - - vu,‘Nud[u”} denote the set of undominated
neighbors of u, sorted in non-descending order with respect to their demands. Let j,, 0 < j, <
|Nyq[u]|, be the largest integer such that c(u) > Zgil rd(vy,;). Literally, we choose the largest
index j, such that the residue demand of the first j, vertices in the sorted list could be served
by one single copy of u. Let

_ 2 rd(v,)

i1 d(vu,i)
be the corresponding sum of effectiveness. In addition, to effectively use the remaining capacity
provided by this single copy of u, we let

X (u)

Y(U) _ C('LL) — iil T'd(vuﬁ’i)
Ad(Vu,j,+1)
if j, < |Nyg[u]| and Y (u) = 0 otherwise. Since we select the vertices from the sorted order of

the their demands, one can easily verify that this always results in the maximum effectiveness
among all possible combinations. The efficiency of the vertex u is defined to be

X(u) +Y(u) '

w(u)

Second, the algorithm maintains for each vertex w € V a subset of vertices, denoted by
P(u), which consists of vertices that have served the demand of u before u is dominated. In
other words, for each v € P(u) we have a non-zero demand assignment from u to v. During the

24

ALGORITHM Separable-Log-Approz

L: rd(u) «— d(u), and P(u) «— ¢ for each u € V.
2: while there exist vertices with non-zero residue demand do

3. // 1% greedy choice

4: Pick a vertex in V with the largest efficiency, say u.

5 if j, equals O then

6: Assign this amount c(u) - L%J of residue demand of v, 1 to u.

7 P(vy1) «— {u}

8 else

9: Assign the residue demands of the vertices in {vy1,vu2, ..., Vuj, } to u.
10: if j, < |Nyglu]| then

11: Assign this amount c(u) — gil rd(vy,;) of residue demand from vy j,+1 to u.
12: P(vuj,+1) ¢— P(vuj,+1) U{u}

13: end if

14: end if

15:

16: // 2" greedy choice

17: if there is a vertex u with 0 < rd(u) < 3 - d(u) then

18: Satisfy w by doubling the demand assignment of u to vertices in P(u).
19: end if

20: end while

21: return the demand assignment function as the output.

Figure 4.2: The (41nn + 2)-approximation for the separable demand model.

iterations, whenever there exists a vertex u whose residue demand falls below half of its original

demand, i.e., 0 < rd(u) < % -d(u), after the first greedy choice, the algorithm immediately
doubles the demand assignment of u to the vertices in P(u). Note that in this way, we can

completely serve the demand of u since

This procedure repeats until every vertex of the graph is dominated. A high-level description
of this algorithm is presented in Figure 4.2.

Below we analyse the algorithm Separable-Log-Approx. First we argue that this algorithm
always produces a feasible demand assignment function. We begin with the following lemma.

Lemma 4.3. After each iteration, the residue demand of each unsatisfied vertex is at least half
of its original demand.

Proof. Clearly, this lemma holds in the beginning when the demand of each vertex is not yet
assigned. For later stages, we argue that the algorithm properly maintains the set P(u) for
each vertex u € V such that in our second greedy choice, whenever there exists a vertex u
with 0 < rd(u) < % -d(u), it is always sufficient to double the demand assignment f(u,v)
for each v € P(u). If P(u) is only modified under the condition 0 < j, < |[Nyq[v]|, (see also
line 12 in Fig. 4.2), then P(u) contains exactly the set of vertices that have partially served
u. Therefore we have > cp(, f(u,v) > +d(u), and it is sufficient to double the demand

assignment in this case. If P(u) is reassigned under the condition j, = 0 at some stage, then

25

we have ¢(v) < rd(u) < d(u). Since we assign this amount

)

of residue demand of u to v, this leaves at most half amount of the original residue demand of
u, which is also no larger than c¢(v). Therefore u will be immediately dominated by doubling
this assignment in the same iteration. O

By the above description, we conclude that the algorithm produces a feasible demand as-
signment function. In the following we show that the demand assignment function is indeed
a (4lnn + 2)-approximation. Let the cost incurred by the first greedy choice be S; and the
cost by the second choice be S3. To see that the solution achieves the desired approximation
guarantee, notice that Sy is bounded from above by Sy, for what we do in the second choice is
merely to satisfy the residue demand of a vertex, if there exists one, by doubling its previous
demand assignment.

It remains to bound the cost ;. For each iteration j, let u; be the chosen vertex of the
maximum efficiency,
rd(u)
YT ()
uevV

be the sum of remaining effectiveness of each vertex at the beginning of this iteration, and
Opt(j) be the cost of the corresponding optimal demand assignment function of this remaining
problem instance. Denote by &7 ; the cost incurred by the first greedy choice in iteration j.
Assume that the algorithm repeats for m iterations. We have the following lemma.

Lemma 4.4. For each 5, 1 < j < m, we have

Ny — Nj+1 .
Sl,j < % : Opt(])a
J

where nj — nji1 is the effectiveness covered by w; in iteration j.

Proof. The optimality of our choice in each iteration is obvious since we consider the elements
of Nyq[u] in sorted order according to their demands. Note that only in the case c¢(u) < rd(vy1),
the algorithm could possibly take more than one copy. In this case the efficiency of our choice
remains unchanged since the cost and the effectiveness covered by u grows by the same factor.
Therefore the efficiency of our choice, (n; — n;11)/S1,;, is always no less than the efficiency of
each chosen vertex in the optimal solution, and therefore no less than any of their weighted
averages, including n;/Opt(j). Therefore this lemma follows. O

By Lemma 4.4 above, we have

m m— m—1
Y S < Z Ot()+— Opt(m) < Zmnjﬁﬂ*l - Opt,
=1 j=1 rim i=1 !

where the second inequality follows form the fact that |r| <r < [r] for any real number r and
Opt(j) < Opt for each 1 < j < m.

Lemma 4.5. We have nj —njiq1 > % for each 1 < 7 <m.

Proof. For iteration j, 1 < j < m, let u; be the chosen vertex of the maximum efficiency.
Observe that vy;,1 will be satisfied after this iteration. By Lemma 4.3, we have

1
rd(vuﬁ) > 2d(fuuj71).
Therefore the effectiveness covered in each iteration is at least half. O

26

Lemma 4.6. We have

m—1

Z nj“ <2-lnn.

Proof. Note that we have n; > 1 for all j < m, since, whenever n; < 1, the remaining effec-
tiveness will be covered in the same iteration according to Lemma 4.3 and Lemma 4.5. We will
argue that each item of this series together constitutes at most two harmonic series.

By expanding the summand we have

[nj —njl _ 1 1 .
Y T I T S Y] R Yy (4.1)

Since

(g1 = [y — (nj —nji1))
< [nj] = Inj = njsa] < [nj] = [nj —njpa] + 1,
possible repetitions of the expanded items only occur at the first item and the last item of

Eq. (4.1) if we expand each summand from the summation. By Lemma 4.5, the decrease
between n; and n;,1 is at least half. Therefore, each repeated item,

1
(5] = [nj —njpa] +1°

will never occur more than twice in the expansion, and we can conclude that

m—1

j+1 <2-lnn.
L”J
i—1

<.

O

Regarding the Running Time of this Algorithm. A naive implementation of this algo-
rithm will lead to a running time cubic in the number of vertices. However, by exploiting the
property we assumed during the iterations that the undominated neighbors of each vertex are
sorted in non-descending order according their demands, we can improve the running time of
the algorithms to O(n?logn), which is also the time required to build the sorted list of the
closed neighborhood for each vertex.

The idea is to maintain the efficiency of each vertex in a binary max-heap. In each iteration,
we extract the vertex of the greatest efficiency from the heap, perform the demand assignments
suggested by the most efficient move, and update the efficiencies of the vertices affected by each
demand assignment.

To this end, for each vertex, we maintain a pointer to the vertex in its closed neighborhood
that corresponds to the last item in the most efficient move. The pointer stored for each vertex
will iterate over its closed neighborhood in sorted order at most once upon updates. Whenever
the residue demand of a vertex, say wu, gets assigned, we update the efficiencies as well as
the most efficient moves of its closed neighborhood accordingly. To be more precise, for each
v € NJu|, depending on the relative position of u and the vertex to which the pointer of v points
in N[v], we have two cases. If u lies after the pointer, then no updates are required. Otherwise
we iterate the pointer of v according to our predefined notion of efficiency.

Since at least one vertex will be dominated and at most one vertex will be partially assigned
in each iteration, the number of partial assignment will be no more than n. For each demand
assignment, the number of updates required is bounded by the cardinality of the closed neigh-
borhood, which is O(n). Therefore, the total number of updates is O(n?). Since the pointer

27

we maintained for each vertex is iterated over its closed neighborhood at most once, the time
required for all the updates is also bounded by O(n?). We conclude our result in the following
theorem.

Theorem 4.7. Algorithm Separable-Log-Approx computes a (41nn + 2)-approzimation in
O(n?logn) time, where n is the number of vertices of the input graph, for the capacitated
domination problem with separable demand model.

Proof. The feasibility of our algorithm follows from the above discussion. By Lemma 4.6, the
cost of the demand assignment function returned by our algorithm is bounded by

S1+8 <285 =2-> 8,;<2 - (2lnn+1)-Opt.
j=1

Regarding the time complexity, building the sorted list for each vertex takes O(n?logn) time.
In each iteration, it takes O(logn) time to extract and to maintain the heap property, provided
that the efficiency of each vertex is updated. The total time required to perform the update is
O(n?) from the above discussion. Therefore the overall time complexity is O(n?logn). O

4.3 (2lnn+ 1)-Approximation for Separable Demand with Unit
Cost

We show that, when the demand is separable and each vertex has uniform cost, then we can
compute a (2Inn + 1)-approximation in polynomial time. To this end, we first make a greedy
reduction on the problem instance by spending at most the cost of Opt such that it takes
at most one copy to serve each remaining undominated vertex. Then we show that a (21nn)-
approximation can be computed for this reduced problem instance, based on the same framework
provided in the last section.

For each u € V, let g, € N[u] be the vertex with the maximum capacity. First, for each
u € V, we assign this amount
d(u) J

0 |G

of the demand of u to g,. Let the cost of this assignment be S, then we have the following
lemma.

Lemma 4.8. We have § < Opt, where Opt is the cost of the optimal demand assignment
function.

Proof. Notice that, when fractional multiplicities are allowed, an optimal demand assignment,
denoted f*, can be obtained by assigning all the demand of u to g,, for each vertex u. Let

ZUGN[U} f*(v7 u)
c(u)

wfrac(f*) = Z w(u) ’

ueV

be the total cost incurred by f*, allowing fractional multiplicities. Since S < wppqe(f*) and
Werae(f*) < Opt, the lemma follows. O

In the following, we will assume that d(u) < ¢(gy,), for each u € V. The algorithm provided
in Section §4.2 is slightly modified. In particular, for the second greedy choice, whenever
rd(u) < d(u) for some vertex u € V, we immediately assign the residue demand of u to g,. A
high-level description of this algorithm is presented in Fig. 4.3.

Lemma 4.9. We have nj —nji1 > 1 for each 1 < j < m.

28

ALGORITHM Unit- Weight-Separable- Log- Approz
d(u)

C(gu)

1. For each u € V, assign ¢(gy)- { J demands of u to g, where g, € N[u] has the maximum

capacity.
2: Reset the demands of the instance by setting d(u) — rd(u) for each u € V.
3: while there exist vertices with non-zero residue demand do
4: /] 1% greedy choice
5. Pick a vertex in V with the most efficiency, say .
6: Assign the demands of the vertices in {vy 1,042, ...,V , } to u.
T if j, < \Nud[uﬂ then ‘
8: Assign this amount c¢(u) — 1", rd(vy,;) of the residue demand of v, j,+1 to u.
9: end if
10:
11: // 2™ greedy choice
12: if there is a vertex u with 0 < rd(u) < d(u) then
13: Satisfy u by assigning the residue demand of u to gy,.

14: end if
15: end while
16: return the demand assignment function as the output.

Figure 4.3: The high-level description for the improved (21nn + 1)-approximation for the sep-
arable demand model with unit weight.

Proof. Observe that in each iteration, at least one vertex is dominated and the residue demand
of each vertex is either 0 or equal to its original demand. O

We conclude the result in the following theorem.

Theorem 4.10. Algorithm Unit-Weight-Separable-Log-Approx computes a (2lnn + 1)-
approzimation in O(n?logn) time for the capacitated domination problem with separable demand
model and unit weight, where n is the number of vertices in the input graph.

Proof. We adopt the notation from the previous section. Clearly, Sy is bounded above by Sy, as
we always take one copy for the first greedy choice and at most one copy for the second greedy
choice in each iteration. By Lemma 4.9 and the fact that n; is integral for each 1 < j7 < m, we
have

m m
n; —n;
E S1,; < E e/ -Opt(j) <1Inn - Opt,
n
j=1 j=1 :

and

S+S+8<0pt+2-> S ;< (2lnn+1)-Opt.
j=1

4.4 A*-approximation for Separable Demand

In the following, we present a primal-dual algorithm which gives a A*-approximation for the
capacitated domination problem with separable demand on general graphs, where A* is the
closed degree of the input graph. The algorithm is based on a sophisticated dual fitting and
charging scheme.

29

4.4.1 Primal/Dual Linear Programs

We formulate this problem as an integer linear program (ILP), which is given below in (4.2).
The first inequality ensures the feasibility of the demand assignment function f. In the second
inequality, we model the multiplicity function x ¢ as defined. The third constraint, d(v)z(u) —
f(v,u) > 0, which seems unnecessary in the problem formulation, is required to bound the
integrality gap between the optimal solution of this ILP and that of its relaxation, in which
we allow the variables z(v;) to take any non-negative real values. To see that this additional
constraint does not alter the optimality of any optimal solution, we have the following lemma.

Minimize Z w(u)z(u) (4.2)
ueV
subject to
Z f(u,v) —d(u) >0, ueV
vEN][y]
cwa(w— Y fou)=0, ueV
vEN(u]
d(v)z(u) — f(v,u) >0, v € NuJ,ueV
flu,v) >0, x(u) € ZT U{0}, u,v €V

Lemma 4.11. Let f be an arbitrary optimal demand assignment function. We have d(v) -
xf(u) — f(v,u) >0 for alluw € V and v € Nu].

Proof. Without loss of generality, we may assume that d(v) > f(v,u). For otherwise, we set
f(v,u) to be d(v) and the resulting assignment would be feasible and the cost can only be
better. If x;(u) = 0, then we have f(v,u) = 0 by definition, and this inequality holds trivially.
Otherwise, if 2 ¢(u) > 1, then d(v) - z¢(u) — f(v,u) > f(v,u) - (xf(u) —1) > 0. O

However, without this constraint, the integrality gap can be arbitrarily large. This is illus-
trated by the following example. Let o > 1 be an arbitrary constant, and T(«) be an n-vertex
star, where each vertex has unit demand and unit cost. The capacity of the central vertex is
set to be n, which is sufficient to cover the demand of the entire graph, while the capacity of
each of remaining n — 1 petal vertices is set to be an.

Lemma 4.12. Without the additional constraint d(v)x(u) — f(v,u) > 0, the integrality gap of
the ILP (4.2) on T(«a) is a, where a > 1 is an arbitrary constant.

Proof. The optimal dominating set consists of a single multiplicity of the central vertex with
unit cost, while the optimal fractional solution is formed by spending a—ln multiplicity at a petal
vertex for each unit demand from the vertices of this graph, making an overall cost of é and
therefore an arbitrarily large integrality gap. O

Indeed, with the additional constraint applied, we can refrain from unreasonably assigning
a small amount of demand to any vertex in any fractional solution. Take a petal vertex, say v,
from T(«) as example, given that d(v) = 1 and f(v,v) = 1, this constraint would force z(v)
to be at least 1, which prevents the aforementioned situation from being an optimal fractional
solution.

The dual program of the relaxation of (4.2) is given below in (4.3). Note that, by the linear
program duality, any feasible solution to (4.3) will serve as a lower bound to any feasible solution
of (4.2).

30

For the remaining of this chapter, for any graph G, we denote the optimal values to the
integer linear program (4.2) and to its relaxation by Opt(G) and Opt f,q.(G), respectively. Note
that Opt frec(G) < Opt(G).

Maximize Z d(u)y, (4.3)
uevV
subject to
c(w)zu+ Y d(0)gup < wlw), wev
vENu]
Yu < 2p + Gous veEN[ul, ueV
Yu 20, 24 20, gyu =0, ’UEN[U],UGV

4.4.2 The Greedy Charging Algorithm

We describe an approach to obtaining a feasible solution to (4.3). The idea is to begin with
a trivial solution with all the variables set to zero and then raise the variables to achieve a
local maximum. During the process, the feasibility of the solution is maintained, and the set
of vertices becomes partially served. When a local maximum of the variables y,, is reached, we
also have a feasible demand assignment function as well. Then we bound the objective value of
the solution by distributing the cost we spent to each unit demand we served. In the following,
we describe the whole process in more detail.

During the process, we will maintain a vertex subset, V?, which contains the set of vertices
with non-zero unassigned demand. For each u € V, let d®(u) = > veN[unve d(v) denote the
amount of unassigned demand from the closed neighbors of u. We distinguish between two cases.
If c(u) < d®(u), then we say that u is heavily-loaded. Otherwise, u is lightly-loaded. During
the process, some heavily-loaded vertices might turn into lightly-loaded due to the demand
assignments of its closed neighbors. For each of these vertices, say v, we will maintain a vertex
subset D*(v), which contains the set of unassigned vertices in N[v] N’V when v is about to fall
into lightly-loaded. For other vertices, D*(v) is defined to be an empty set.

Initially, V¢ = {u : u € V,d(u) # 0} and all the dual variables are set to be zero. We
increase the dual variable y, simultaneously, for each v € V®. To maintain the dual feasibility,
as we increase y,,, we have to raise either z, or g, 4, for each v € Nu]. If v is heavily-loaded, then
we raise z,. Otherwise, we raise g, ,. Note that, during this process, for each vertex u that has
a closed neighbor in V?, the left-hand side of the inequality c(u)z, + 2 venfy] AV)gup < w(u)
is constantly raising. As soon as one of the inequalities c¢(u)zu + 3, enjy) A(V)gup < w(u) is met
with equality (saturated) for some vertex u € V, we perform the following operations.

If u is lightly-loaded, we assign all the unassigned demand from N[u] N V? to u. In this
case, there are still c¢(u) — d®(u) units of capacity free at u. We assign the unassigned demand
from D*(u), if there is any, to u until either all the demand from D*(u) is assigned or all the
free capacity in u is used. On the other hand, if u is heavily-loaded, we mark it as heavy and
delay the demand assignment from its closed neighbors.

Then we set Q, = N[u]N'V? and remove N[u] from V?. Note that, due to the definition of
d?, even when u is heavily-loaded, we still update d®(p) for each p € V with N|[p] N N[u] # ¢,
if needed, as if the demand was assigned. During the above operation, some heavily-loaded
vertices might turn into lightly-loaded due to the demand assignments (or simply due to the
update of d?). For each of these vertices, say v, we set D*(v) = N[v] N (V? U Q,). Intuitively,
D*(v) contains the set of unassigned vertices from N[v] N V¢ when v is about to fall into
lightly-loaded.

31

ALGORITHM A*-Approz-Greedy-Charging

1: VO «— {u:ueV,du)#0}, V¥ «+— V.

2: d®(u) +— > veN[y] 4(v), for each u € V.

3 w?(u) +— w(u), for each u € V.

4: Let Q be a first-in-first-out queue.

5: while V¢ £ ¢ do

6: 1y +— w®(v)/ min{c(v),d?(v)}, for each v € V*.

7. u<— argmin{r, : v € V*}. [u is the next vertex to be saturated.]
8 w?(v) «— w?(v) — w?(u), for each v € V*.

9:

10: if d(u) < c(u) then

11: Assign the demand from N[u] N V? to u.

12: Assign c(u) — d®(u) amount of unassigned demand from D*(u), if there is any, to u.
13: else

14: Attach u to the queue Q and mark u as heavy.

15: end if

16: Let S, +— N[u]NV?U {u}.

17: Remove N[u] from V? and update the corresponding d?(v) for v € V.
18: For each v € V* such that d?(v) = 0, remove v from V*.

19: for all vertex v becomes lightly-loaded in this iteration do
20: D*(v) «+— N[v] N (VP US,).
21: end for
22: end while
23: while Q # ¢ do

24: Extract a vertex from the head of Q, say u.
25: Assign the unassigned demand from Nu] to u.
26: end while

27:

Figure 4.4: The high-level pseudo-code for the primal-dual algorithm.

This process continues until V® = ¢. For those vertices which are marked as heavy, we
iterate over them according to their chronological order of being saturated and assign at this
moment all the remaining unassigned demand from their closed neighbors to them. A high-level
description of this algorithm is given in Fig. 4.4.

Let f*: V xV — RT U {0} denote the resulting demand assignment function, and z* :
V — Z1T U {0} denotes the corresponding multiplicity function. The following lemma bounds
the cost of the solution produced by our algorithm.

Lemma 4.13. We can distribute the total cost of the demand assignment function f*, which
is w(f*) = Y ,evw(u) - x*(u), to each unit of the demand in G such that each unit demand,
say, from vertex u, gets a cost of at most deglu] - y,,. In other words, we have

w(f*) <Y d(u) - degluly..

ueV

Proof. Let u € V be a vertex with z*(u) > 0. We consider two cases.

(1) If u has been marked as heavy, then by our scheme, we have g,, = 0 and y, = z,, for
all v € Nu]. Therefore w(u) = c(u) - z, = ¢(u) - Yo, and for each multiplicity of u, we need c(u)

32

units of demand from Nu]. If z*(u) > 1, then at least ¢(u) - (#*(u) — 1) units of demand are
assigned to u, and by distributing the cost to them, each unit of demand gets charged at most
twice. If 2*(u) = 1, then we charge the cost to any c(u) units of demand that are counted in
d?(u) when u is saturated. Since u is a heavily-loaded vertex, d®(u) > c(u) and there will be
sufficient amount of demand to charge.

(2) If u is lightly-loaded, then z*(u) =1 and we have two subcases.

e Case 2a. If ZUENM d(v) < c(u), then u is lightly-loaded in the beginning and we have
zu = 0 and y, = gup for each v € Nfu], which implies w(u) = > enp V) - Gup =
> ven[u] 4(v) - yo. The cost w(u) of u can be distributed to all the demand from its closed
neighbors, each unit demand, say from vertex v € NJu|, gets a charge of y,.

e Case 2b. If 3 Ny, d(v) > c(u), then u is heavily-loaded in the beginning and at some
point turned into lightly-loaded. Let Uy C D*(u) be the set of vertices whose removal
from V¢ makes this change. By our scheme, z, is raised in the beginning and at some point
when d?(u) is about to fall under c(u), we fixed 2, and start raising g, ,, for v € D*(u)\Up.
Note that, we have y,, = 2, for all ug € Uy, y, = 2y + guo for each v € D*(u)\Uy,
and gy, = 0 for v € N[u]\D*(u) UUp. Let diy; = c(u) = X yep+(up\u, 4(v). We have

w(u) = C(u)'zu"i'ZyeN[u] d(v)'gu,v = (dEO + ZveD* (u)\Uop d()) 'ZU+ZUGD*(u) d(v)'gu,v =
d{JO “Zut Z”GD*(U)\UO d(v) ’ (Zu + gu,v) < ZUEUO dy - yp + Z’UED* N\ Uo d(v) “Yo-

For both cases, the cost w(u) of the single multiplicity can be distributed to the demand of
vertices in D*(u).

Finally, for each unit demand, say demand d from vertex u, consider the set of vertices V4 C
N[u] that has charged d. First, by our assigning scheme, V consists of at most one heavily-
loaded vertex. If d is assigned to a heavily-loaded vertex, then, by our charging scheme, we have
V4| =1, and d is charged at most twice. Otherwise, if d is assigned to a lightly-loaded vertex,
then, by our charging scheme, each vertex in V; charges d at most once, disregarding heavily-
loaded or lightly-loaded vertices. This shows that d gets a charge of at most deg[u] - yy,. O

Theorem 4.14. Given any graph G = (V,E), we can compute a A*-approzimation for the
capacitated domination problem on G in polynomial time, where A* is the maximum closed
degree of G.

Proof. By Lemma 4.13 and the linear program duality, we have

<) d(w) - degluly, < A* Y d(u)yy < AT - Optrae(G) < A™- Opt(G).
ueV ueV

33

Chapter 5

Graphs of Bounded Treewidth

In the chapter, we present results for graphs of bounded treewidth. In particular, in section §5.1,
we show that this problem is W/I/-hard when parameterized by treewidth, regardless of demand
assigning models. Then we present a fixed-parameter tractable algorithm for inseparable de-
mand model, taking both treewidth and maximum capacity as the parameters, in section §5.2.
This algorithm is further extended to separable demand model. At the end of this chapter,
we present in §5.3 a constant factor approximation for separable demand model on outerplanar
graphs, which is also the graphs of treewidth two, based on a novel hierarchical perspective on
the structure of outerplanar graphs followed by a primal-dual analysis.

5.1 W][l]-Hardness w.r.t. Treewidth

We show that the capacitated domination problem is W/1hard when parameterized by treewidth.
The reduction is made from the k-Multicolored Clique, which is a restriction of k-Clique problem.

Definition 5.1 (Multicolored Clique). Given an integer k and a connected undirected graph
g = (Ule V[i],é') such that V[i] induces an independent set for each i, the MULTICOLORED

CLIQUE problem asks whether or not there exists a clique of size k in G.

Given an instance (G,k) of multicolored clique, we show how an instance G = (V,E)
of treewidth O(k?) for the capacitated domination problem can be built such that G has a
clique of size k if and only if G has a capacitated dominating multi-set of cardinality at most
k' = (3k? — k)/2. For convenience, we distinguish the vertices of G by referring to them as
nodes.

While the technical detail is subtle, the general idea behind is conceivable. For each inde-
pendent set V[i], 1 < i < k, we construct a star rooted at a node z; containing a node u for
each vertex u € V[i]. From the construction we guarantee that exactly one node will be picked
in the optimal capacitated dominating multi-set, and this will correspond to the selection of the
vertices to form a clique in G. Similarly, we construct a rooted star y; ; for each 1 <i < j <k
containing nodes corresponding to the set of edges between V[i] and V[j]. This will represent
the set of edges that form a clique together with the chosen vertices.

To ensure that the set of vertices and the set of edges we pick will exactly form a clique,
additional bridge nodes as well as propagation nodes are created to link the node corresponding
to each edge in £ and the nodes corresponding to its two end-vertices. See also Figure 5.1 for
an illustration.

Let N = 3" <,k [V[i]| be the number of vertices. Without loss of generality, we label the
vertices of G by integers between 1 and A, for which we denote by label(v) for each v € V. For
each i # 7, let £[i, j] denote the set of edges between V[i] and V[j]. The graph G is defined as
follows. For each i, 1 <i < k, we create a node z; with w(z;) = &'+ 1, ¢(x;) = 0, and d(z;) = 1.

34

For each u € V[i], we have a node u with w(u) =1, ¢(u) = 1+ (k—1)N, and d(u) = 0. We also
connect @ to x;. For convenience, we refer to the star rooted at x; as vertex star T;.

Similarly, for each 1 < i < j < k, we create a node y;; with w(y;;) = k" + 1, ¢(x;) = 0, and
d(z;) = 1. For each e € £Ji, j] we have a node € with w(e) = 1, ¢(e) = 142N, and d(e) = 0. We
connect € to y;;. We refer to the star rooted at y;; as edge star T;;. The selection of nodes in
T; and T;; in the capacitated dominating multi-set will correspond to the decision of selecting
the vertices to form a clique in G.

1
0 bi;

O i <j,u€Vli],v e V]j],and e = (u,v) € Eli, j]
Figure 5.1: The connections between stars and bridge nodes.

In addition, for each i # j, 1 <14, < k, we create two bridge nodes bl{j, b%j with w(bl{j) =

w(bij) =1 and d(bl{j) = d(bij) = 1. The capacities of the bridge nodes are to be defined later.

Now we describe how the leaf nodes of T; and T;; are connected to bridge nodes such that
the result we claimed holds. For each vertex star T;, 1 < ¢ < k, each j with 1 < j < k,
i # j, and each v € V[i], we create two propagation nodes pllm»J-, p?),i?j and connect them to
v. Besides, we connect pllw-’j to bzl,j and pgm to b%j. We set w(p})’i’j) = w(p37i7j) =k +1 and
c(p})?i’j) = c(p?)?i’j) = 0. The demands of p}),i,j and pgm are set to be d(p})’m) = label(v) and
d(pii,j) =N — label(v).

For each edge star T; ;, 1 <14 < j < k and each e = (u,v) € &[4, j] such that u € V[i] and
v € V[j], we create four propagation nodes pi,i’j, p27i7j, pi,jﬂ-, and pgm, which are connected
to €, with zero capacity and k' + 1 cost. In addition, we also connect péi’j, pgﬂ-’j, pévj’i, pij’i
to pil,j7 p?jj, pjl.ﬂ-, p?ﬂ-, respectively. The demands of the four nodes are set as the following:
d(p;m-) =N —label(u), d(pg,ivj) = label(u), d(p;jﬂ-) =N — label(v), and d(paj’l-) = label (v).

Finally, for each bridge node b, we set c(b) = _, enpy d(u) — N

Lemma 5.2. The treewidth of G is O(k?).

Proof. Consider the set of bridge nodes, B = J,; {b;j U bz?vj}‘ Since G\B is a forest, which is

of treewidth 1, and the removal of a vertex from a graph decreases the treewidth by at most one,
the treewidth of G is upper bounded by the number of bridge nodes plus 1, which is O(k?). O

Lemma 5.3. G admits a clique of size k if and only if G admits a capacitated dominating set
of cost at most k' = (3k? — k)/2.

Proof. Let C C G be a clique of size k in G. By choosing the bridge nodes, bl{ ; and bi ; for each
1 # j, u for each u € C, and € for each e € C' exactly once, we have a vertex subset of cost
exactly (3k? — k)/2. One can easily verify that this is also a feasible capacitated dominating
multi-set for G.

On the other hand, let D be a capacitated donimating multi-set of cost at most k¥’ in G. We
will argue that there exists a clique of size k in G. First observe that none of the propagation

nodes are chosen in D, otherwise the cost would exceed k’. This implies bz1 ; € D and b? ;€ D, for

35

.0, ...0.
. bzl,j 1
(ORI O - 0. @bl.O - O
T .u ' e - Yij

Figure 5.2: Local connections around the bridge node b}J. The solid circles represent the set
S = N[b!;\N[a].

each i # j, as they are adjacent only to propagation nodes. Note that this already contributes
k(k—1) nodes to D with cost at least k(k—1) and the rest of the nodes in D together contributes
at most k(k +1)/2 cost.

Similarly, we conclude that z; ¢ D and y;; ¢ D for each ¢ # j. Therefore, for each 1 <14 <k,
Ju € V[i] such that @ € D, and for each i # j, Je € £[i, j] such that € € D. Since we have

kE(k—1) k= kE(k+1)
2 2
such stars, exactly one node from each star is chosen to be included in D and therefore the
multiplicity of each node in D is exactly one.

Next we argue that the nodes chosen in each star will correspond to a clique of size k in G.
Foreach 1 <i < j <k, let we€ T; and v € T; be the nodes chosen in D. Let € € T;; be the
node chosen in D. In the following, we argue that the two end-vertices of e are exactly v and
v, meaning that e = (u,v). Note that, this will imply the existence of a clique of size k in G,
formed by the vertices corresponding to the nodes chosen in each T;, 1 < ¢ < k.

Since the capacity of u equals the sum of the demands over N[u], without loss of generality
we can assume that the demands of nodes from N[u| are served merely by u. Consider the
bridge vertex b}j and the set S = N[bzlj]\N[ﬂ}. The demand of vertices in S can only be served
by either bzlj or €, as they are the only two vertices in N[S] that are chosen in dominating
multi-set D. See also Figure 5.2 for an illustration. In particular, vertices in S\{p;m} can only
be served by b%j. Therefore, we have

cby) = Y d(u) .

ueS\{p.; ;}

Since c(b}j) = ZueN[b}j] d(u) — N by our setting, the above inequality implies d(p;m) >N —
label(u), which in turn implies d(p?;;) < label(u) as we have d(p},;;) + d(p?;;) = N by
our construction. By a symmetric argument on bij, we obtain d(pii’j) > label(u). Hence
d(pgﬂ-,j) = label(u).

By another symmetric argument on bjli and b?i, we obtain d(pz’j’i) = label(v). Therefore
e = (u,v) and the lemma follows. O

Note that this proof holds for both separable and inseparable demand models. We have the
following theorem.

Theorem 5.4. The capacitated domination problem is W/[1]-hard when parameterized by treewidth,
regardless of demand assigning model.

Proof. Clearly the reduction instance G can be computed in time polynomial in both k and N
By Lemma 5.2, G has treewidth O(k?). This theorem follows directly from Lemma 5.3 and the
W/[1[-hardness of multicolored clique. O

36

5.2 Fixed-Parameter Tractability w.r.t. Treewidth and Maxi-
mum Capacity

Let G = (V,E) be a graph of treewidth k. We show that, by taking the maximum capacity of
the vertices, denoted by M, as one extra parameter, this problem is fixed-parameter tractable
when the demand is inseparable and can be solved in O (22k(logM+1)+logk) -n) time, where
n = | V| is the number of vertices.

To this end, we give a dynamic programming algorithm on a nice tree decomposition [59],
which is a special tree decomposition and for which we give the formal definition below, of the
input graph G.

Definition 5.5 (Nice Tree Decomposition [59]). A tree decomposition (X, T) is a nice tree
decomposition if one can root T in a way such that each node i € I is of one of the following
four types.

e Leaf: node i is a leaf of T, and |X;| = 1.
e Join: node 7 has exactly two children, say j; and jo, and X; = X;, = Xj;,.

e Introduce: node ¢ has exactly one child, say j, and there is a vertex v € V such that
X,; = Xj U {U}

e Forget: node i has exactly one child, say j, and there is a vertex v € V such that
Xj =X;U {’U}

Given a tree decomposition of width k, a nice tree decomposition of the same width can be
found in linear time [59]. The advantage of this decomposition lies in the fact that it provides the
structural information of the given graph in a well-organized fashion which supports bottom-up
traversals to reconstruct the whole graph.

Let (X, T) be a nice tree decomposition of G. For each node i € T, let T; be the subtree of
T rooted at i and Y, :=J e, X;. Literally, Y; denotes the set of vertices that are contained
in the bags of the nodes in T;.

Starting from the leaf nodes of T, our algorithm proceeds in a bottom-up manner and
maintains for each node ¢ € T a table 4; whose columns consist of the following information.

e A subset P of X, indicating the set of vertices in X; that have already been dominated,
and

e for each u € X;, the amount of residue capacity of u, denoted rc(u), where 0 < re(u) <

c(u).

For each possible configuration of the columns described above, the algorithm will maintain
a row in A; and computes the cost of the optimal demand assignment function for the subgraph
induced by Y; under the condition that the set of vertices that have been dominated by this
demand assignment and also the residue capacity of each vertex meet exactly the values specified
by the row.

In the following, we describe the computation of the table A; for each node 7 in the tree
T. For the ease of presentation, we use the terms ”insert a new row” and "replace the value
of an old row by the new one” interchangeably. Whenever the algorithm attempts to insert a
new row into a table while another row with identical configuration already exists, the one with
the smaller cost will be kept. According to different types of vertices we encounter during the
procedure, we have the following four cases.

37

(1) 7 is a leaf node. Let X; = {v}. We add two rows to the table .A; which correspond to
cases whether or not v is served.

0}) be a new row with cost(ry) «— 0

L let m = ({¢}, {rc(v)
2: let 1o = ({v},{rc(v) = d(v) mod ¢(v)}) be a new row with
cost(ry) +— w(v) - [ig))

3: add r; and 79 to A;

(2) i is an introduce node. Let j be the child of i, and let X; = X; U {v}. The data in
A; is inherited by A;. We extend A; by considering, for each existing row r in A4;, all 21X \Pr|
possible ways of choosing vertices in X;\P, to be assigned to v. In addition, v can be either
unassigned or assigned to any vertex in X;. In either case, the cost and the residue capacity
are modified accordingly.

1: for all row 79 = (P, R) € A; do
2. for all possible U such that U C (X;\P) N Ng(v) do
3: let R = RU{rc(v) =3 ,cp d(u) mod c(v)}, and
let r = (PUU,R’) be a new row with
cost(r) = cost(rg) +w(v) - [M-‘
c(v)
4: add r to A;

5: for all v € X; do

6: let ' = (PUUU{v}, R U{rc(u) = (re(u) — d(v)) mod c(u)}) be a new row with
cost(r') = cost(r)+ the cost required by this assignment

T add 7’ to A;

8: end for

9: end for

10: end for

(3) i is a forget node. Let j be the child of 7, and let X; = X;\ {v}. In this case, for each
row r € A; such that v € P,, we insert a row 7’ to A; identical to r except for the absence of
v in P,s. The remaining rows in 4;, which correspond to situations where v is not served, are
ignored without being considered.

1: for all row 79 = (P, R) € A; such that v € P do

2. let r = (P\{v}, R\ {rc(v)}) be a new row with cost(r) = cost(rg)
3: add r to A;

4: end for

38

(4) i is a join node. Let j; and jy be the two children of ¢ in T. We consider every pair
of rows r1, ro where r; € A;, and rp € Aj,. We say that two rows ry and ro are compatible
if P,, N P,, = ¢. For each compatible pair of rows (r1,72), we insert a new row r to A;
with P, = P,, UP,,, re.(u) = (rep, (uw) + rep, () mod c(u), for each u € X, and cost(r) =

repy (u)4rery (u)

cost(ﬁ) + COSt(T2) - ZueXi L c(u)

1: for all compatible pairs 71 = (P, R1) € Aj, and ro = (P2, R2) € Aj, do
2. let r = (P1 U P2, R) be a new row.

3: cost(r) «— cost(r1) + cost(r2) — > cx, LWJ, and

4: R<«— {rcg,(u) +reg,(u) mod c(u) : u € X;}

5 add r to A;

6: end for

Theorem 5.6. The capacitated domination problem with inseparable demand on graphs of
bounded treewidth can be solved in time 22k10g M+ +logk+OW) .y yhere k is the treewidth and
M is the maximum capacity of the graph.

Proof. The correctness of the algorithm follows from an inductive argument along with the
description given above. Regarding the running time of this algorithm, first notice that the
size of the table we maintained for each node of the tree decomposition is bounded by 2% - M*.
The computation for leaf nodes takes O(1) time, while the computation for introduce nodes
and forget nodes take O(k22* - MF) and O(2F - M*), respectively. For join nodes, however,
we consider each compatible pair of rows from two tables. Therefore the computation requires
O (k2% - M?¥) time. The size of a nice tree decomposition is linear in the number of vertices

of the graph. Therefore the overall running time of the algorithm is O(k2% - M?¥ . n) =
22k(log/\/l+1)+logk:+0(1) . n. 0

We state without going into details that, by suitably replacing the set P; we maintained for
each row of the table A4; with the residue demand of each vertex contained in the bag X;, the
algorithm can be modified to handle separable demand model as well. We have the following
corollary.

Theorem 5.7. The capacitated domination problem with separable demand on graphs of bounded
treewidth can be solved in time 22M+T2N+1)logk+O(1) -n, where k is the treewidth, M is the max-
imum capacity, and N is the maximum demand.

5.3 A Constant Factor Approximation for Outerplanar Graphs
with Separable Demand

In the following, we first classify outer-planar graphs into a class of graphs called general-
ladders and show how the corresponding general-ladder representation can be extracted in
O(nlog®n) time in §5.3.1. Then we consider in §5.3.2 and §5.3.3 both the primal and the dual
linear programs of the relaxation of (4.2) to further reduce a given general-ladder and obtain a
constant factor approximation. We give an overall analysis on the algorithm in §5.3.4.
Throughout this section we will assume G = (V, E) to be an outerplanar graph. In addition
to the graph G, we assume that the corresponding outerplanar embedding of G in the plane is
given as well. Otherwise we apply the O(nlog®n) algorithm provided by Bose [16] to compute

39

C
s Steg(u)
Uny S3
Sy

(%N

Figure 5.3: (a) A general-ladder with anchor ¢. (b) A 2-outerplanar graph which fails to be a
general-ladder. (c) The subdivision formed by a vertex u in an outer-planar embedding.

such an embedding. We denote this embedding by D. Furthermore, we will adopt the notations
from §4.4 and use Opt(G) and Opt £,4.(G) to denote the optimal objective value for the integer
linear program (4.2) and its relaxation with respect to graph G.

5.3.1 The Structure - General Ladders

First we define the notation which we will use later on. By a total order of a set we mean
that each pair of elements in the set can be compared, and therefore an ascending order of the
elements is well-defined. Let P = (v1,ve,...,v;) be a path. We say that P is an ordered path
if a total order v1 < vg < ... < vg or v < Vrp_1 < ... < w1 is defined on the set of vertices.

Definition 5.8 (General-Ladder). A graph G = (V, E) is said to be a general-ladder if a total
order on the set of vertices is defined, and G is composed of a set of layers {Lj, Lo, ..., Ly},
where each layer is a collection of subpaths of an ordered path such that the following holds.
The top layer, Ly, consists of a single vertex, which is referred to as the anchor, and for each
1< j<kandu,ve€Lj, we have

1. N[u} - Lj_l U Lj U Lj+1, and

2. u < v implies MaxpeN[u)NL;,, P = MiNgeN[]NL,,4; -

Note that each layer in a general-ladder consists of a set of ordered paths which are possibly
connected only to vertices in the neighboring layers. See Fig. 5.3 (a). Although the definition of
general-ladders captures the essence and simplicity of an ordered hierarchical structure, there
are planar graphs which fall outside this framework. See also Fig. 5.3 (b).

In the following, we state and argue that every outerplanar graph meets the requirements
of a general-ladder. Let u € V be an arbitrary vertex of G. We fix u to be the smallest element
and define a total order on the vertices of G according to their orders of appearances on the
outer face of D in a counter-clockwise order. For convenience, we label the vertices such that
u=wv1 and v1 < vy <v3 < ... < VUp.

Let N(u) = {vm,vm,..

Ur gy - According to the total order we defined on V, N(u) divides the set of vertices except
u into deg(u) + 1 subsets, namely,

.,vﬂdegw)} denote the neighbors of u such that vy, < vz, < ... <

SO = {2}2’2}3;"'7U7T1}7
S; = {vm,vmﬂ, .. ,va} , for 1 <i < deg(u), and
Sdeg(“) =\ Y deg(u) s Ugeg(uy+1s -« - vvn} :

See also Fig. 5.3 (¢) for an illustration.

40

For any 0 < i < j < deg(u), vr;_, < p < Un;, and vg;_;, < q < vg;, there is no edge
connecting p and ¢. Otherwise it will result in a crossing with the edge (u,vy,), contradicting
to the fact that D is a planar embedding.

For 1 < i < deg(u), we partition S; into two subsets L; and R; as follows. Let dg, denote
the distance function defined on the induced subgraph of S;. Let

Li={v:veS;ds, (vr,v) <ds, (v,vr,,)}
and Rz = Sz\Lz
Lemma 5.9. We have maxqcr, a < mingep, b for all 1 <i < deg(u).

Proof. For convenience, let a = max,ecr, a and b = minycp, b. Since L; N R; = ¢, we have a # b.
Assume that b < a. Recall that in an outer-planar embedding, the vertices are placed on a circle
and the edges are drawn as straight lines. Since E is an outer-planar embedding, the shortest
path from a to vy, must intersect with the shortest path from b to v, ,. Let ¢ be the vertex
for which the two paths meet. Since L; and R; form a partition of S;, either ¢ € L; or c € R;.
If ¢ € L;, then dg, (¢,vr,) < ds, (¢,vr,,,) by definition, which implies that dg, (b,vs,) <
ds, (b, U7ri+1)7 a contradiction to the fact that b € R;. On the other hand, if ¢ € R;, then
ds, (¢,vr,) > ds, (¢, vr,,,), and we have dg, (a,vr,) > ds, (a,vr,,,), a contradiction to the fact

a € L;. In both cases, we have a contradiction. Therefore we have a < b. O
U
Uﬂ, Tit1 Vs
[] e v"ri Titl @
°~ N o
SO / \ - -~ 1
~ // - — —— ~ -
N
\ / L. \ ~ 1 4
\ cC / 7 ~ J
__7 p - R
7’ \ - - - - - &
/ \ N /
Py . ~e o=
. max . a i)
mingeg, b maxgcr,; @ a€L; @ milper, b

Figure 5.4: (a) A contradiction led by minyep, b < max,er, a. (b) Partition of S; into L; and
R;.

Let ¢(v) = dg(u,v) and ¢;(v) = min {dsi (vﬂ(i),v),dsi(vﬁ(iﬂ),v)}, for any 1 < i < deg(u)
and v € S;. Observe that {(v) = ¢;(v) + 1, for any 1 < i < deg(u) and v € S;. Now
consider the set of the edges connecting L; and R;. Note that, this is exactly the set of edges
connecting vertices on the shortest path between v, and max,cr, a and vertices on the shortest
path between v, , and minycr, b. We have the following lemma, which states that, when the
vertices are classified by their distances to u, these edges can only connect vertices between
neighboring sets and do not form any crossing. See also Fig. 5.4.

Lemma 5.10. For any edge (p,q), p € L;, q € R;, connecting L; and R;, we have
o [t(p) —Uq)| <1, and
e A edge (r,s), (r,5) # (p,q), v € Li, s € R;, such that £(r) = £(q) and £(p) = £(s).

Proof. The first half of the lemma follows from the definition of ¢. If |[¢(p) — ¢(q)| > 1, without
loss of generality, suppose that ¢(p) > ¢(q) + 1, by going through (p,q) then following the
shortest path from ¢ to u, we find a shorter path for p, which is a contradiction. The second
half follows from the fact that D is a planar embedding. O

41

Now we are ready to present our structural statement.

Lemma 5.11. Any outer-planar graph G = (V,E) together with an arbitrary verter uw € V
1s a general-ladder anchored at w, where the set of vertices in each layer are classified by their
distances to the anchor u.

Proof. We prove by induction on the number of vertices of G. First, an isolated vertex is a
single-layer general-ladder. For non-trivial graphs, let So,S1,...,Sgeg(u) be the subsets defined
as above. By assumption, the induced subgraphs of So and Sgy(,) are general-ladders with
anchors v;, and v, deg(u)? respectively. Furthermore, the layers are classified by £ — 1. That
is, vertex v belongs to layer ¢(v) — 1. Similarly, the induced subgraphs of L; and R; are also
general-ladders with anchors vy, and vy, , whose layers are classified by ;.

Now we argue that these general-ladders can be arranged properly to form a single general-
ladder with anchor u and layers classified by ¢. Since there is no edge connecting p and ¢ for
any p,q with vz, <p <vp, and vr,_| <q<vr;, 0<i<j < deg(u), we only need to consider
the edges connecting vertices between L; and R;. By Lemma 5.10, when the general-ladders L;
and R; are hung over vy, and v, ,, respectively, the edges between them connect exactly only
vertices from adjacent layers and do not form any crossing. Therefore, it constitute as a single
general-ladder together with u and the lemma follows. O

Extracting the General-ladder For the outerplanar graph G, we describe how the corre-
sponding general-ladder can be extracted.

Theorem 5.12. Given an outer-planar graph G and its outer-planar embedding, we can com-
pute in linear time a general-ladder representation for G.

Proof. First we compute the shortest distance of each vertex v € V to u, denoted by £(v). Let
M = max,ecv £(v). We create M + 1 empty queues, denoted layer(0), layer(1), ..., layer(M),
which will be used to maintain the set of layers. Retrieve an outer-planar embedding of G and
traverse the outer face, starting from u, in a counter-clockwise order. For each vertex v visited,
we attach v to the end of layer(4(v)).

Since the number of edges in a planar graph is linear in the number of vertices, the shortest-
path tree computation takes linear time. The traversal of the outer face also takes linear
time. O

For the rest of this paper we will denote the layers of this particular general-ladder rep-
resentation by Lg,Li,...,Lr. The following additional structural property comes from the
outer-planarity of G and our construction scheme.

Lemma 5.13. For any 0 <+ < M andv € L;, we have
|N(’U) N Li71| <2

Moreover, if v has two neighbors in L;, say, vi and vy with v1 < v < ve, then there is an edge
joining v1 (and vy, respectively) and each neighboring vertex of v in L;_1 that is smaller (larger)
than v.

Proof. First, since the layers are classified by the distances to the anchor w, if [N(v) N L;_1| > 3,
then consider the shortest paths from vertices in N(v) N L;_1 to u. At least one vertex would
be surrounded by other two paths, contradicting the fact that G is an outer-planar graph.

The second part is obtained from a similar argument. Let v' € N(v) N L;_; be a neighbor
of v in L;_1. If v/ is not joined to either vy or ve, then consider the shortest paths from u to v1,
v/, and vy, respectively. v’ would be a vertex in the interior, which is a contradiction.]

42

The Decomposition The idea behind this decomposition is to help reduce the dependency
between vertices of large degrees and their neighbors such that further techniques can be applied.
To this end, we tackle the demands of vertices from every three layers separately.

Foreach 0 <i<3,let R; = szo L3;ti. Let G; = (V;, E;) consist of the induced subgraph
of R; and the set of edges connecting vertices in R; to their neighbors. Formally,

V= U Nfv] and E; = U U e(u,v).

vER,; vER,; ueN[v}
In addition, we set d(v) = 0 for all v € G;\R,;. Other parameters remain unchanged.

Lemma 5.14. Let f;, 0 < i < 3, be an optimal demand assignment function for G;. The
assignment function
F=>F

0<i<3

1 a 3-approximation of G.

Proof. First, for any vertex v € V, the demand of v is considered in G; for some 0 < ¢ < 3
and therefore is assigned by the assignment function f;. Since we take the union of the three
assignments, it is a feasible assignment to the entire graph G.

Since the demand of each vertex in G;, 0 < ¢ < 3, is no more than that of in the original
graph G, any feasible solution to G will also serve as a feasible solution to G;. Therefore we
have Opt(G;) < Opt(G), for 0 < j < 3, and the lemma follows. O

5.3.2 Removing More Edges

We describe an approach to further simplifying the graphs G;, for 0 < ¢ < 3. Given any feasible
demand assignment for G;, we can properly reassign the demand of a vertex to a constant
number of neighbors while the increase in terms of fractional cost remains bounded.

For each v € R;, we sort the closed neighbors of v according to their cost in ascending order
such that w (m,(1)) < w(my(2)) < ... < w(my(deg[v])), where m, : {1,2,...,deg[v]} — NJv] is
an injective function. For convenience, we set m,(deg[v] + 1) = ¢. Suppose that v € Ly, We
identify the following four vertices.

o Let j,, 1 < j, <deg[v], be the smallest integer such that ¢ (m,(j,)) > d(v). If ¢ (7, (jy)) <
d(v) for all 1 < j < deg[v], then we let j, = deg[v] + 1. Intuitively, m,(j,) is the first
vertex in the sorted list whose capacity is greater than d(v).

o Let ky, 1 <k, < jy, be the integer such that

w (my (ky))
c (Wv(kv))

is minimized. k, is defined only when j, > 1. Literally, m,(k,) is the vertex with best
cost-capacity ratio among the first j, — 1 vertices.

o Let

Py= max wu and ¢,= max u.
uweN[v]NLy_; uw€N[v]NLg4 1

Py and g, correspond to the rightmost neighbor of v in layer Ly_; and Ly 1, respectively.

43

jv Pv = MaAXyeNwlNLe_; U

kv Gv = ma‘XUEN[U}ﬁ£2+1 u
Figure 5.5: At most 6 incident edges for a vertex v € Ly are to be kept in H;.

We will omit the function m, and use j,, k, to denote m,(j,), my(ky,) when there is no
confusion in the context. The reduced graph H; is defined as follows. Denote the set of
neighbors to be disconnected from v by R(v) = Nv]\ (L¢ U {j, Uk, Up, Ugy}), and let H; =
Gi\Uyer; Uuer) {e(u, v)}. Roughly speaking, in graph H; we remove the edges which connect
vertices in R;, say v, to vertices not in R;, except possibly for j,, ky, py, and g,. See also
Fig. 5.5. Note that, although our reassigning argument applies to arbitrary graphs, only when
two vertices are unimportant to each other can we remove the edge between them.

Lemma 5.15. In the reduced subgraph H;, we have

1. For each v ¢ R;, at most one incident edge of v which was previously in G; will be
removed.

2. For each v € Ry, the degree of v in H; is upper-bounded by 6.
3. Optfrac(Hi) <2 Optfrac(Gi)

Proof. For the first part, let v ¢ R; be a vertex and denote S = N[v] N R; the set of neighbors
of v that are in R;. By the definition of general-ladders, for any v € S, u # max,cs a, we
have either p, = v or ¢, = v, since v serves as the rightmost neighbor of u. Therefore, by our
approach, only the edge between v and max,cs a will possibly be removed.

For the second part, for any v € R;, v has at most two neighbors in the same layer, since
each layer is a subgraph of an ordered path. We have removed all the edges connecting v to
vertices not in the same layer, except for at most four vertices, j,, ky, py, and q,. Therefore
deg(v) < 6.

Now we prove the third part of this lemma. Let fg, be an optimal demand assignment for
G;, and zg, be the corresponding multiplicity function. Note that, from the second and the
third inequalities of (4.2), for each v € V and u € NJv], we have

fGi(v7u) fGi<v7u)}
div) 7 c(u) '

ra, (u) > max{ (5.1)

For each v € R; and u € R(v) such that fg,(v,u) # 0, we modify this assignment as follows.
If 7, (u) > 7, then we assign it to j, instead of to u. Otherwise, we assign it to k,. That
is, depending on whether 7, '(u) > j,, we raise either fg,(v,j,) or fa,(v,k,) by the amount
of fa,(v,u) and then set fg,(v,u) to be zero. Note that, after this reassignment, the modified
assignment function fg, will be a feasible assignment for H; as well.

In order to cope with this change, zg,(jy) or zg,(ky) might have to be raised as well until
both the second and the third inequalities are valid again. If 7, !(u) > j,, then zg, (j,) is raised

by at most
max{fGi(U’u) fGi(U7u) }
dw) 7 cGo))’

which is equal to

since ¢(j,) > d(v). Hence the total cost will be raised by at most

w(jy) - 190 G;EZ;“) < w(jy) - max { / G&EZ’)U)’ f Gé((23U)

by equation (5.1) and the fact that w(j,) < w(u). Similarly, if 7, *(u) < j,, the cost is raised
by at most

} < w(u) - v, (1),

fGi(v7u) fGi(vvu) —w .fGi(/U’u)
i) " (k) }‘ o) = k)

w(ky) -max{

< w(u) () <w(u) - zqg,(u),
since we have (k) (w)
(k) = clw)

by definition of k, and Eq. (5.1).

In both cases, the extra cost required by this specific demand reassignment between v and
u is bounded by w(u) - xg,(u). By the first part of this lemma, we have at most one such pair
for each u ¢ R;, the overall cost is at most doubled and this lemma follows. O

We also remark that, although Opttq.(H;) is bounded in terms of Optf,q.(G;), an a-
approximation for H; is not necessarily a 2a-approximation for ;. That is, having a demand
assignment function f’ with w(f’) < a - Opt(H;) does not give w(f’) < 2a - Opt(G;), for
Opt(H;) could be strictly larger than Optf,q.(H;). Instead, to obtain our claimed result, an
approximation with a stronger bound, in terms of Opt ¢,q.(H;), is desired.

5.3.3 Refined Charging Scheme

We show how we can further obtain the optimal solution for the reduced graph H;. By
Lemma 5.15, we know that for each vertex u that is still demanding in H;, that is, for each
u € R;, the closed degree of u is upper-bounded by 6. Together with the primal-dual algorithm
we presented in §4.4 and the charging argument provided in Lemma 4.13, this already gives a
demand assignment function whose cost is upper-bounded by 7 - Opt fy.q.(H;).

Thanks to the structural property provided in Lemma 5.13, given the fact that the input
graph is outer-planar, we can modify the algorithm slightly and further tighten the bound given
in the previous lemma. To this end, we consider the situations when a unit demand from a
vertex u with deg[u] = 7 and argue that, either it is not fully-charged by all its closed neighbors,
or we can modify the demand assignment, without raising the cost, to make it so.

Lemma 5.16. Given the fact that H; is extracted from an outerplanar graph, we can modify
the algorithm to obtain a demand assignment function f* such that w(f*) <6 - Opt rqc(H;).

Proof. Consider any unit demand, say demand d from vertex u in Lj, and let V4 C NJu] be
the set of vertices that has charged d by our original charging scheme.

First, we have |N[u]| < 7 by Lemma 5.15. By our charging scheme, |Nu]| < 7 implies
V4| < 7. In the following, we assume |N[u]| = 7 and argue that either we have |V4| < 7, or
we can modify the solution in a way such that |Vy4| < 7. By assumption, ky, p., ¢, are well-
defined. Let ui,us € N(u) N L; denote the set of neighbors of u in L; such that u; < u < us.
By Lemma 5.13, depending on the layer to which j, and k, belong, we have the following two
cases.

45

Figure 5.6: Situations when a unit demand of u is fully-charged.

(1) Both j, and k, belong to L; ;. If two of {ju, ku,qu}, say, j, and k,, are not joined to
u1 and ue by any edge, then at most one of j, and k, can charge d, since u is the only vertex
with possibly non-zero demand in their closed neighborhoods. When the first closed neighbor
of u is saturated and u is removed from V®, both ju and k, will be removed from V* and will
not be picked in later iterations. Therefore, at most one of j, and k, can charge d.

On the other hand, if two of {jy, ku, qu}, say ju, and g, are joined to u; and ug, respectively,
then we argue that at most two out of {jy,u,q,} can charge d. Indeed, uy, u, and ug are the
only vertices with non-zero demands in the closed neighborhoods of {j,,u,q,}. After two of
{ju,u, qu} is saturated, u1, u, and ug will be removed from V. Therefore, at most two out of
{ju,u, qu} can charge d. See also Fig. 5.6 (a) and (b).

(2) Only one of {j,, k,} belongs to L;;; and the other belongs to L;_;. Without loss
of generality, we assume that j, € L;_; and k, € Lj;y;. By Lemma 5.13, both j, and p, are
joined either to w; or uy separately. Since H; is outerplanar, we have j, < u < p,, otherwise

ju will be contained inside the face surrounded by p,, w1, and u, which is a contradiction. See
also Fig. 5.6 (c).

If both k, and ¢, are not joined to either u; or wue, then by a similar argument we used
in previous case, at most one of k, and g, can charge d. Now, suppose that, one of {ky,q,},
say, ky, is joined to u; by an edge. We argue that, if both w; and k, have charged d after
d has been assigned in a feasible solution returned by our algorithm, then we can cancel the
multiplicity placed on k, and reassign to u; the demand which was previously assigned to k,
without increasing the cost spent on u;.

If uq is lightly-loaded in the beginning, then the above operation can be done without extra
cost. Otherwise, observe that, in this case, u; must have been lightly-loaded when d is assigned
so that it can charge d later. Moreover, u; is also in the set V¢ and not yet served, for otherwise
k, will be removed from V* and will not be picked later. In other words, at this moment when
u; becomes lightly-loaded, we have u; € V', meaning that it is possible to assign the demand
of u; to itself later without extra cost.

On the other hand, if u; or k, is the first one to charge d, consider the relation between g,
and ug. If there is no edge between ¢, and uo, then g, will not be picked and will not charge d.
Otherwise, if (gy,u2) exists in H;, then it is a symmetric situation described in the last sequel.

In both cases, either we have |V4| < 6 or we can modify the solution returned by the
algorithm to make |V 4| < 6 to hold. Therefore we have w(f*) < 6-Opt frq.(H;) as claimed. [

5.3.4 Overall Analysis

In the following, we summarize the entire algorithm and analysis followed by stating our main
theorem. For the given outer-planar graph G = (V,E), we use the algorithm described in

46

§5.3.1 to compute a general-ladder representation of G, followed by applying the decomposition
to obtain three subproblems, Gg, G1, and Gs. For each G;, we use the approach described in
§5.3.2 to further remove more edges and obtain the reduced subgraph H;, for which we apply
the modified algorithm described in §5.3.3 to obtain an approximation, which is a demand
assignment function f; for H;. The overall approximation, e.g., the demand assignment function
[, for G is defined as f =3, 5 fi.

Theorem 5.17. Given an outerplanar graph G as an instance of capacitated domination, we
can compute a constant factor approzimation for G in O(n?) time, where n is the number of
vertices.

Proof. First, we argue that the procedures we describe can be done in O(n?) time. It takes
O(nlog3n) time to compute an outer-planar representation of G [16]. By Theorem 5.12, com-
puting a general-ladder representation takes linear time. The construction of G; takes time
linear in the number of edges, which is linear in the number of vertices since G is planar.

In the construction of the reduced graphs H;, for each vertex v, although we use a sorted list
of the closed neighborhood of v to define j,, k., py, and g, the sorted lists are not necessary and
H, can be constructed in O(n) time by a careful implementation. This is done by a two-passes
traversal on the set of edges of G; as follows.

e (a) In the first pass, we iterate over the set of edges to locate j,, p,, and g, for each
vertex v € V. Specifically, we keep a current candidate for each vertex and for each edge
(u,v) € E iterated, we make an update on u and v if necessary.

e (b) In the second pass, based on the j, computed for each v € V| we iterate over the set
of edges again to locate k.

The whole process takes time linear in the number of edges, which is O(n) since G is a planar
graph.

In the following, we explain how the primal-dual algorithm, i.e., the algorithm presented in
Fig. 4.4, can be implemented to compute a feasible solution in O(n?) time. First, we traverse
the set of edges in linear time to compute the value d®(v) for each vertex. In each iteration,
the next vertex to be saturated, which is the one with minimum w?(v)/min {¢(v),d?(v)}, can
be found in linear time. The update of w®(v) for each v € V* described in line 8 can be done
in linear time. When a vertex v € N[u] with non-zero demand is removed from V%, we have
to update the value d?(v') for all v’ € N[v]. By Lemma 5.15, the closed degree of such vertices
is bounded by 7. This update can be done in O(1) time. The construction of S, can be done
in linear time. Since d?(v) can only decrease, each vertex can turn into lightly-loaded at most
once. Therefore the process time for these vertices is bounded in linear time. The outer-loop
iterates at most O(n) times. Therefore the whole algorithm runs in O(n?) time.

The feasibility of the demand assignment function f is guaranteed by Lemma 5.14 and the
fact that H; is a subgraph of G;. Since H; C G;, the demand assignment we obtained for H;
is also a feasible demand assignment for G;. Therefore, f is feasible for G.

By the definition of f, Lemma 5.16, Lemma 5.15, and Lemma 5.14, we have

w(f) < D w(f)

0<i<3
S 6 - Z Optfrac(Hi) S 12 - Z Optfrac(Gi)
0<i<3 0<i<3
<12-) Opt(Gy) <36 - Opt(G).
0<i<3

47

Chapter 6

Planar Graphs

In this chapter, we discuss the problem complexity on planar graphs. Specifically, we show
how the algorithms presented in preceding chapters can be extended to obtain approximations
for planar graphs under a general framework due to [9]. On the other hand, for the negative
side, we show that it is impossible to approximate this problem with inseparable demand to the
factor of (% — e) for any € > 0, unless P = NP.

6.1 A Well-Known Framework - from Bounded Treewidth to
Planar

Let G = (V,E) be a planar graph. We generate a planar embedding and retrieve the vertices
of each level using the linear-time algorithm of Hopcroft and Tarjan [46]. Let m be the number
of levels in this embedding.

Let Opt(G) be the cost of the optimal demand assignment function of G, and Opt;(G) be
the cost contributed by vertices at level j. For the ease of presentation, in the following, for
7 < 0orj > m, we refer the vertices in level j to an empty set and the corresponding cost
Opt;(G) is defined to be zero.

Let k > 3 be a constant to be determined. For 0 < i < k, we define C; as

Ci = Z (Optrj—i(G) + OPtk-(y‘H)—i—l(G)) :

s om
OSJSf

Note that, we have 20§i<k C; <2-OPT. Hence there exist an ig with 0 < ig < k such that

Ciy < = -OPT.

> o

For each 0 < j < 72, define the graph G to be the graph induced by vertices between level
k-j—igp and level k- (j + 1) —ig — 1. The parameters of the vertices in G; are set as follows.
For those vertices which are from level k- j —ip and level k- (j + 1) —ip — 1, their demands are
set to be zero. The remaining parameters remain unchanged.

Clearly, G; is a k-outerplanar graph, which has treewidth at most k£ + 1 [9], and we have
2
> Opt(Gy) < <1+ k) - Opt(G),

where Opt(G;) is the cost of the optimal demand assignment of G;. The following theorem
follows directly from Theorem 5.6, Theorem 5.7, Lemma 4.8, and the above discussion.

48

Theorem 6.1. Given a planar graph G = (V,E) and an integer k > 3, we can compute the
following approximations for the capacitated domination problem:

e (1+ 2)-approzimation in O (22k(1°gM+1)+21°gk -n) time for inseparable demand model,
where n is the number of vertices and M is the mazimum capacity of the vertex set.

(2(2M+2N+1) logk | n)

° (1 + %) -approzimation in time O for separable demand model, where

N is the mazimum demand of the vertex set.

° (2 + %)—approximation in time O (2(4M+1)logk . n) for separable demand model.

Proof. The first two follows directly from Theorem 5.6 and Theorem 5.7. For the last one, we
apply the framework provided in §4.3, whose cost is at most Opt(G), and we have d(u) < M
for all w € V afterwards. This proves the theorem.]

6.2 A Constant Factor Approximations for Separable Demand

We show how the approximation algorithm presented in §5.3 for outerplanar graphs can be
adapted to fit into the proposed framework in §6.1. As the algorithm is designed mainly for
outerplanar graphs, to meet the minimum requirement of the framework, which is the ability to
deal with planar graphs of at least three levels, we have to modify our algorithm to undertake
this change.

Let Gj, 0 < j < 7, be the 3-outerplanar graphs obtained from the framework. It suffices
to show how each Gj can be handled separately. Consider a specific component, say, Gy,
0 <y < 7. We describe how our approximation algorithm for outerplanar graphs can be
modified accordingly and applied to G to obtain a constant approximation.

For the ease of presentation, we denote the set of vertices from the three levels of G by
Lo, L1, and Lg, respectively. See also Fig. 6.1 (a) for an illustration. Note that, from our
construction scheme, only vertices in L; have non-zero demand.

(a) Obtaining the General Ladder. We extract the general ladder from L; as described in
§5.3.1. When decomposing the ladder, for each vertex of the ladder, its incident edges to vertices
in Ly and Lo are also included in addition to the ladder itself. Edges connecting vertices in Lo
and edges connecting vertices in Lg are discarded. As vertices in Lo and Lg are non-demanding,
discarding these edges does not alter the optimal demand assignment.

Figure 6.1: (a) A 3-outerplanar graph with levels Lo, L, and Lo. (b) Local connections w.r.t.
a vertex v. Bold edges represent edges to be kept in the edge reduction process, while dashed
edges represent edges to be removed.

49

(b) Removing Edges. In addition to the four neighboring vertices we identified for each
vertex v with non-zero demand, we identify two more vertices, which literally corresponds to
the rightmost neighbors of v in Ly and Lg, respectively. See also Fig. 6.1 (b).

As a result, the first part and the third part of Lemma 5.15 still hold, and the degree upper-
bound provided in the second part is increased by 2. The remaining part of our algorithm,
which computes a constant factor approximation for the reduced ladder, remains unchanged.

The assignment function computed remains feasible as the algorithm is independent to the
ladder structure while the approximation factor provided in Lemma 5.16 increases by 2. We
conclude our result in the following theorem.

Theorem 6.2. Given a planar graph G = (V,E), we can compute a constant factor approz-
imation for the capacitated domination problem with separable demand for G in polynomial
time.

Proof. Let G, 0 < j < %% be the 3-outerplanar graphs obtained from the framework of § 6.1, and
denote by G;; and H;;, 0 < i < 3, the general ladders and the corresponding reduced ladders ob-
tained from the above discussion. Let f;; be the demand assignment function computed by the
modified algorithm proposed in §5.3.3 for the reduced ladder H;; and f = Zog jm Zogi <3 fii
be the demand assignment function for the entire graph.

We have

w(if) < > D w(fa)

0<j<™ 0<i<3

S 9. Z Z Optfrac(Hj,i)

0<j<™ 0<i<3

<18- Z Z Optfrac(Qj,i)

0<j<™ 0<i<3

<18 > > Opt(Gia)

0<j< % 0<i<3
<54) Opt(Gy)
0<j<z

where the last inequality follows from the framework of § 6.1. O

6.3 (% — e)-Approximation Threshold for Inseparable Demand

Below we show that, when the demand is inseparable, it is NP-hard to approximate this problem
within a factor of (% — e), for any € > 0. The reduction is made from Partition, which is a
well-known combinatorial NP-hard problem.

Definition 6.3 (Partition Problem). Given a sequence of positive integers a1, as, ..., a,, the
partition problem is to decide whether or not there exists a subset A C {1,2,...,n} such that

D icA Gi = Elgign,igA ;.-

Given a problem instance I = {a1,ag,...,a,} of Partition, we construct a planar graph G
with n + 4 vertices as follows. For each 1 < i < n, we create a vertex v; with demand a; and
capacity 1. We create two vertices vy and v, with demand 1 and capacity) ,.,.,, a; + 1, and

20

Figure 6.2: The construction of the reduction from Partition.

connect vy and v, to each v;, 1 < i < n. We create two additional vertices vé and v]., which are
connected to vy and v,., respectively, with demand % Y 1<i<n @i and capacity 1. The weight for
each vertex is set to be 1. See also Fig. 6.2 for an illustration.

Theorem 6.4. For any € > 0, there exists no approximation algorithm which approximate
the capacitated domination problem with inseparable demand on planar graphs to the factor of
(% — e), unless P = NP.

Proof. In the following, we argue that, there exists a subset A satisfying the criterion of partition
problem if and only if the cost of the optimal demand assignment of G is at most 2. As a
consequence, any algorithm that approximates G within the factor of % — € would imply the
correct decision for I.

If there exists a subset A C {1,2,...,n} such that ;.5 @i = 321 ;< i¢a %, then we assign
the demand of v, and v;, for each i € A to vy, and assign the demand of v]. and v;, for each
1<i<mn,i¢ A, towv.. The total cost required is 2.

On the other hand, if the cost of the optimal demand assignment of G is 2, then we argue
that there will exist a subset A satisfying the criterion. First, it is easy to see that the demand
of v} and the demand of v]. must have been assigned to vy and v, respectively. This leaves
%Zl<i<n a; residue capacity at both vy and v,. Let A = {i : the demand of v; is assigned to

vg}. Then we have
Z a; = Z ;.

i€A 1<i<n,i¢A

o1

Chapter 7

Other Algorithmic Results for Trees

This chapter presents both complexity and algorithmic results for the capacitated domination
problem on trees. In particular, for the inseparable demand model, we present a linear time
algorithm in §7.1. This matches the complexity of the dominating set problem on trees. In
contrast, we show in §7.2 that when the demand is separable, this problem is NP-complete
in trees. Based on the reduction in the hardness proof, we further characterize and tackle the
difficulty of this problem and provide a polynomial time approximation scheme for separable
demand in §7.3.

7.1 A Linear Time Algorithm for Inseparable Demand *

7.2 NP-Completeness for Separable Demand

Unlike the dominating set problem, which is linear time solvable in trees by a standard bottom-
up traversing approach, capacitated domination is NP-hard on trees. The main reason comes
from the problem nature when we have to assign the demands of a set of vertices which share
a common parent in a way such that the utilization of the capacity on the parent is optimal.
The following reduction demonstrates this observation and completes the NP-hardness proof
on trees. We start with the definition of the subset sum problem, which is well-known as a
NP-complete problem [36].

Definition 7.1 (SUBSET SuM). Given a sequence of positive integers a1, ag, . . ., a, and a target
integer W, the subset sum problem is to determine the existence of a subset A of {1,2,...,n}
such that) ;. 4 a; = W,

Given an instance I of subset sum, we build an instance T(I) for the capacitated domination
as follows. Let M = (Zlgign ai> +1, W =M -W,and a, = M -a;, for 1 <i<n. T(I) is

a tree consisting of n 4 2 vertices, vg, v1,...,Un+1. Unt1 is the root vertex with capacity 1 and
demand W. vy is the only child vertex of v,41 with capacity M and demand) .., ai — W'
v1,v2, ..., U, are children vertices of vy and have capacity M + a, — a; and demand M — a;.

Finally, each vertex has unit cost, 1.

Lemma 7.2. Let D be a feasible capacitated dominating multi-set of T(I), and let
A={i:1<i<n,v; ¢ D}

Then we have xp(vy) > |A].

Proof. Suppose that zp(vp) < |A|. By the capacity constraint of vy we have

rp(vo) - M > (M —aj),

1€EA

52

which leads to
i~ (1A] ~ p(w)) M > 0,
i€EA
a contradiction since |A| > xp(vg) and M > 3", 4 a;. O

Lemma 7.3. The cardinality of any feasible capacitated dominating multi-set of T(I) is no less
than n.

Proof. Consider the vertex v; for any 1 < i < n. Any feasible demand assignment can only
assign the demand of v; either to vy or to v; itself. By Lemma 7.2, in both cases it requires at
least one copy in order to serve the demand of v;. O

Lemma 7.4. Provided) ., a; > W, there exists a subset A of {1,2,...,n} such that
Y ica @i = W if and only if there exists a feasible capacitated dominating multi-set of cardinality
n for T(I).

Proof. If there is a subset A of {1,2,...,n} satisfying) ;.o a; = W, then we can construct a
capacitated dominating multi-set D as follows. For each i € A, we have a multiplicity of vg
and assign the demand of v; to vg. Each such assignment leaves a residue capacity of a; at vy.
We also assign the demand of vy, 41 to vg since) ;.o a; = W. For i ¢ A, we have a copy of v;
and assign the demand of v; to itself. Each such assignment leaves a residue capacity of a at

v;. Since the demand of vy is
Z a,—W = Z al,
1<i<n igA
we can assign the demand of vy to vertices whose indexes belong to {1,2,...,n}\A. Thus, we
have a feasible capacitated dominating multi-set D of cardinality n.

On the other hand, if there is a feasible dominating multi-set D of cardinality n for T(I),
we define A as {i: 1 <i <n,v; ¢ D}. By Lemma 7.2, we have at least |A| copies of vy and
one copy for each vertex whose index belongs to {1,2,...,n}\A. Therefore, v, ¢ D, which
implies that the demand of v,,1 is assigned to vy and Zie A4v; > W. The demand of vy is
served by the residue capacities of vy and v; for i ¢ A, which is

(5) (5o)

Therefore
Z a;—W’§2a2+Zai—W
1<i<n igA i€A
which leads to), 4 a; < W. Hence we have), a; = W. This completes the proof. O

Theorem 7.5. The capacitated domination problem with separable demand model is NP-
complete even on trees.

Proof. We argue in the following that this problem is in NP. Given a capacitated dominating
multi-set, we can verify the feasibility by a standard bottom-up tree traversal, greedily assigning
the demand of a vertex, say v, in child-first, parent-last manner. That is, whenever there is
residue capacity in the children vertex of v, we greedily assign the demand of v to its children.
If there is still residue demand, we assign the demand to v itself. Finally, we assign the demand,
if there is still any, to the parent of v. The given set is infeasible if the demand of any vertex
fails to be assigned.

For any instance I of subset sum problem, if), ... a; < W, we know immediately that

there is no subset of {1,2,...,n} can fulfil the requirement of subset sum and the answer is
no. Otherwise, by Lemma 7.4, the answer is yes if and only if the cardinality of the optimal
dominating multi-set for T(I) is at most n. This completes the proof. O

93

7.3 A Polynomial Time Approximation Scheme for Separable
Demand

The reduction we provided in §7.2 gives a precise hint on where the main difficulty of this
problem is when we want to compute an optimal demand assignment function for trees. In
this section, we characterize this bottleneck and formulate it as a combinatorial optimization
problem named Relaxed Knapsack Problem, for which we provide both a pseudo-polynomial
time algorithm and a fully-polynomial time approximation scheme. Then, we show that the
capacitated domination problem with separable demand model on trees is pseudo-polynomial
time solvable and adopts a polynomial time approximation scheme.

7.3.1 Relaxed Knapsack Problem

Below we provide the formal definition to the relaxed knapsack problem. Then we present a
dynamic program which computes an optimal solution for this problem in pseudo-polynomial
time.

Definition 7.6 (RELAXED KNAPSACK PROBLEM). Given m pairs of non-negative integers
(ai,b;), 1 < i < m, and a non-negative integer W, where a; and b; denote the size and the
profit of the i-th item and W is the packet size, the relaxed knapsack problem asks for a subset

A C{1,2,...,m} such that
Zbi—max{O,Zai—W}

€A i€EA

is maximized.

Intuitively, this problem extends the concept of the well-known Knapsack Problem in a sense
that we are packing a set of items to maximize the total profit of the items we packed, except
that, in this problem we are given a soft limit on the packet size and we allow the size of the
items we packed to exceed this soft limit at the cost of a certain amount of penalty in the profit.

In the following, we present a dynamic program which solves this problem optimally. The
central idea is similar to the well-known dynamic program for the knapsack problem except
that we have more cases to consider in this problem.

Let Q(k,p) denote the minimum total size among all possible combinations of the first k
items which exactly achieve a total profit p. If no such combination exists, Q(k,p) is defined to
be co. As an initial condition, we let Q(0,p) = oo for all 0 < p < mM, where M = maxj<;j<pm b;.

For each (k,p) with 1 <k <m and 0 < p < mM, we compute Q(k,p) based on Q(k —1,q)
for each 0 < ¢ < mM. Depending on all possible configurations on the k" item and the total
size, we have the following cases:

(1) the k-th item is not picked. In this case, we have
(2) the k-th item is picked, and the total size does not exceed W. In this case,

Q(k,p) = Qi(k,p), where

Qk—-1,p—0bg)+ag, ifp>byand Qlk—1,p—by)+ax <W

00, otherwise.

Q1(k,p) =

54

(3) the k-th item is picked and the total size exceeds W. For this case,

Q(k,p) = Qa(k,p), where

m’
Q(k —1,q), for each g with 0 < ¢ < mM, such that
O(k—1,q9) +ar>W and
p=(q+0b;) = (Qk—1,9) +ar—W)

Qs (k,p) = min

The recurrence relation of Q(k, p) is defined as
Q(kvp) = mln{Q(k - 17p)7 Ql(k7p>7 QQ(kyp)})

where Q1 (k,p) and Qs(k,p) are defined as above in cases (2) and (3), respectively.

The algorithm iteratively computes Q(k,p) for 1 < k < m. After Q(m,p) is computed
for each 0 < p < mM, the algorithm outputs the maximum p such that 0 < p < mM and
Q(m,p) < oco. By maintaining another table of the same dimension to record the recursive
decision we made during the computation of table Q, we can also output the corresponding
subset A that maximizes the total profit as well.

Theorem 7.7. We can compute the optimal solution for the relared knapsack problem in
pseudo-polynomial time O(m>2M) time, where m is the number of items and M is the mazimum
profit of the items.

Proof. The correctness is obvious by an inductive argument. The base case when £ = 0 is
correct for all p with 0 < p < mM. For k > 1, there are three possibilities depending on the
choices of the k-th item and the total size, which we have considered in the recurrence formula.
Therefore, this approach correctly computes an optimal solution for relaxed knapsack problem.

Regarding the time complexity, a naive approach would lead to an O (mg./\/l2) running time.
We can, however, reduce the time by pre-considering the third case in the recurrence formula.
To be precise, when Q(k,p) is computed, we check whether Q(k,p) + axy1 exceeds W or not.
If it does, we update Q2 (k + 1,p + bgr1 — (Q(k,p) + ag+1 — W)) in advance. Otherwise, we do
nothing. This reduces the time cost of the third case to amortized constant time for computing
each entry. Therefore the overall time complexity is O (m - mM) = O (m*M). O

7.3.2 A Fully-Polynomial Time Approximation Scheme for the Relaxed Knap-
sack Problem

Let I = {Ulgigm(aia bi), W} be an instance of the relaxed knapsack problem, where a; and b;

are the size and the profit of the i-th item, 1 < i <n, and W > 0 is the packet size. Below we
show how we can obtain an (1 — €)-approximation for this problem, for any € > 0. The idea is to
properly rescale the input followed by applying the dynamic programming algorithm presented
in §7.3.1.

Let M = max;<;<y b; be the maximum profit and

_ eM
Coam+ 1

95

We create a new problem instance I’ for relaxed knapsack with the same number of items as
follows. Let ; W
A 1 IV] r— | =
ai_[k],bz {kJ,and W LkJ

Then we apply the dynamic program proposed in §7.3.1 on the new instance I’ and return
the solution for I’ as the output. Note that, without loss of generality, we may assume that
k > 1 since if it is not the case, we simply apply the dynamic program without rescaling. The
solution we obtained will be optimal and the time required will be no more than that required
by this approach. We start with the following proposition, which follows from the elementary
arithmetic.

Proposition 7.8. For any r,s € R with s > 0, we have

r r
Tgs-[f1§r+s and r—sgs-LfJgr.
s s

For any subset A of {1,2,...,m}, we denote the total profit of A with respect to I by P(A)
and the total profit of A with respect to I’ by P’(A). Formally,

:Zbi—max{O,Zai—W}
icA icA

and

= Zb; —maX{O,Za; —W’} .
i€A i€A

Let Opt and Opt* be the optimal subsets with respects to instance I and instance I, re-
spectively. We have the following lemma.

Lemma 7.9.
P(Opt*) > (1 —¢€) - P(Opt).

Proof. Consider an arbitrary subset A of {1,2,...,m}. By Proposition 7.8 and the definition

of P, we know that
Zk{aﬂ—k{ J S ai— W,

1EA 1EA

and

<P(A)-k-P'(A)

2; (b —k{ J) + (max{(),gk EHRE: m/J} —maX{O,gai—W}>
< nk+ (max{o,gk Vﬂ —k VZJ}—max{o,gai—WD .

Consider the last item in the above inequality. Since

Zk[aﬂ—k{ J S ai- W,

1EA €A

o6

Sieak [$] -k L%J < 0 would imply » ;.o a; — W < 0. Therefore, we have

maX{O,gk [“ﬂ —k {Z/J}—max{O,Zai—W}

€A

o) ()
1€EA 1€EA
< (n+1)k.
Hence, we obtain
0<PA)—k-P(A)<nk+ (n+1k=k(2n+1). (7.1)

From Eq. 7.1 and the definition of Opt*, we have

P(Opt*) k-P'(Opt*) > k-P' (Opt)
P(Opt) —k-(2n+1)
P(Opt) —e- M
(1—¢€)P(Opt).

(VALY

v

O]

Theorem 7.10. For any € > 0, we can compute an (1 — €)-approzimation for the relaxed
knapsack problem in O (n2 L%J) time.

Proof. By Lemma 7.9, the profit of the solution obtained is at least P (Opt). By Theorem 7.7,
the running time of the algorithm on instance I’ is O (L%J) (2 L%J) O

7.3.3 A Pseudo-Polynomial Time Algorithm **

We present below an algorithm which optimally solves the capacitated domination problem
for trees in pseudo-polynomial time. The algorithm is built upon a standard bottom-up tree
traversal, the results we provided in §7.3.1, and case analysis.

Suppose we are given a tree T' = (V, E) with a post-order traversal on the set of vertices
{v1,v9,...,v,}. For any v € V, let T,, denote the subtree rooted at v. During the process, the
algorithm maintains for each vertex, say v;, its residue capacity and residue demand, denoted
by RC|v;] and RD]v;|, respectively. Initially, RC[v;] = 0 and RD[v;] = d(v;) for each 1 <1i < n.
The algorithm iterates on i, 1 < i < n, processing one vertex at a time. At the end of iteration
i, 1 < i < n, the following conditions hold:

e The demand of the children of v; are fully-served and assigned optimally.

e Either RCv;] or RD]v;| is zero. If RD[v;] is zero, then the demand of v; is also assigned
optimally.

e If RD[v;] # 0, then v; is not root, i.e., i < n, and RD[v;] < ¢(p(v;)) < c(vi), where p(v;)
is the parent vertex of v;.

At iteration i, vertex v; is considered. Let w1, us,...,u; be the children of v;. Let P C
{u1,ug,...,ur} be the set of children whose residue demand is non-zero. Note that, by the
induction hypothesis, we have RD[v] < ¢(v;) < ¢(v) for all v € P. The algorithm first determines
the demand assignments of vertices in P in an optimal way such that either RD]v;] is fully-served
and RC|[v;] is maximized, or the largest portion of RD[v;] is served. Depending on whether
RD[v;] <) cp (c(v) — RD[v]), we have two cases.

Y

1. If RD[v;] > >, cp (c(v) — RD[v]), then it is impossible to fully-serve RD[v;]. In this case,
we assign RD[v] to the vertex v itself, for each v € P, and assign c¢(v) — RD]v] units of
demand from v; to v.

2. If RD[v;] < >, cp (c(v) — RD[v]), then we have to compute an assignment of vertices
in P such that RD[v;] can be served while the residue capacity of v; is maximized. We
model this scenario as an instance of Relaxed Knapsack Problem as follows. Let W =
> wep (c(v) = RD(v)) — RD[v;] be the packet size, and a, = c¢(v) — RD[v], b, = c(v;) —
RDIJv] be the size and profit of the item corresponding to v, for each v € P. Intuitively,
by assigning all the vertices in P to themselves, we can serve RD|v;]. If we switch the
demand assignment of a particular vertex, say v € P, RC|v;| is increased by c(v;) — RD[v]
while the capacity available in P is decreased by ¢(v) — RD[v]. This is exactly the relaxed
knapsack problem.

After the the above procedure, all the children of v; is fully-served. Below we describe how
the demand of v; can be assigned such that the invariant conditions are met. If RD|[v;] = 0 and
v; is not the root, then we assign as much demand from the parent of v;, p(v;), to v; as possible
until either RC[v;] is exhausted or the demand of p(v;) is served.

Lemma 7.11. If RD[v;] # 0, then we can determine the optimal assignment of the residue
demand of v;, except for the case when v; is not the root and RD[v;] < ¢(p(v;)) < c(v;).

Theorem 7.12. Given a tree T = (V, E), we can optimally solve the capacitated domination
problem on T in O (n?C) time, where n is the number of vertices and C' = maxyey c(v) is the
mazrimum capacity.

Proof. First we bound the time required for each iteration, say iteration i. The transformation
can be done in time linear to the size of the children of v;, which is O (deg(v;)). By Theo-
rem 7.7, the time required to solve the relaxed knapsack problem is bounded by O (deg(w)2 . C’).
The rest update can be done in constant time. Therefore, the overall time complexity is
> 1<i<n O (deg(v;)? - C) = O (n%C). O

7.3.4 Extension to Polynomial-Time Approximation Scheme

In the following, we show that the pseudo-polynomial time algorithm presented in §7.3.3 can
be further extended to obtain a polynomial time approximation scheme. To this end, we first
present a fully-polynomial time approximation scheme for the Relaxed Knapsack Problem, for
which we will use as an alternative subroutine in the original pseudo-polynomial time algorithm
to obtain a 2-approximation. Then we make an observation and further improve the algorithm
to obtain a polynomial time approximation scheme.

A simple 2-approximation on Trees To this end, we modify the algorithm proposed in
§7.3.3 as follows. Let € = %, where A is the maximum degree of the input tree. Instead of
directly applying the dynamic program for the relaxed knapsack problem, we use the approach
proposed above to obtain an (1 — €)-approximation and place one extra copy on that vertex.
Note that, this additional copy is placed only when the computation of relaxed knapsack is

required.

Lemma 7.13. The modified algorithm based on rescaling yields a 2-approrimation for the ca-
pacitated domination on trees in O (n3A) time, where n is the number of vertices and A is the
mazimum degree of the tree.

Proof. For any vertex v; € V, the maximum residue capacity of v; resulted by the original
approach is at most deg(v;) - c(v;) after arranging the demand assignment of its children. By the

o8

choice of €, the deficit of the resulting residue capacity of v; to that of the original approach is
upper-bounded by € - deg(v;) - ¢(v;) < ¢(v;), which can be supplemented by the additional copy.
The approximation ratio is 2, since it requires at least one copy of v; in the original scenario.
The overall time complexity is >, O (deg(v;)?L) = O (n3A). O
A PTAS on Trees The basic idea of the above 2-approximation extends to a polynomial
time approximation scheme for the capacitated domination on trees. Let k& > 0 be a positive
integer. The idea is to invoke the above FPTAS for knapsack only when it requires at least k
copies of v; to satisfy the arrangement of the demand assignment of the children of v;.

This process is done as follows. For any v; € V and j with 1 < j < k, we verify that whether
j copies of v; are sufficient for the demand assignment of the children set of v; by enumerating all
possible assignments, whose amount are bounded by O (deg(vi)j) If it does, then the optimal
assignment corresponds to smallest such j, which we will find during the process. Otherwise we
apply the above FPTAS as usual.

Theorem 7.14. For any positive integer k, we can compute a %—appmximation for the ca-

pacitated domination problem on trees in O (nk + n3A) time, where n is the number of vertices
and A is the maximum degree of the tree.

Proof. The approximation ratio is clearly %, since the additional copy for any vertex v; is

placed only when it requires at least k copies of v; to satisfy the children of v;. The overall time
is EUZ‘EV (deg(vl)k + deg(vi)SA) =0 (nk + n3A) 0

29

Part 111

Quality Backbone Design and
Maintenance

60

Chapter 8

Building Acyclic Backbones with
Low DWA-Stretch

In this chapter, we consider the Tree Metric Embeddings of Low DWA-Stretch problem. First,
a point set cutting lemma which relates two seemingly unrelated quantities, i.e., the sum of
pairwise distances and the diameter of the set, is presented. Based on this lemma, we show
how an arbitrary metric can be embedded into a tree metric of low DWA-stretch. As a further
step to explore the structure of Euclidean metrics, we show that any Euclidean point adopts a
spanning tree of low DWA-stretch by recursively applying the cutting lemma to decompose the
point set.

8.1 A Point-Set Cutting Lemma

This section presents the aforementioned 1-dimensional point set cutting lemma which guaran-
tees a good cut for any point set such that the sum of pairwise distances between the points
separated by the cut is upper-bounded in terms of the diameter of the given point set.

Lemma 8.1 (1-Dimensional Point Sets Cutting Lemma). Given a set of real numbers Q =
{a,az2,...,an}, a1 < ay < ... < ay, there exists a cutting point z € R with a1 < z < a,, such
that the following holds.

Lq(2)- (n—Lq(2) A< Y (g —a),

1§i§LQ (Z) Z:Q (Z) <j<n

where Lq(z) = [{a € Q:a < z}| is the number of elements in Q that are smaller than z,
A = a, — a1 is the diameter of Q, and

210
00 < — =~ 3.5594
0= "59

1S a constant.

For the ease of presentation, for a given set of real numbers Q = {ai,aq,...,a,}, where
a1 < ag <...<ap, for each i with 1 < i < n, we define RC(7) to be

RC(i) = Z Z ap — aj.

1<j<ii<k<n
Literally, RC(7) corresponds to the sum of pairwise distances, or, interaction, between {a1, ao, ..., a;}
and {aj11,aiy2,...,a,}. For brevity, we will denote ar—a; by d(a;, ax) in the remaining content.

We also denote by A(Q) the diameter of the set Q, which is exactly d(a1,an) = a, — ay.

61

8.1.1 Proof of the Cutting Lemma

Consider the following random distribution:

zziif;zc o wee se{[5] 5]+)

To prove our cutting lemma, it suffices to prove the following lemma.

Prig=i]=

Lemma 8.2. We have

min{E[ﬁ'(”_ﬁ)'A(Q)] min {7'(61—7)-A(Q) v-(q—v)-A(Q)}}<210

RC(B) 1<9<2 RC(7) " RC(g—) ~ 59

The rest of this subsection will be devoted to prove Lemma 8.2. Let us derive a lower bound
on the overall interaction), ;_,, RC(i). Recall that,

= Z Z d(aj,ag).

1<5<ii<k<n

For brevity, we will denote by ¢; the quantity ag+1 —ag, for each 1 < k < n. First, observe that,
for each j, k with 1 < j < k < n, we have exactly (k—j) duplications of the item d(a;, ax) in the
summation) ;. RC(7), i.e., it appears exactly once in RC(i) for each j <4 < k. Therefore,
after re-arranging the items we have

YORCGE) = > k- > dlai,aim).

1<i<n 1<k<n 1<i<n—k

Define the function f(n) as follows.

F(n) = %Zlgigg d(aj, a;1z), if nis even, and

0, otherwise.

Literally, f(n) corresponds to the unique central item in the above summation, if there is
one. Then we have

Yook Y dlaiairy)

1<k<n 1<i<n—k

Yook Y daiar)+ Y ke > dlai,aig) + f(n)

1§k<% 1<i<n—k §<k<n 1<i<n—k
Yook Y daagr)+ Y (n—k) Y d(ai aipnr) + f(n),
1<k<Z 1<i<n—k 1<k<2 1<i<k

where in the last inequality we substitute the variable k by n — k. By re-organizing and aligning
the items from the above summation (see also Fig. 8.1), we have the following lemma.

Lemma 8.3. Forl1l <k < L%J, we have

Z d(aivai-f—k;) :k'A(Q)_ Z (k) £ +ln z Z dazaaz+n k

1<i<n—k 1<i<k 1<i<k

62

Proof. We prove the first half of this lemma,

> du@igka) =k-AQ) = Y (k=) (Li+ o).
1<i<n—k 1<i<k
The second half, 3, o;; dv(@iyn—k, i) = k- A(Q) =Dy ;o1 (k—1)-(£i+ln—;), follows by a similar

argument. Consider the alignments of the set of intervals which spans exactly k consecutive

elements, that is, intervals [a;, a;4k], for 1 < k < L%J We have exactly k alignments, each

starting with a; for 1 <14 < k. See also Fig. 8.1. This sums up to k- A(Q), except for exactly
k — 4 times over-counting of ¢; and £,,_;.]

The following lemma provides an estimation to the overall interaction, >, _,, RC(i).

Lemma 8.4.

SRCE) = D ne D i (Ut la) + 9(n),

1<i<n 1<k< 5 —k<i<%

where

(n) = n- ZlSK% 7 6%, if n is even, and
g .
0, otherwise.

Proof. By the above discussion and Lemma 8.3, we have

> RC(i)

1<i<n
= > k- Y dasar)+ Y (n—k) Y d(ai, aippr) + f(n)
1<k<? 1<i<n—k 1<k<?2 1<i<k

= > o [BAQ) = D] (k=)+)

1<k<2 1<i<k

For 1 <4 < 3, the coefficient of ¢; and £,,_; in the above summation is

n: Z (]C—Z),

. n
Z<k§<§

1<k<5—i

which equals

by substituting the variable k by k — i. Therefore, we have

YR = D on-k-AQ - Y one Y i (L)

1<i<n 1<k<2 1<k<?2 1<i<g—k

d(u,v1) d(u,v2) d(u,v3) d(u,va) '/’ d(w, vp—1) d(u,vg)

Figure 8.1: Alignment of the intervals when k = 3. The first group starts with d(a;,a;) while
the second and the third start with d(a1,az2) and d(a1, a3), respectively.

63

Since A(Q) = >_1<;<, li, by further expanding A(Q), we obtain

SORCE) = > ne D> i (b lag) +9(n),

> n n . n
1<i<n 1<k<3 5 —k<i<g

as claimed. O

Provided the lower bound stated in Lemma 8.4, we can derive a lower bound on the total
amount of interaction between the numbers in the central-half of the sequence.

Lemma 8.5. We have

Proof. We divide the total interaction to be lower-bounded,

Nneie 3 n n
ZSZSZTL GNSZS4

<i<3n RC(i), into three parts

n
4

which we discuss below.

I.

II.

the interaction between points from {a(ﬂ , a[ﬂﬂ’ . ,aLLnJ }
4 4 4

The situation is equivalent to computing the overall interaction for a point set of § points.
By Lemma 8.4 with index replacement, the interaction is lower-bounded by

n)
Z 2 Z Z'(€%+k+£%”fk)+9/(”)’
1§]€<% %7k<i<%
where

. %-Zl<i<gi'gﬂ if% is even, and
g'(n) = -
0, otherwise.

Dropping the items corresponding to k < 75 from the first summation, we obtain

gnsisi m<k<Z

For the remaining two cases, we consider the number of times each of the items from
Y n<p<2n £y contributes to D n ;30 RC(1).
3—"—23 4—="—4

the interaction between {al,ag, ... ,a(ﬂ} and {G{MJ’G{MJH’ . ,an}.
4 4

4
For each j,k such that 1 <j < 7, % < k < n, the pair d(a;, aj) contributes exactly once
to the term RC(i) for each i with 2 < i < 2. There are £-n? such pairs, while there are
5 different terms in the final summation n_ M RC(i). Therefore, we obtain a lower
bound of

a3

13
32"

for this part.

64

ITI. the interaction between {a(ﬂ YA 415- @3] } and other points.

3n

For any specific interval £, with & < p < “¢, we consider the number of pairs between

{a[ﬂ CIEAFSINS ,CLL%J} and other points that contain this specific interval £,. There

are p — 7 points, {a(IRRIERESTRREE ap}, which lie to the left of a, and form pairs with
4

n
4

points from {GL%J’aL%JH’ ...,ayn ¢ that contain £,. Similarly, the %" —

lie to the right of a, also form pairs with points from

no(on 3N
A \PTy Tty TP

ai,ag, .. .,a[%

—

Therefore there are

>3
|3

such pairs. This is true for all RC(i) with % < < 2. Therefore £, contributes

times in the summation and we obtain a lower bound of

Summing up the bounds we obtained in the three parts and we have this lemma.

Now we are ready to prove the main lemma of this subsection.

p points that

] } that contain /,,.

n.n.n
4°2°2
U

Proof of Lemma 8.2. This lemma holds trivially when n < 3. For n > 4, by the definition of

expected values, we have

B-(n—ﬂ)'A(Q)] = Y prp=q. 20 2Q)

1 re)

| Ty =) AQ)
First, we have
in—i)-AQ) = | n- i - RN
i< Fi<i i<
11 4

< —n’A

< n*AQ)
Depending on whether or not

11
F<k<

we consider between two cases.

65

(1) Z%Skg%n ¢; > 2 A(Q). Then, by Lemma 8.5, we have

e [5.(n—5).A(Q)] - Fn3A(Q) _ 210

~HAQ) &3 T 59

(2) Zlgigg(& +lpi) > %A(Q). Then we have either

12

1<i<sg
or 19
193%

Without loss of generality, assume that ZKK% ;> ZKK% Ui > 2A(Q).

34 34
1 1 1]
| \ ! !
! > 7AQ) \ S 7A(Q) !
In this case, we have
Ez + gl 2 gl
1<i<% i< 2nli<n
Therefore N
S < AQ)
2n 2
F<i<n
Let p be the smallest integer such that ¢, > 0. Counting the interaction between {a1,as,...,a,}
and {apt1,ap42,...,an}, we have
n 12 n 1
RC(p)>p-—-— = =A(Q).
(p)2p 5 5 AQ) +p- 5 5AQ)
Therefore,
p-(n—p)-AQ _ p-n-AQ) 210
RC(p) TpnAQ) (3 Ft5g) 59

The argument for the case), <i<n lpi > Z1<i<g ¢; is analogous. This proves the lemma. [J

66

8.1.2 Computing the Optimal Cut in Linear Time

In this following, we show how the best cut can be computed efficiently in linear time for any
given set A = {aj,aq9,...,a,} of real numbers. For each k with 1 < k < n, let RCp(k) =
Y i<ick (ar —ai) and RC,(k) = >, ;<. (a; — aj) be the sum of the distances between a; and
the points to the left of a; and the sum of distances between a; and the points to the right of
ay, respectively. The first observation is that, for i <1i < n,

RC(i) = (n—1) - RCp(i) + 1 - RC,(7). (8.1)
The following lemma shows how these quantities can be computed recursively.
Lemma 8.6. For1 <k <n—1, We have
o RCy(k+1) =RCo(k) + > 1 <i<p, b, and
o RC(k+1)=RCr(k) = > pcicn lk-

Proof of Lemma 8.6. By the definition of function RC, we have

RC@(k-f-l) = Z (€k+ak—a,~),
1<i<k+1

which equeals to RCy(k) + > <<, fk- Similarly,

RC(k+1)= > (ai—ap—)=RC(k)— > Ly

k+1<i<n k<i<n
O

By Eq. 8.1 and Lemma 8.6, we can compute in linear time the values RCy(k), RC,(k), and
therefore RC(k) for all 1 < k < n, and the optimal cut. For any given interval Z C [ay, a,], we
can also compute the optimal cut inside Z by the same approach.

8.2 Approximating Arbitrary Metrics

Given an arbitrary metric M = (V,d), we describe an algorithm which computes a dominating
tree metric of M with small constant distance-weighted average stretch.

This is done by decomposing V recursively to define a hierarchical net decomposition, which
in turn defines the resulting tree metric. The algorithm runs in § = [logy A(V)] iterations.
Initially, the algorithm sets a variable i« = ¢ and maintain the trivial root partition Ps = {V'}.
In each of the following iteration, the algorithm decrease the value of ¢ by one and computes
P; from P;;; as follows.

For each non-singleton cluster in P;, 1, say C, we compute a 2¢-cut decomposition C(P) of P
by repeatedly decomposing P by the process described below until the diameter of each clusters
in the refinement falls under 2°.

Let Q be a cluster in the refinement of P such that A(Q) > 2¢. We pick a vertex u € Q
such that A,(Q) = A(Q). Then we consider the centripetal metric of Q with respect to w.
Let vq,v2,...,v4 be the set of vertices of Q such that d(u,vi) < d(u,v2) < ... < d(u,vyq). For
1<i<qg—1, wedenote Y y_;c; > i p<, d(vj, Vi) by RC(4). Literally, RC(i) corresponds to the
sum of pairwise distances, or, the interaction, between {v1,vs,...,v;} and {vi1,vit2,..., 4}
Let p, 1 < p < g, be the index such that p-(q+)(.$(g) is minimized. We create a new cluster
in the refinement of P containing the vertices {v1,va,...,vp} and let Q <— O\{vy,v2,...,vp}.

67

ALGORITHM Hierarchical-Net-Decomposition(V, d)

L Dy« {V},i<0—1.
2: while ¢ > 0 and D;y; has non-singleton clusters do

3: for all non-singleton cluster P in D;;; do

4: C(P) < {¢}, S+ {P}.

5: while § # ¢ do

6: Let Q be an arbitrary cluster in S.

7: if A(Q) < 2/ then

8: Add Q to C(P) and remove Q from S.

9: else

10: Let u € Q be a vertex such that A,(Q) = A(Q).

11: Let v1,v2,...,v4 be the set of vertices in Q such that d(u,v1) < d(u,v2) < ... <
d(u,vg).

12: Let p, 1 < p < g, be the index such that %)Gﬁ@) is minimized.

13: Let Q' < {vi,v2,...,1}, S+~ SU{Q'}, and Q + Q\Q'.

14: end if

15: end while

16: Let C(P) be the refinement clusters of P in D;.

17 end for

18 i+ i—1.

19: end while

20: Return the tree metric corresponding to Dg, D1, ..., Ds.

Figure 8.2: A high-level description of the hierarchical decomposition algorithm.

This process is repeated until all the clusters in the refinement of P have diameter less than 2°.
D; is defined to be the union of the refinements of non-singleton clusters of D;y1. A high-level
description of this algorithm is presented in Fig. 8.2.

First we argue that the algorithm computes a dominating tree metric. Let T be the tree
corresponding to the hierarchical net decomposition constructed by our algorithm and dr be
the distance function induced by 7. For any non-singleton cluster P in D; and u,v € P, we
have d(u,v) < A(P) < 2¢ by the definition of hierarchical net decomposition, and dr(u,v) <
2- Zog j<i 2 < 20+1 by the construction of the tree metric. Therefore, (T, dr) is a dominating
tree metric of M.

In the following, we will show that R(T) < 4-20-R(M). To this end, we prove that, for any
partition of a cluster Q into, say Q1 and Qs such that u € Q1, we performed in our algorithm,

T\ V4 <l \ °
) N \.\ vg) \ o
h Vo Ve 0 e
\ \ 1 PR N
] I ° k_// 1 ‘.
r bug ¢ ;7T ! ° 1 °
u =1 pe . N \ PR
. _ - \ | \\ 2 TS \‘
f \ ’ - Y
dy (v2,v4) N e /

Figure 8.3: (a) An illustration of the centripetal metric with respect to a vertex u. (b) A
hierarchical decomposition of the points.

68

we have

Q] 10:]- M@ < 27 R(Q1, Q). (32)
Let T[Q], T[Q1], and T[Qs] denote the subtree of T' corresponding to Q, Qp, and Qa, respec-
tively. As a consequence to (8.2), we have R(Tg,,To,) < |Q1]-|Qa|- 27! < 4-|Q1]-|Qa]-A(Q) <
4- 20 . R(Qy, Q). Since max {|Q1],|Q2|} < |Q|, by an inductive argument we have R(Tg) =
R(To,)+ R(Tay) + R(Toy, Ta,) < 4- 2L (R(Qy) + R(Q2) +R(Q1, 2)) = 4- 40 -R(Q). This
holds for all cluster Q, including the trivial cluster in Ds. Therefore R(T') < 4- 22 . R(M).

ALGORITHM FEuclidean-Spanning-Tree(V')

Input: A set V of n points in RY.
Output: A pair (T,r), which is a spanning tree T of V with root 7.
1: if V is a singleton point set containing point p then
2: Return (V,p).
3: end if
4: Let a = % be a constant.
5: Let k be the index of dimension such that L;(B(V)) = Lmaez(B(V)).
6: Let a1 < ao < ... < ay be the coordinates of the projection of V into kt" dimension, labelled
in sorted order.
mp=a-(a1+ay), ¢=(1—a) (a1+an).
8: (V1,Va) «— Id-cut({a1,as,...,an},[p,q])-
9: (Ty,7r1) «— Euclidean-Spanning-Tree(Vy), (Ta,re) «— FEuclidean-Spanning-Tree(Vs).
10: Let T +— Th U1y U {(7’1,7‘2)}.
11: Return (7,71).

Figure 8.4: A high-level description of the algorithm which computes a spanning tree of low
DWA-stretch for Euclidean graphs.

8.3 Approximating Euclidean Metrics by Their Spanning Trees

This section shows how a spanning tree of small constant distance-weighted average stretch
for a Euclidean graph can be computed in polynomial time. The basic idea is to extend the
previous point-set decomposition. In order to guarantee a constant blow-up in the diameter of
the resulting spanning tree, we cannot allow the cut to be made at arbitrary positions. Instead,
each cut is restricted to be made within the central (1 — 2a) portion along the longest side of
its bounding box, where « is a constant chosen to be %. This guarantees a balanced partition,
an exponentially decreasing size of the bounding boxes, and a constant blow-up of the diameter
of the resulting spanning tree. This is crucial in the analysis, as we need a tight diameter in
order to provide a good upper-bound on the interaction between pairs separated by our cuts.
On the other hand, we also have to guarantee the existence of good cuts in the central (1 — 2a)

portion so that the overall interaction stays bounded.

Given a set of points V in the Euclidean space R? of finite dimension d, the algorithm
recursively computes a rooted tree T with root r as follows. Let B(V) be the bounding box
of V, and k be the specific index of dimension such that L;(B(V)) = Ly (B(V)). Consider
the projection of the points onto the kth—axis, and let a1,a9,...,a,, a1 < a2 < ... < ap, be
the corresponding coordinates. The algorithm first applies the linear time algorithm provided
in §8.1.2 as a subroutine to compute a decomposition of the point set V for which the cut

69

is restricted to be made inside the central (1 — 2«) portion of the sequence {ai,aq,...,a,},
which is {a- (a1 + an), (1 —a) - (a1 + a,)}. Also refer to Fig. 8.5 (a) for an illustration. Let
V1 and V5 be the corresponding partitioned subsets of points. Then we recursively computes
two rooted trees for V1 and Vo, further denoted by T; with root r1 and Ty with root r5. The
overall spanning tree T for the point set V is constructed by joining ry and r9, and the root of
T is chosen to be 1. A high-level description of the algorithm is provided in Fig. 8.4.

Linaz(B(P))
7777777777 + — ._ — e — — — —
: B(P) . I % :
‘o % : % o
: s N
| R : |
] .___+'__'____! 777777 !
a - Lmaz(B(P)) 1 (1—) Lmaz(B(P))

Figure 8.5: (a) The vertical cut is restricted to be placed in the central (1 — 2«a) portion along
the longest side of the bounding box, which corresponds to the shaded region. (b) A possible
decomposition and the u — v path in the resulting tree. The boldly-dashed line corresponds to
the first cut and viv9 corresponds to the edge connecting the two rooted trees returned by the
recursion.

For the ease of presentation, let F be the family collection of subsets of V which occurs
during the recursions made by the algorithm. For each set S € F, we denote by T[S] the
induced subgraph of T on S. Note that, according to our construction, T[S] will be a spanning
tree of S. Let e(S) the edge connecting the two rooted trees corresponding to the two further
partitions of S. e(S) is defined to be a dummy self-loop with length zero if S is a singleton set.

For each point p € V, let S(p,1),S(p,2),...,S (p,depth(p)), S(p,1) D S(p,2) D ... D
S (p, depth(p)), S(p,i) € F for 1 < i < depth(p), be the subsets of V occurred during the
recursions to which p belongs, where depth(p) denotes the depth of the set {p} in the recursion
tree. Note that, by the above definitions we have S(p); =V and S(p)geptn(p) = {1}

For any two points p, ¢ € V, the distance of p and ¢ in the tree T is determined by the set
of bridge edges The following lemma provides an upper-bound on the pairwise distances.
Lemma 8.7. For any p,q € V, we have dr(p,q) < %d\/& Lonaz(B(V)).

Proof. Let Similarly, let S(q)1 D S(q)2 D ... D S(q)depth(q) be the subsets of V to which ¢
belongs. Note that, we have S(p)1 = S()1 = V., S()epthy) = 12} a0 S(@)aepin(q) = 1a}-

From the construction of T, we have

dr(p, q) < dysp) (1) + (V)| + dpsg(r20) < Y le(A)[+e(V)+ D |e(B;)
1<i<a 1<5<b

where 71 and 75 are the roots of T[A;] and T[B;]. Since the longest straight-line distance inside
a hyper-rectangle is bounded by its longest diagonal, we have |e(Q)| < VdLmax(B(Q)) for any
subset () € F. Furthermore, since we always cut along the longest side of the bounding box,

we have Lyaz(B(Aita)) < (1 — @) Lomaa(B(A;)) and Liae (B(Bjta)) < (1 — a)Liaz(B(Bj)) for

70

all1<i1<a—dand1<j<b—d. Therefore, it follows that

Q) < Z \/gﬁmaz(()) + fﬁmax Z fﬁmax ())

1<i<a 1<5<b
<2d- > Vd(l =) Linaz(B(V)) + VdL ez (B(V))
i>1

< %d\/& : ﬁmax(B(V))7

where in the second last inequality we collect every d items from the summation of the first
inequality and then combine them together into a geometric series. O

In the following lemma, we show that, in exchange of certain penalty in the performance
factor that is inverse proportional to the length of the interval to which the cut is restricted,
we can always guarantee a good and balanced decomposition.

Lemma 8.8 (Constrained Point Set Cutting Lemma). Given a set of real numbers A =
{a,a2,...,a,}, a1 < ag < ... < a, and an interval T = [¢,r] such that T C [ay,ay], there
exists a cutting point z € T such that the following holds.

La(z) - (n—La(2)-|[Z| <o Y > (a5 —a),

1<i<La(z) La(2)<j<n

where La(z) = |[{a € A:a < z}| is the number of elements in A that are smaller than z and
do < % 18 a constant.

Proof of Lemma 8.8. We say that an interval degenerates if it has length zero. First we argue
that, if there are degenerating intervals at a1, then it is always worse to cut at those degenerating
intervals. Let k, 1 < k < n, be the largest index such that a1 = as = ... = ag. Observe that,
for any ¢,7 with 1 <14,j < k, we have RC(i) = ; -RC(j). On the other hand, for 1 <i < k and
1 <5 <k—1, we have

(i+J)n—i—j) iln—i)+jn—2—j) _i+j RC(+J])
i(n — 1) B i(n — 1) - i RCE)
which implies that (ZJ%BZ(E;:;?) < 27(;(7_(;)) and therefore cutting at (ay, ajy1] is always better than
cutting at degenerating intervals at a;. Similarly, we can argue that, it is always worse to cut
at the degenerating intervals at a,, if there is any.
Now we argue that there will be a feasible cut satisfying the criterion. According to the

given interval Z = [a,b] and the point set A, we create a new point set B = {b1,ba,...,b,} as
follows.
12 if a; < 6’
For1<i:<n, bj=4qq; ifl<a;<r,

r otherwise.

Let z be the best cut of B in Z. By the above argument, we have £ < z < r and therefore
La(z) = Lp(z). By Lemma ??, we have Lp(z) - (n— Lp(2)) - |Z| < 22 0 Db <2<b; (bj — b;).
According to our setting, we have (b; — b;) < (a; —a;) for all 1 < ¢ < Jj < n. "Therefore
La(z)-(n—La(z))-|Z] < 210 Zl<z<LA (2) 2oLa z)<]<n(a.7 a;) as claimed. O

In the following, we state the theorem and leave the rest detail in the appendix for further
reference.

71

Theorem 8.9. Given a set of points V in R, we can compute in polynomial time a spanning
tree T of V such that the distance-weighted average stretch of T with respect to 'V is at most
1680 - dV/d, where 5y < % is the constant in our point set cutting lemma.

Proof of Theorem 8.9. If [V| =1, then this theorem holds trivially. Otherwise, by Lemma 8.7,
Lemma 8.8, and the fact that the length of the restricted interval is (1 — 2a) - Ly02(B(V)), we
have) 05
Rr(V1,Va) < Vi [Vao| - ZdVd - Liaw(B(V)) € ———dVdAR(V1, V).
a a(l —2a)
This holds for all recursions. Choose a to be % and this theorem follows directly by induction
on the depth of recursion. O

72

Chapter 9

Maintaining Acyclic Backbones
under Link Failures

In this chapter, we consider the maintenance problem of low DWA-Stretch acyclic backbones.
We present an asymptotically optimal quadratic-time algorithm for the general case and show
that the problem can be solved more efficiently for the Euclidean metric, when vertices are
mapped to points in the plane, as well as for compactly representable graph metrics.

9.1 An Optimal Algorithm for an Arbitrary Underlying Graph

In this section, we consider general distance functions on the vertex set. We show that the
problem can be solved in ©(ny - ny) time, which is optimal. For ease of notation we write
C1 = ¢(V1) and Cy = ¢(V2) for the total demand in 77 and T%, respectively. Given two vertices
u € Vi and v € Vs, the routing cost of the tree T, resulting from joining 77 and 75 by the edge
wv is given by

re(Tyy) = re(Ty) + re(Ts)
+ Cy - Z c(u) - dp, (v, u)
u' ey

+C1 - Z c(v') - dp, (v,0")

v'eVa
+Cl -CQ -d(u,v) .

(9.1)

It is composed of the routing cost inside the subtrees 17 and 15 of T, respectively, and the
routing cost effected by the shortest paths using the edge uv between the two trees. Since the
total sum of demands for these paths equals C - Co, the edge uv contributes a total amount of
Cy - Cs - d(u,v) to the routing cost. Furthermore, each shortest path starting at «’ in 7} and
ending at u can be extended to a shortest path ending at some vertex v’ in Th. Hence, each
shortest path of this kind contributes its length, weighted by its demand c(u’) and the total
sum of the demands C5 in 75, to the routing cost. The situation is symmetrical for the paths
starting in 75 and ending at v.

Since the routing costs of 77 and 75 do not depend on the choice of the link between the
two trees, our problem is equivalent to minimizing the remaining summands in equation (9.1).

We define the weight of a vertex u € Vi, denoted by w(u), as the sum of lengths of all
shortest paths starting at v’ € V4 and ending at u, weighted by the demand of v/, i.e.,

w(u) = Z c(u) - dp (v, u) .

u'eVy

73

We define the weight of a vertex v € Va, denoted by w(v), analogously. Hence, we seek to
minimize the term

rd (Tuw) = Cow(u) + Crw(v) + Cy - Cy - d(u,v) (9.2)

over all possible combinations of u € V; and v € V5.

The weights of the trees can be computed in linear time as follows. First we compute the
total demands in 77 and 75, respectively. We compute the weights in 77 by rooting the tree in
some vertex r and performing one bottom-up pass over the tree, followed by a top-down pass.
For a vertex w in 17 we denote the subtree rooted in u by 7Ty,.

In the bottom-up pass, we compute two values for each vertex v € Vi: the total demand
v(u) of the vertices in T,,, and the sum A(u) of the shortest paths starting at some vertex u’ in
T, and ending at u, weighted by the demand of u/, i.e.,

and

For a vertex u with children wuy, ..., us these values can be computed in linear time as

and

Aw) = (M) +v(wi) - d(ui,u))

=1

respectively. In the top-down pass, we compute the weight for each vertex v € V;. For the root
r this weight is equal to A(r). For a vertex v with father u € V; the weight can be computed by

w(v) =w(u) + (C1 — 2y(v))d(u,v) .

This equation is due to the fact that the weight of v is obtained from the weight of u by
removing the demand ~(v) in the subtree of v from the edge uv and adding the remaining
demand Cy — ~y(v) to the edge uv. For Ts we proceed analogously.

Having this, we can compute the best and second-best connection between the two trees by
enumerating all possible pairs uv such that u € V; and v € V5, which yields a total running time
of O(ny - n2). Note, that the described algorithm only finds the best or second-best solution,
but does not compute the routing cost of this solution. If we have no restriction on the distance
between the vertices, however, the algorithm is optimal.

Theorem 9.1. The optimal routing cost augmentation problem and the optimal routing cost
replacement problem can be solved in O(ny - ng) time for general distance function. This is
optimal in the algebraic decision tree model.

Proof. We have already outlined the algorithm and argued why it runs within the stated time
complexity. It remains to show the lower bound on the running time. For this, we assume that
we are given a set of integers a1,...,ay. We construct an instance of the optimal routing cost
augmentation problem such that finding the minimum routing cost connection between the two

74

trees is equivalent to the minimum of the numbers ai,...,ay. For this problem, we need at
least N — 1 comparisons in the algebraic decision tree model of computation.

Let N = nins be any factorization of N and let V' be a set of ny + ns vertices. Further,
let V4,V5 C V be a partition of V such that |V;| = ny and |Va| = ng and let T and T be two
arbitrary trees on Vi and Vs, respectively. We set the distance between two vertices in the same
tree equal to one. Let x : Vi x Vo — {ai,...,an} be a bijective mapping between the pairs of
vertices in V4 and V5 and the numbers a;. Then we choose the remaining distances as follows.
Let W7 and W5 be the maximum weights of the vertices in 17 and T3, respectively. For u € Vj
and v € V5 we define

do(u,v) = CoW71 + C1Wo — CQU)(’LL) — Clw(v) .

Further, we set

do(u,v) + z(u,v) .

d(u,v) = Gy

Then rd (Tyy) = CoWh + C1Wa + x(u,v). For both the augmentation and the replacement
problem we need to compute the minimum routing cost solution. However, minimizing the
routing cost for the given instance is equivalent to computing the minimum over the values
z(u,v) for u € V; and v € Va. Hence, in the algebraic decision tree model of computation, we
need at least ny - no — 1 comparisons, which completes the proof. O

9.2 An Efficient Algorithm for the Euclidean Metric

The proof for the lower bound in the previous section crucially exploits the fact that we can
choose distances between the vertices in an arbitrary fashion. If this is not the case, we can
come up with more efficient algorithms.

In this section we consider the case that vertices are points in the plane and that the
considered metric d is the Euclidean metric. In this case, we can compute the best connection
between two trees in O((n; + ng)logmin{ni,ne}) time. Throughout the section, we do not
distinguish between vertices and points.

Theorem 9.2. The optimal augmentation problem for the Euclidean metric can be solved in
O((n1 + n2) logmin{ny,na}) time.

Proof. Without loss of generality we may assume that no < ny. Let o : R? — R? be an isotropic
scaling with scale factor s = C - Cy, i.e., o scales distances by a factor s and we thus have

d(ou,ov) = Cq - Cy - d(u,v) . (9.3)

Let oV; and oV5 denote the scaled sets of points.

For z € R? and ¥ € oV, we define a new distance function, defined by d, (x,?) := d(x,v) +
Cy -w(v), where w is defined as in the previous section. The additively weighted Voronoi cell of
v is the locus of points

{zeR*|VucoVo\{v}:d(z,7) <dy(z,u)} (9.4)

The additively weighted Voronoi diagram V defined by d_ consists of the additively weighted
Voronoi cells of the points in oV and can be computed in O(nglogns) time [?].

For each point u € V7, we locate the nearest neighbor ov of ou in V using an algorithm with
O(log n2) query time described by Kirkpatrick [?]. Then ov satisfies

dy(ou,ov) = min d4(ou,ov') (9.5)
VeV,

75

and we have

dy(ou,ov) = d(ou,ov) + C1 - w(v) (9.6)
=C1-Cy-d(u,v) +Cr-w(v) . (9.7)

Hence, v € V5 is the best endpoint of an edge starting at w € Vi with respect to routing
cost. Minimizing Cs - w(u) + dy(ou,ov) over all vertices ou € V4 and their respective nearest
neighbor ov € V5 will thus minimize the overall routing cost. The resulting overall running time
is O(nylogng + nglogns). O

In order to solve the replacement problem, we also need to compute the second-best solution.
We can do this as follows. Let v* € Vi and v* € V5 be the best solution computed by the
algorithm above. This algorithm can trivially be modified to simultaneously compute

min rc (Tuw)
uEVl\{u*},vEVQ
in the same time complexity. By additionally computing the Voronoi diagram only for the
points in V5 \ {v*} and repeating the algorithm on this instance, we can also compute

min rd (Tyy) -
ueVi,weVa\{v*}

Clearly, the second-best solution is either of the two. Hence, we have the following corollary.

Corollary 9.3. The optimal routing cost replacement problem for the Fuclidean metric can be
solved in time O((n1 + nga)logna).

Note that the same approach can also be used in a planar setting, i.e., when the newly
introduced edge connecting the two trees may not intersect any other edge of the two trees. In
this case we compute an additively weighted constrained Voronoi diagram, which can be done
by adapting Fortune’s sweepline algorithm [?] with O(nlogn) running time. In a constrained
Voronoi diagram, we are given an additional set of line segments representing obstacles. When-
ever the straight line connecting two points intersects one of the obstacles, the distance between
the two points is assumed to be infinity, otherwise, it is equal to the (weighted) Euclidean dis-
tance between the points. In our application each edge defined by one of the trees is one such
obstacle. Seidel shows how to adapt Fortune’s algorithm to compute the constrained Voronoi
diagram [?]. The adaption to additively weighted sites has been sketched in Fortune’s original
paper [?].

Corollary 9.4. The planar augmentation problem for the Euclidean metric can be solved in
O((ny + n2)logns) time.

9.3 General Metrics

Every finite metric d can be encoded by a finite graph M = (V, D) where each edge e € D has
some length ¢(e) and the distance d between two vertices in V' is equal to the sum of the lengths
of the shortest path between the vertices in the graph in terms of the edge lengths. We can
directly translate our idea from the previous section to this setting by computing the additively
weighted Voronoi diagram in M instead. Although the computation of various Voronoi diagrams
on graphs has been considered by Hurtado et al. [?], among them a multiplicatively weighted
Voronoi diagram, we are not aware of any investigation of the additively weighted Voronoi
diagram on graphs. The following theorem is similar to the results by Hurtado et al. [?]. We
assume that the additively weighted Voronoi diagram of a a set of sites S C V on a metric
graph G = (V, E) is completely known if every vertex v € V' \ S knows its nearest neighbor in
S and we know the bisector point for each edge, if it exists.

76

Theorem 9.5. The additively weighted Voronoti diagram of a set of sites S C V' on a graph
G = (V, E) has complexity ©(m) and can be computed in time O(m + nlogn).

Proof. Each edge of the graph contains at most one bisector point, since moving along the
edge will alter the additively weighted distances by the same amount—either increasing or
decreasing—for all distances. Hence we have at most m bisector points. On the other hand,
we can have exactly m bisectors by setting V' = V. Hence, the complexity of the additively
weighted Voronoi diagram is ©(m).

To compute the additively weighted Voronoi diagram in G we use the parallel Dijkstra
algorithm proposed by Erwig [?] with running time O(m + nlogn). To compute the diagram,
we run Dijkstra’s algorithm in parallel using the vertices in S as starting points. For a vertex
v € V\ S and some vertex s € S the distance between v and s is ds(v,s) = dg(v, s) + w(s).
Whenever a vertex v € V'\ S is settled, we update its closest neighbor in S. The bisector points
can be computed in O(m) time from this information. O]

Using this result, we can almost directly translate the technique for the Euclidean case to
the general metric case studied in this section.

Theorem 9.6. The optimal routing cost augmentation problem for general metrics can be solved
in time O(m + nlogn) if the metric is given by a graph M = (V, D) with edge length function
L.

Proof. Instead of scaling the point set as in the Euclidean case, we scale the lengths of the edges
in G by a factor C1C%, i.e., instead of using £ to assess the distance between two vertices in
M, we use C1C2f. The rest of the proof is completely analogous. We compute the additively
weighted Voronoi diagram on M for the set of sites V2. Then we locate the vertex v € V; that
minimizes Cy - w(u) + d4(u,v) where d4(u,v) is the scaled and additively weighted distance
between u and its closest neighbor v. The resulting time complexity is O(m + nlogn). O

Again we can proceed as in the Euclidean case in order to compute the second-best connec-
tion between the two trees.

Corollary 9.7. The optimal routing cost replacement problem for general metrics can be solved
in time O(m + nlogn) if the metric is given by a graph M = (V, D) with edge length function
L.

Although this result does not provide an asymptotic improvement in the worst-case, it
does show that we can efficiently solve the augmentation problem for compactly representable
metrics. If the graph representing the metric is sparse, then the above theorem states that we
can solve the augmentation problem in O(nlogn) as in the Euclidean case.

7

Chapter 10

Cost-Efficient Bi-Constrained
Backbone Construction

In this chapter, we consider the Bi-constrained Maximum Cost-Efficiency Pattern problem. Given
an instance Z = (G, w, ¢, W, L) of bi-constrained maximum cost-efficiency pattern, we wish to
find a connected (W, £)-viable pattern of G with maximum cost-efficiency. Since this problem
can be solved in time O(n?) when the host is a tree and the pattern is a path by enumerating
all possible paths, it is natural to ask if it can be solved efficiently on more general hosts and
patterns. However, we show that it is NP-hard to find a maximum cost-efficiency path, even if
the host is only slightly more complicated than a tree.

Theorem 10.1. The Bi-constrained Maximum Cost-Efficiency Pattern problem is NP-hard, even
if the host is an outerplanar graph of treewidth 2, the pattern is a path, and we drop the upper
bound on the length of the pattern.

Proof. The proof is by reduction from the Partition problem, which is a well-known NP-hard
problem. Assume we are given an instance of the partition problem, that is, a set of positive

integers C' = {c1,¢2,...,cn} and we want to decide whether there is a subset S of {1,...,m}
such that q

Z C; — §M7

€S

where M =" ¢;.

We transform this into an instance of bi-constrained maximum cost-efficiency pattern prob-
lem as follows. First, we create a path vg,v1,..., vy, with w, = £, = 1 for each edge e on this
path. Besides, we create additional m vertices, pi,po,...,Pm, and connect p; to both vy;_»
and vg; with we = . = ¢ + 1 for e € {pjve;_2,p;v2;}. Then we create additional ver-
tices qo and ¢1, which we connect to vy and va,,, respectively, such that wg v, = Wq,0v,,, = 4M

P1 D2 Pm

Qo M vo~_ -V Uy U2~ LUoym M@

e o e
U1 U3 Vom—1

Figure 10.1: Graph used in the reduction from partition. Bold edges have cost-efficiency 4, all
other edges have cost-efficiency 1. Dashed edges have weight and length 1, solid non-bold edges
incident to p; have weight and length ¢; + 1.

78

and L4y = Lgyvs,, = M. Furthermore, we set W = 9M + 2m and £ = oo. Since the graph is
outerplanar, its treewidth is bounded by 2. This reduction is also illustrated in Fig. 10.1.

We claim that there is a path with length at least YW and cost-efficiency at least

gi= W __
TO3M +2m

if and only if there exists a subset S of {1,2,...,m} such that

ZCi = %M

1€S
Clearly, any partition S of C' can be transformed into a path with cost-efficiency d and length W
as follows: Let P be the path from ¢y to g; that visits all vertices v; with ¢ € S and that contains
none of the vertices v; with j ¢ S. This path has weight 8SM +2m +23 ;g ¢; = 9IM +2m and
length 2M +2m + 3, g ¢; = 3M + 2m. Hence, it has cost-efficiency d.
Conversely, assume that P is a path with cost-efficiency at least d. Since W > 9M, the

path must have end at gg and ¢q, respectively. Let S be the set of indices such that p; is on the
path if and only if ¢ € S. Then the cost-efficiency of this path can be expressed as

SM+2m+23 i g¢
M +2m 423 g¢

which is strictly decreasing as 2, g ¢; increases. Hence we have 23", g¢; < M. On the
other hand the weight of the path must be at least VW, which implies 2}, g c; > M. Thus,
2 Zies C; = M.]

Notice that, we ignored the length upper-bound in the above reduction and the resulting
instance is already NP-hard. When both the lower-bound and the upper-bound are imposed,
the problem becomes much harder. By setting £ to be 3M + 2m, we can show that it is NP-
hard even to compute a feasible solution. Hence, the problem is not likely to be approximable
in polynomial time unless P = NP.

10.1 Cost-Efficiency Maximization for Trees and Almost-Trees

In the previous section, we have shown that it is NP-hard to compute a maximum cost-efficiency
path even if the host graph has treewidth 2. Hence, the problem is unlikely to be fized-parameter
tractable with respect to the parameter treewidth.

In this section, we show, however, that the problem of computing a maximum cost-efficiency
path is fixed-parameter tractable with respect to

k= [E| - [V],

which is also the number of edges that must be deleted from a graph in order to obtain a tree.
Note that, the treewidth of such a graph is bounded by k + 1. We prove this result in two
steps. First, we show how to compute a maximum cost-efficiency path when the host is a tree.
The problem can trivially be solved in O(n?) time by enumerating all possible paths. We show
how it can be computed efficiently in O(n log® n) time. Our basic approach is similar to one
described by Wu [93] and Lau et al. [60] with respect to decomposing the problem into smaller
sub-problems. However, we use completely different techniques for the sub-problems to obtain
our results, since the results by Wu and Lau et al. are not applicable in our setting. Second,
we use this result to show that finding a maximum cost-efficiency path in a general graph is
fixed-parameter tractable with respect to k.

79

wt

W —wt(PUR)

% o \ 1;1
Q ol L —len(PUR)

Figure 10.2: Tangent query to find the best candidate for @) (a) and combination of two paths
using vertex r (b).

Throughout the section we use the key idea that the combined cost-efficiency of two disjoint
subpaths P and @ is equal to the slope between two points up = (¢(P),w(P)) and —ug =
(—4(Q), —w(Q)) in the Euclidean plane. This path is viable if and only if

w(P)>W —w(Q), and {(P)<L—UQ).

For a given query path @ this slope is maximized on the convex hull of the set of points Pg
representing the candidate subpaths for @ in the range (—oo, £ — ¢(Q)] X [W — w(Q),o0) as
illustrated in Figure 10.1. Since we wish to maximize the cost-efficiency, it suffices to perform
tangent queries to the upper chain of the convex hull of Pg, denoted by UH(Pg), which is more
efficient than trying all possible combinations.

We use a dynamic data structure for the maintenance of the upper chain of the convex hull
of a set of points P [72] which allows point insertions in time O(log® n). It maintains the upper
chain of the convex hull by a dynamically maintained ordered binary tree. Each leaf of this tree
corresponds to a point in the plane and each inner node v corresponds to the segment of the
upper hull of the set of points P, that does not contribute to the upper hull of the set of points
in the subtree of the father of v. Each inner node additionally stores the number of points
on its upper hull that it inherits from its father and, whether these points are at its left or
right boundary. The segments of the upper hulls are represented by concatenable queues which
allow insertion, deletion, concatenation and split in O(logn) time. Lemma 10.2 shows how to
compute UH(Pg) from a given set of candidate paths P in time O(log?n) given the dynamic
data structure.

Lemma 10.2. Given a point @, a set of points P and a dynamic data structure for the
maintenance of UH(P) as described in [72] the upper convex hull UH(Pg) can be computed
in time O(log®n).

Proof. If Pg is empty, there is nothing to do. Otherwise, let pyin be the leftmost point in Pg
and let pmax be the rightmost point in Pgy. They can be computed in O(logn) time using a
dynamic priority search tree [69]. Let xpyin and xpyax be the respective xz-coordinates of these
points. Let P’ := {(z,y) € P | Tmin < & < Tmax}. First, we prove that UH(Pg) C UH(P').
Clearly, P’ = Pg W P” where P” contains all the points (z,y) € P with Zmin < & < Zmax
and y < W. Thus, all points in P” are either in the interior of the convex hull of Pg or on
a vertical line through xyi, or xmax, respectively. Hence, the claim holds and we can reduce
the problem of computing UH(Pg) to computing the upper hull of a set of points P’ in a
vertical strip of the plane, which is supported by the dynamic data structure. Let T denote
the tree used by the dynamic data structure for the maintenance of the upper hull. In order
to compute UH(P’) we traverse the paths from the root of T t0 pmin and pmax, respectively, in
parallel. In each step we reconstruct the upper hull using the concatenation and split operation
of the concatenable queues stored in the nodes of the tree. We split off branches of the tree

80

that are to the left of the path from the root to pyi, and to the right of the path from the root
t0 Pmax- These branches contain only points whose x-coordinates are either greater than xyax
or smaller than zp;,. Since T is balanced we have reconstructed UH(P’) after at most logn
steps using time O(logn) per step and O(log® n) time in total. Clearly, we can reconstruct the
original data structure with the same complexity. O

Theorem 10.3. Given an instance (T, w, ¢, W, L) of the Bi-constrained Maximum Cost-Efficiency
Pattern problem, where T'= (V, E) is a tree, a (W), L)-viable mazimum cost-efficiency path can
be computed in O(nlog®n) time.

Proof. Without loss of generality we may assume that 7" is a binary tree. Otherwise we can
make it binary by adding auxiliary vertices and edges with weight and length 0 in linear time
such that the resulting tree has linear size. A centroid of a binary tree is a vertex whose removal
disconnects T into at most three subtrees with at most half of the vertices of the original tree in
each of the subtrees. We root T in one of its centroids r. Clearly, a centroid can be computed in
linear time by aggregating weights of the tree starting in the leaves. Let v, vy be two children
of r and let R be the path between vy and v via r as illustrated in Figure 10.1. Then we can
compute the maximum cost-efficiency path including R using tangent queries in time O(n log? n)
as follows. First, we compute the set P; of paths starting in vy and compute their cost-efficiency
in linear time. Each of those paths P € P is mapped to a point up := (/(PUR),w(PUR)) in
the plane and inserted into the dynamic datastructure for the maintenance of the upper hull.
This can be done in O(nlog?n) time. Then we compute the set of paths P, starting in vy. For
each of these paths) € P, we want to compute the best path P € Py, that is, a path P such
that the concatenation of () and P U R has maximum cost-efficiency.

To this end, we map each @ € P to a point —ug = (—¢(Q), —w(Q)). Since we have
bounds on both the weight and the length of a feasible solution, not all paths in P; will be
feasible partners for a given Q € Ps. We require that the length of P € P; is bounded
by w(P) > W —w(Q) —w(R) and /(P) < L—¢(Q) — ¢(R). Using Lemma 10.2 we can compute
the maximum cost-efficiency partner for Q € Py in time O(log?n). During the computation of
the upper convex hull we can simultaneously perform the necessary tangent queries using binary
search on the constructed hull. Then we can compute the maximum cost-efficiency path P*
through 7 in time O(nlog®n). We do this for all (at most 6) combinations of children of and
store the path of maximum cost-efficiency. Next, we recursively compute the best path through
each of the children of r in the subtrees rooted in the children. Let P be the maximum cost-
efficiency path over all the paths computed this way. Then the maximum cost-efficiency path in
the tree rooted in r is the maximum cost-efficiency path over P* and P. The recurrence relation
for the computation is given by T'(n) = Z?:l T(n;) + O(nlog?®n), where n; is the number of
vertices in the tree rooted in v;. Hence, the running time of this approach is O(n log? n). O

Next, we show that we can obtain a similar result if the host is a graph that can be turned
into a tree by deleting a fixed number of k edges. Roughly, the key idea consists of enumerating
all possible subsets of the k£ edges and computing, for each of those subsets, the maximum
cost-efficiency path containing all these edges. The following lemma can be used to enumerate
these paths efficiently.

Lemma 10.4. Given a graph G = (V,EUF) such that T = (V,E) is a tree and FNE =0 as
well as F' C F and vertices s,t € V incident to the edges in F’, then there is at most one s-
t-path in G containing all edges in F'. There is a linear-time algorithm that either computes
such a path or concludes that no path exists.

81

Proof. We prove the existence of at most one path by contradiction. Suppose that there are two
different paths P; and P, both containing all edges in F’ and ending with s and ¢, respectively.
Since the paths are different and both contain all edges in F” the symmetric difference A of E(P})
and E(P») is non-empty and contained in E. Since both paths end at s and ¢, all vertices of A
have even degree. Hence, A contains a cycle contradicting the fact that A is a subgraph of 7'

We proceed by showing that the uniquely determined feasible path can be computed in
linear time, if it exists. We root 7" in some vertex r» € V(T'). By T, we denote the tree rooted
in v € V(T). For a given F' C F we call v € V(T) \ {s,t} a loose end if it is incident to
exactly one edge in F’. To compute P we traverse T in a bottom-up fashion constructing P by
iteratively matching loose ends. For each vertex v we store a reference to the unmatched loose
end, if it exists. Let v be a vertex with children wy, ..., wy. Clearly, there can only be a valid
path if at most two children, say, w; and we, contain an unmatched loose end in their subtrees.
Otherwise there is no feasible path. If none of the children contains an unmatched loose end,
then there is nothing to do. If exactly one child contains an unmatched loose end in its subtree,
we store a reference to this vertex in v. If exactly two children of v contain unmatched loose
ends /1 and /o in their subtrees, then we update the path by matching these loose ends and
adding the unique path in T that connects #1 and fo. We accept the resulting graph if it is a
path, which can be checked in linear time.]

Theorem 10.5. Given an instance (G,w, ¢, W, L) of the Bi-constrained Maximum Cost-Efficiency
Pattern problem such that G is a tree with k additional edges, we can compute a mazimum cost-
efficiency (W, L)-viable path in time O(2Fk?nlog?n + nlog®n).

Proof. Given a tree with k additional edges G = (V, E), we first compute an arbitrary spanning
tree T = (V, E') of G. This leaves exactly k edges, denoted by F := E \ E’, which may or may
not be used by the optimal path. For each F’ C F we compute a maximum cost-efficiency path
containing all edges in F’ and we return the maximum cost-efficiency path over all F/ C F. First,
we compute the maximum cost-efficiency path in T in O(nlog®n) time using Theorem 10.3.
Any path containing some non-empty subset of edges F/ C F can be decomposed into three
subpaths P, Q and R such that R starts and ends with edges in F’ and contains all edges in F”.
By Lemma 10.4 the possible paths R are uniquely determined by choosing a set F’ C F as
well as two vertices incident to F’. Moreover, R can be computed in linear time from this
information.

Hence, we iterate over all possible F/ C F and all s,¢ € V incident to F’. In each of the 2¥k?
iterations, we first compute both weight and length of R in linear time, resulting in O(2¥k?n)
time. Then we find paths P and @ starting at s and ¢, respectively, such that the cost-efficiency
of the concatenation of P, R and @) has maximum cost-efficiency among all paths including R
in time O(log2 n). For the remainder of the proof we show how this can be accomplished and
we thus assume that R, s and t are fixed. Our approach is similar to the proof of Theorem 10.3.
However, we must take care of the disjointness of the paths.

Let s = vg,...,vy =t be the sequence of vertices on the path from s to ¢ in T. For each of
these vertices v; # s,t, we define Ws(v) as the set of vertices in T;, that are reachable from s
in T without crossing the path R. FEach of the vertices w € Wy(v;) defines a path Ps(w).
Analogously, we define the set of vertices Wy(v;) in T, that are reachable from ¢ in T" without
crossing R. Each of those vertices w € W;(v;) defines a path P;(w) from ¢ to w. Two paths
in Ps(v;) and P;(vj), respectively, are disjoint, whenever v; is encountered before v; on the path
from s to t, that is, if i < j, otherwise they will have at least one vertex in common as illustrated
in Figure 10.3.

Now we describe how we insert the paths into the dynamic data structure for the maintenance
of the upper hull. As pointed out, paths may not be disjoint, hence, we must insert the paths
in a specific order. First, we insert all paths starting in s that do not include any vertex on the

82

Figure 10.3: Illustration for the proof of Theorem 10.5. Extension of the unique path R using
all edges in F' (dashed) with end vertices s and t¢.

path from s to t. Then, for each i = 1,...,¢ — 1 we insert all paths Ps(w) for all w € Ws(v;).
After inserting the paths for a specific i < ¢ — 2 we make tangent queries for all paths P;(w)
for w € Wi(vi+1). Note that at that point, we have included all paths starting in s except those
that would not be disjoint to the paths in Ps(w) for w € Wy(v;11). After we have inserted all
paths Ps(w) for all w € Ws(vy—1) we have inserted all paths starting in s, which do not cross R.
Then we make tangent queries for all paths starting in ¢ that do not use any vertex on the path
from s to t.

In order to compute the best path for F' = () we proposed an algorithm with O(n log® n)
running time. For each specific non-empty choice of F/ C F and vertices s and ¢ incident to F’
we thus insert at most n points into the data structure with a total running time of O(nlog?n)
and we perform at most n tangent queries, each with a running time of at most O(log2 n).
Hence, the overall running time is O(2Fk%nlog?n + nlog®n). O

Note, that the relaxed maximum cost-efficiency pattern problem can be solved within the
same asymptotic bounds by similar means if the pattern is a path and the host is a tree or a
tree with k additional edges, respectively.

10.2 Graphs of Bounded Treewidth

In this section we show that a large class of problems can be solved in pseudo-polynomial FPT
time when parameterized by the treewidth k of the host, that is, in time O(f(k)p(£,n)) where f
is a function depending only on k£ and p is a polynomial depending on the maximum length £
of any feasible pattern and the number of vertices n of the graph. In the light of the results on
the hardness of the problem this seems to be the best we can hope for. Given a graph G with
treewidth k& and a finite set of graphs F, we wish to find a connected (W, L)-viable pattern H
with maximum cost-efficiency that does not contain any graph in F as a minor. Such a graph
is called F-minor-free. This includes trees, (outer-)planar graphs as well as graphs from various
other minor-closed families of graphs. We give an algorithm for the general case but note that
the running time can be improved by considering special classes of graphs. We assume that we
are given a tree decomposition of the host as an input; otherwise it can be computed in FPT
time [15,58] with respect to the treewidth of the graph. We note that the size of the forbidden
obstructions is small for many interesting examples, such as trees and (outer-)planar graphs
whose sets of forbidden minors include graphs with < 6 vertices.

Our algorithm is based on dynamic programming on the tree decomposition of the graph
and is inspired by Eppstein’s work on subgraph isomorphism in planar graphs [28]. Based on
Eppstein’s idea of enumerating partial isomorphisms for the bags of the tree decomposition, we
enumerate partial minors of the graphs induced by the bags. In the following we present the
key ideas in more detail. Let G = (V, E) be a graph. A tree decomposition of G is a pair (X, T)

83

where X = {X; | i € I} is a collection of subsets of V' which are called bags and T = (I, Et) is
a tree with the following properties.

1. The union of all bags | J;c; X; is equal to V.
2. For all edges e € E there is an index ¢ € I such that e C Xj.

3. For all vertices v € V, the tree induced by the set of nodes X, = {i € I | v € X;} induces
a connected subtree of 7.

We will refer to the elements in I as nodes—as opposed to vertices in the original graph. The
treewidth of a tree decomposition equals max;er | X;| — 1. The treewidth of a graph G = (V, E)
is equal to the minimum treewidth of a tree decomposition of G.

Theorem 10.6. Let (G, w,l, W, L) be an instance of the Bi-constrained Maximum Cost-Efficiency
Pattern problem such that G has trecwidth at most k, let F be a non-empty finite set of graphs
and let N := maxper |V(F)|. Then a mazimum cost-efficiency connected F-minor-free (W, L)-
viable pattern can be computed in 20 TFIeNEN)| T\ Ly time.

Proof. We describe the algorithm for the case that F consists of only one forbidden obstruc-
tion F'. The extension to a larger family of forbidden obstructions is straightforward. Our
algorithm is by dynamic programming on the tree decomposition of the graph. Robertson and
Seymour have proven the existence of an O(n3) graph minor test for any fixed minor F [78].
However, the proof is non-constructive and involves huge constants. Therefore, we describe
an explicit algorithm for the graph minor test which relies on the enumeration of subgraphs
instead. We note, however, that we need some explicit representation of the minor mappings
for the dynamic programming anyway, thus, this does not change the asymptotic complexity of
our approach.

For the proof we assume that we are given a nice tree decomposition. A tree decomposition
is called nice if T is a rooted binary tree where each node is of one of the following types:
A leaf node X contains only one vertex. An introduce node X has only one child Y such
that X = Y U {v} for some v € V. We say X introduces v. A forget node X has only one
child Y such that X =Y \ {v} for some v € V. We say X forgets v. Finally, a join node X has
two children Y7 and Y5 such that X = Y; = Y5. Given a graph with treewidth k, we can always
find a nice tree decomposition with O(n) nodes in linear time [58].

Throughout the proof we assume that G = (V, E) is a graph with treewidth at most k
and we let (X,7) be a nice tree decomposition of G with treewidth at most k, rooted in a
node r € I. For ¢ € I we denote the graph induced by the union of the bags of all descendants
of ¢ (including i) by G;. Using standard notation, we denote the graph induced by X; by G[X,].
Let C := {V1,...,V,} be a disjoint collection of connected subsets of V. We denote the graph
obtained by contracting the vertices in each of the sets V; into a single vertex by G/C and that
we refer to the sets V; as branch sets and to C as a contraction set. Then F' is a minor of G iff
there is a subgraph H and a contraction set C such that H/C is isomorphic to F'.

Let C be a contraction set and let H be some subgraph in G[X;] for some i € I. A partial
minor embedding of F into H with respect to C is a mapping ¢ : V(F) — V(H/C) U{L, T}
such that uv € E(F) = p(u)p(v) € E(H/C) for all uwv € E(F) with u,v ¢ o~ 1(L) U Y(T),
hence, ¢ maps a subgraph of F' to a minor of H. The image | represents vertices in G; — X;
and the image T represents vertices in G which have not been considered yet, that is, vertices
in G — G;. A partial minor embedding ¢ is called proper if and only if ¢=1(T) # (. Otherwise it
represents a minor embedding of F' into some subgraph of GG;, and hence, H must be disregarded
as a partial solution.

For the algorithm we identify the vertices of F' with the numbers 1,..., |V (F)|. The images
of these vertices under ¢ that are not contained in p~!(1L)U¢~!(T) correspond to branch-sets

84

of H, that is, a partition of the vertices of H. By considering all |V (F) + 1|/**! labelings of
the vertex set of H where each vertex is labeled with some number in 0, ..., V(F), we obtain
a partition of the vertices induced by the labeling. Such a partition is valid only if each set
of vertices forms a connected set. Further, it defines an implicit mapping f of a subset of the
vertices of F' to the partitions induced by the labeling. Vertices labeled 0 are considered not to
be images under f. We further encode for each vertex in F' that does not have an image under f
whether it is mapped to L or T. A mapping to L means that the vertex can be mapped to
some branch-set in the subgraph induced by the descendants of node ¢ whereas a mapping to T
means that we will try to map the vertex to some branch-set we have not encountered, yet. We
can check in O(k?) time if such an encoding represents a valid partial minor embedding of F'
into H. We check connectedness of the partitions in time O(k). Further, we check if each edge
in I is represented by some edge between the corresponding branch-sets in H. This can be
done in time O(k?) by iterating over all pairs of vertices in H, and hence, over all pairs of labels
and checking corresponding edges in both F' and H. Using these conventions, we can encode a
partial minor embedding . It is not hard to see that there are at most [V (F)|**12IVU) many
partial minor embeddings using this kind of encoding.

By W (i, H, ®,¢) we denote the maximum weight of a subgraph G’ of G; with length ¢, such
that G'[X;] = H C G[X;] and ® represents all partial minor embeddings ¢ of F' into G'. We call
the quadruple (i, H, ®, ¢) an interface for i. An interface is called proper if and only if p(T) # ()
for all ¢ € ®.

By G} we denote the graph obtained by adding new vertices T and L to G[X;] which are
each connected to all vertices in X;. Both weight and length of the additional edges is equal to
zero. We then consider connected subgraphs in G;. Note that any connected subgraph G’ can
be mapped to a connected subgraph in G7.

The solution we are looking for will be the maximum over all interfaces (r, H, ®,) where r
is the root of the tree decomposition, such that H is connected and does not contain T, ® is
proper and £ is at most £. If the maximum weight is at least W, then we return this weight,
otherwise there is no feasible solution. We now describe how W (i, H, ®,¢) can be computed
in 7 in a bottom-up fashion by dynamic programming starting at the leaves of 7.

Leaf node i with X; = {v}: For each subgraph H in G} that does not include L we compute
the set @ of partial minor embeddings of F' into H and we set W (i, H,®,0) = 0, since
both the weight and length of any subgraph of G} are equal to 0 by construction. Note
that any vertex in F' which is not mapped to v must be mapped to T. Hence, the time
complexity is asymptotically bounded by

o) -[V(B)P-IVF)]- o1 -L.
—— —~—

subgraphs H |®| check mapping

Introduce node i introducing v: Let j be the only child of ¢ and let (j, H',®',¢') be an interface
for j such that W, := W (j, H', ®',¢"). We consider all connected subgraphs H of G} which
can be obtained from H' by adding v and some set of edges E™ incident to both v and some
set of vertices in H’. For each fixed H obtained this way, we further consider the set ® of
all partial minor embeddings ¢ of F' into H that can be obtained from some ¢’ € ® by
choosing some vertex in ¢’ ~1(T) to be mapped to v by . If all partial minor embeddings ¢
constructed this way are proper and £ := ¢/ +/(E™) < L, the interface (i, H, ®, £) is proper,
and we compute W (i, H,®,0) = W; + w(E™) and set W (i, H',®',¢') = W,. Hence, the
complexity for an introduce node is asymptotically bounded by

k
2G) L (E)L VBN ok L Ry E2 L
—~— ~—~ N—— ~—~
subgraphs H || |[E+| mnew mappings to v check mapping

85

Forget node i forgetting v: Let j be the only child of ¢ and let (j, H', ®’,¢') be an interface for j
such that W; := W (j, H',®',¢'). If H' does not contain v, then there is nothing to do and
we simply set W (i, H',®',¢') = W;. Otherwise, we consider the set ® of all mappings ¢
that can be obtained from mappings ¢’ by removing v from its partition in the branch
set. If v is the only vertex in its partition, then the corresponding vertex in F must
additionally be mapped to L. We set W (i, H, ®,{') = W; where H is obtained from H’
by removing v and mapping all edges from v to any vertex in X; by a corresponding edge
with the end-vertex corresponding to v in 1. The resulting complexity of a forget node
is asymptotically bounded by

o(5) . \V(F)[F1. olV(F)I o) -L
—— ~ ~—~—
subgraphs H | D] remapping

Join node i joining j1 and jo: Let j1 and jo be the two children of ¢ and consider two interfaces
of j1 and jo, respectively, given by (j1, H,®1,¢1) and (jo, H, ®2,). Two partial minor-
embeddings ¢1 € ®1 and 2 € Py are compatible if all vertices v € X N X, satisfy
@1 (v) = 5 H(v). If 1 and @y are compatible, we can obtain a new partial minor embed-
ding by combining the two partial embeddings into a new partial minor embedding ¢12.

Let @15 be the set of partial minor embeddings combined in this manner from all pairs of
compatible partial minor embeddings in ®; x ®9. Let Wy := W(j, H, ®1,¢1) and Wy :=
W(j,,H, Dy, ly). If 0 := 11 =ty and @ := & = Py we set W (i, H, P, () = max{W;, Wa}.
Otherwise, we set W (i, H,®1,¢1) = Wy and W (i, H, ®9,¢) = W,. Additionally, we set
Wi, Hy®1UPoUP1o, 0y + Lo —L(H)) := W1 + Wy —w(H). Clearly, the weight and length
of H must be subtracted, since otherwise, these values would be counted twice.

Since |®; x @ is bounded by |V (F)[F+1 x |V(F)|*!, the resulting complexity in total is
asymptotically bounded by
k

2(3) . [V (F)|2e+2 . 92VEN . ok |y (F)| . k2. M - = 200 +kIog VIE)HV(E)D ppyy

If F contains more than one obstruction, the running time can be bounded by

2O(k2+k log N+N) |J,—_~|£n

where N denotes the maximum number of vertices of any graph in F. O

The following result can be obtained by a straightforward modification of the approach
sketched in this section. With the technique developed in the next section, this result will yield
an FPTAS for the relaxed maximum cost-efficiency pattern problem.

Corollary 10.7. Let (G,w, ¢, W) be an instance of the Relaxed Maximum Cost-Efficiency Pattern
problem and let G and F be as in Theorem 10.6. Then for any A € R a mazimum penalized cost-
efficiency F-minor-free (W, \)-viable pattern can be computed in time 20(k2+klogN+N)\}"|)\n
where N = maxper |V (F)|.

10.3 An FPTAS for the Relaxed Cost-Efficiency Maximization

In this section we consider the Relaxed Maximum Cost-Efficiency Pattern problem, where the
upper bound on the length may be violated at the cost of an additional penalty term. We
assume that the weight function is strictly positive. While it is NP-hard to decide whether a
feasible solution exists for the original problem, we show that this slight relaxation allows us

86

ALGORITHM FPTAS-RMDS

1: k +— [%]
2: for i =0 — |log;, B| do

3: H; < result of A on instance I; with A = k*m.
4: end for

5

: return maxo<;<|log, B| 0i(H;) as the approximating solution.

Figure 10.4: The high-level description of the (Inn)-approximation for the inseparable demand
model.

to give an FPTAS for penalized cost-efficiency. This FPTAS can be applied to any problem
that allows a quasi-polynomial-time algorithm that computes an optimal solution with respect
to the penalized cost-efficiency. Note that the relaxed cost-efficiency maximization problem
remains NP-hard as we can choose L very small such that every subgraph is penalized and we
have that o(H) ~ o(H)/2 for any subgraph H. Then the NP-hardness result of Theorem 10.1
naturally applies to this problem. For simplicity, we will assume that the scaling constant ¢ for
the penalized cost-efficiency equals 1.

Let IT be a relaxed cost-efficiency maximization problem that admits an algorithm A that
takes as input an instance I of the relaxed cost-efficiency maximization problem and A € N
and computes an optimal (W, \)-viable pattern H with respect to penalized cost-efficiency, p,
in O(p(A,n)) time, where p(\,n) is a function that is polynomial in A and n. We show how to
construct an FPTAS for II that uses A as a subroutine. We present our algorithm within the
terminology introduced by Schuurman and Woeginger for approximation schemes [81]. We first
structure the output of our algorithm to form exponentially growing buckets based on the length
of the solutions. In order to compute approximately optimal solutions in each of the buckets
efficiently, we structure the input of algorithm A by exponentially compressing the lengths and
weights in such a way that the error resulting from the compression is proportional to the size
of the solutions in each bucket.

Assume that we are given a graph T. Let k be a suitably chosen integer depending on ¢,
which will be defined later. We structure the output in |log, B] — 1 buckets, where B =
¢(G), such that bucket ¢ with 0 < ¢ < |log, B| — 2 contains solutions with total length at
most k'*2m, where m is the number of edges. For each bucket we compute an approximately
optimal solution and return the overall best solution as output of our algorithm. To compute
an approximately optimal solution for bucket ¢, we structure the input by considering instances
I = (G, 4, w;, Wy, L;), where (;(e) = [£(e) /k'], wi(e) = w(e)/k' for e € E(G) and W; = W/k' as
well as L; = L/k'. We can think of these instances as being compressed. We apply algorithm A
on the compressed instances I; with A = k?m. A high-level description of this algorithm is
listed as Algorithm 10.4.

When considering the i-th bucket, we refer to the deviation of H C G with respect to ¢;
and L; as the compressed deviation A;(H) = max{0,¢;(H) — L;}. Similarly, the penalized cost-
efficiency of H C G is defined as the compressed penalized cost-efficiency o;(H) = w;(H)/(¢;(H)+

In order to show that Algorithm 10.4 is an FPTAS we proceed in several steps. First, we
bound the compressed penalized cost-efficiency used in the i-th iteration of the algorithm in
terms of the ordinary penalized cost-efficiency. In Lemma 10.10 we use this bound to derive an
approximation ratio for the penalized cost-efficiency. Finally, we show that the algorithm is an
FPTAS in Theorem 10.11.

87

Lemma 10.8. For any pattern H and each 1 < i < |log, B, the following holds

((H) <Kk -4(H) <0H)+|E(H)-K, (10.1)

A(H) <Kk'-ANH) <A(H)+|E(H)| K, (10.2)

oi(H) <o0i-1(H) <o(H), (10.3)

Gi(H) <k-m implies that ¢;_1(H) < (10.4)

Proof. We use the following equation, which holds for any real positive numbers r, s € R.
r
<s-|—-|1 <
r<s {S-‘_r—l—s (%)

We start out by proving Equation (10.1), which relates the length of a graph to the length of
the corresponding subgraph in the compressed instance of iteration i. By the definition of £ and
Equation (%) we have

e€E(H)

<k Z [i{‘ by Equation (x)
ecE(H)

= k',;(H)

On the other hand,

Ke(H) =k > [ﬂ
< Z (e + k) by Equation (x)

= ((H)+ |E(H)| - k.

Next, we consider Equation (10.2). Note that the first inequality trivially holds if A(H) = 0.
So, we may assume that A(H) > 0. By applying Equation (10.1) and the definition of the
compressed deviation we obtain

AH)=0H) - L<KE -4;(H) — L <k A(H) .

The second inequality of Equation (10.2) again trivially holds if A;(H) = 0. For A;(H) > 0,
we obtain

E'A;(H) = k';(H) — L < 0(H)+|E(H)|- k' — £L=A(H)+ |E(H)| - k'

using Equation (10.1) and the definition of the compressed deviation.

Finally, we consider Equations (10.3) and (10.4). Note that the first inequality of Equa-
tion (10.3) implies the second inequality since po(H) = p(H) holds for any subgraph H. From
Inequality (x) we obtain that

Gia(H) =) h J Z k- Lﬁ = 1-‘:k-&-(H)

ccE(H) c€E(H

for any subgraph H, which immediately implies Equation (10.4). Similarly, we also obtain
k-Aj(H)=Fk -max{0,0;(H)— L} > k-max{0,{(H) — L} = A;_1(H)

88

Therefore, we obtain

wi_l(H) < wi_l(H)
k- (G(H)+A(H)) ~ i (H)+ A1 (H)

using w;(H) = w;—1(H) and {;(H)+A;(H) = k-(¢;(H)+A;(H)), which concludes the proof. [

0i(H) = = 0i-1(H)

Let Q(H) be the smallest integer such that £osy(H) < k*m. In other words, Q(H) denotes
the smallest bucket for which H will be considered by algorithm A. Equation (10.4) immediately
implies a lower bound on the length of H in this bucket.

Corollary 10.9. For any pattern H, Q(H) > 0 implies Loy (H) > km.

Now we are ready to bound the penalized cost-efficiency of an instance H in bucket Q(H)
in terms of k and its true penalized cost-efficiency o(H).

Lemma 10.10. For any pattern H, we have oom(H) >k =1 L. 0(H).

Proof. Clearly, this inequality holds if Q(H) = 0. For Q(H) > 1, we have

0(H) > K by (H) — |E(H)| - KD by Equation (10.1)
> kYD (o (H) —m) since |E(H)| < m.
> kM - (km — m) due to Corollary 10.9
=(k—1) k. (10.5)

This implies

o0 < L) D) +) 00

Then the penalized cost-efficiency satisfies

~ wo) (H) o -
0 H) = by definition of o
i) (H) Lo (H) + Aq) (H) Y
w(H) i
= by definition of w
K- (G (H) + Dagn) (H)) i
> w(H) by Equations (10.1) and (10.2)
uation 1) an .
= ((H) + A(H) + 2[B| - KO0 v
> w(H) since |E| <m
O(H) + A(H) + 2m - k920
> 5 w(H) by Equation (10.6)
(1 + m) (6(H) + A(H))
k=1
o(H
SR
This concludes the proof.]

Theorem 10.11. Given 0 < € < 1, we can compute a (1 — €)-approzimation for the relazed
cost-efficiency mazimization problem in O(p(m/e?,n)log B) time, where G is the input graph
and B is the maximum total length of the edges, provided that an O(p(A,n)) time algorithm for
the penalized cost-efficiency maximization as described above exists.

89

Proof. Clearly, the algorithm computes a VW-viable solution if one exists due to the correctness
of algorithm A, the fact that we do not introduce any errors when scaling the weights, and since
the union of the buckets covers all feasible solutions.

Next we show that the algorithm indeed produces a (1 — €) approximation of the optimal
penalized cost-efficiency. Let opt be an optimal solution and H* be the solution returned by

our algorithm. By the above lemmas and choosing k = [%1, we have
o(H*) > 0:;(H* by Algorithm 10.4
o(H") = ax 0 (H") y Algorithm
> Gi(opt by Algorithm 10.4
=2 Jhax 0 (opt) y Algorithm
> 00 (opt) (ODPY) by Equation (10.3)
k—1
> <k+1) - o(opt) by Lemma 10.10
2
=(1—-—=-).%
< oy 1) o(opt)
> (1—¢) - o(opt) by definition of k.

The running time of this approach clearly is O(p(m/e?,n) log B) since k = [2]| > 2, and logy, B <
logy, B = O(log B). O

For reasons of simplicity, we assumed a scaling factor ¢ = 1. By choosing k = [¢ + 1/¢] we
can accomplish the same result for any scaling factor ¢ # 1. In our analysis, we further assumed
that we are given an algorithm A that computes a (W, \)-viable pattern for a given value of \.
However, our approach still works if A only computes a W-viable pattern with maximum pe-
nalized cost-efficiency. In each iteration we pre-process the instance I; by removing edges that
are longer than k?m from G. Then the maximum length of any WW-viable pattern considered
by A is naturally bounded by k?m?2. The running time of the resulting FPTAS is bounded
by O(p(m?/e?,n)log B), assuming that A has a running time bounded by O(p(¢(G),n)). Fi-
nally, with the results from Corollary 10.7 we immediately obtain the following result as an
application of the FPTAS to the problem of maximizing the penalized cost-efficiency objective
function.

Corollary 10.12. Let (G,w,¢, W) be an instance of the Relaxed Maximum Cost-Efficiency
Pattern problem such that G has treewidth at most k and let F be a finite set of graphs.
Let B := ¢(G), 0 < € < 1 and let opt be the optimal penalized cost-efficiency of an F-minor-
free W-viable pattern. Then a W-viable F-minor-free pattern with penalized cost-efficiency at
least (1 —) - opt can be computed in time O(20F*+k10eN+N)| F| /22 10g B).

90

Chapter 11

Maximizing Cost-Efficiency under
Structural Constraints

In this section, we drop the lower bound on the weight as well as the upper bound on the
length. Instead, we impose structural constraints on the set of vertices by requiring a subset
of the vertices to be contained in any feasible solution. This models a scenario in which we
would like to inter-connect a subset of the given vertices in a certain way. For instance, we
may wish to connect the sites to form a spanning tree or a perfect matching or we may wish to
inter-connect a (small) subset of the vertices.

11.1 A Parametric Searching Approach and its Application

One of the most natural constraints on the vertex set is to require the pattern to span the whole
set of vertices. Chandrasekaran [17] shows that a spanning tree with maximum cost-efficiency
can be computed in polynomial time. We provide an adapted version of the main theorem that
makes this possible, along with a proof of its correctness, and show how this can be used as
a generic tool in order to obtain efficient algorithms for the maximum cost-efficiency pattern
problem.

Theorem 11.1 (Chandrasekaran [17]). Let G = (V,E) be a graph with edge weights a. €
Z, b € N for e € E such that b, > 0 for all e € E and let S € 2F be an arbitrary collection of
subsets of the edges. Let

* ZeeX Qe _
0" = max {Zee)(be and ¢(0) = max 6%}:{(ae —0be) ¢,

then

>0 & 0<06*
p0) =X =0 < =0
<0 & 6>0*

91

ALGORITHM Parametric Search

Input: Graph G = (V, E), a. € Z, b. € N for e € E, set of feasible solutions S C 2 Output:
S* C § with maximum cost-efficiency

[, B] [mlneeE {b } maxeeE{b H

: while 8 —a > (ZeeEbQ) do

[y

2

3

4 d<—maXX€3 {Zeex(ae_k‘be)}-
5. if d > 0 then

6: o, B] < [k, B].

7. elseif d < 0 then
8 [a, B] + [a, K.
9: else

10: [a, B] « [k, K].
11: end if

12: end while

13: Sy 4 argmaxycs { Doy (e

14: Sg <+ argmaxycs { Y cex (e —
15: if 0(Sa) > 0(Sz) then

16: return S,.

17: else

18: return Sg.

19: end if

\w—/H/—/

Figure 11.1: A high-level description of the parametric search.

Proof. Let X* € S be such that ¢(0) = > cx«(ae — 6 - be):

p(0) = (ae—0-b) <0

ec X*
& D (ae—0-b) <0 VX €S
ecX
o Leex e _ g VX €S
ZeEXbe
= 0* <0

On the other hand, assume 6* > . Then and only then there is some X’ € S such that

ZGEX/ Qe > 9
ZeEX’ b
& 'eS) (ae—0-b) >0
ec X’
& @(0):Z(ae—0-be)>0.
ecX*
Equality for the case ¢(0) = 0 follows from the previous observations. O

In order to solve maximum cost-efficiency pattern problems we adapt the optimization algo-
rithm suggested by Chandrasekaran to our setting. Essentially, the algorithm performs binary

92

fx

fr fr

>

Figure 11.2: Upper boundary of the set of functions Fgs (gray line), segment s on the upper
boundary (bold black segment) and corresponding linear function fx, associated with Xs € S
and interval that is dominated by s (gray area).

search on the cost-efficiency space using Theorem 11.1 and is listed as Algorithm 11.1. In
Lemma 11.2 we show that this algorithm finds an optimal solution after a polynomial number
of steps, when the interval containing the optimal cost-efficiency is smaller than some value
depending on the input numbers. In this case, we return the maximum cost-efficiency of the
two solutions corresponding to the interval boundaries.

Lemma 11.2. Let G = (V,E) be a graph with edge weights a. € Z,b. € N for e € E and
let S C 2F be a set of feasible solutions. If we can compute

opt(f) = argmax ycg {Z(ae — 9be)}

eeX

in time f(n), then Algorithm 11.1 computes a solution X* € S with maximum cost-efficiency
in O(f(n)log (nM)) time where M denotes the largest input number.

Proof. First, we show that, if an interval I containing the optimal cost-efficiency is smaller than
some threshold value depending on the input numbers, then the optimal solution corresponds
to a solution that can be associated with the densities at the boundaries of the interval. Note
that every X € S corresponds to a linear function fx : 0 +— > .y ae —0-) cx be. Essentially
we are interested in examining the upper envelope of the set of functions Fs := {fx | X € S}.
This upper boundary is composed of linear segments, such that each segment s corresponds to
some X, € § and to some interval I, on the #-axis. This interval contains all 6 for which X
maximizes) | . y(a.—0-be) over all X € S. We say that X, is dominating on I5. See Figure 11.2
for an illustration.

Let fp, fQ,fr, fs € Fs and let Opg and Org be the intersections of fp, fo and fg, fs,
respectively, such that pg < 6rg. Then the length of the interval [0pg, Ors] can be bounded
from below as follows. Let Ax :=)" .y ac and let Bx :=) .y b.. Then we have

frpq) = Ap +0prqBp = Aq + 0rqBq = fo(0rq)
fr(Ors) = Ar + 0rsBr = As + 0rsBs = fs(0rs)

which, by a simple transformation, is equivalent to

d 0 Ar — As
= — an = - .
Bg — Bp RS~ By — Bg

93

It follows that, if |#pg — Ors| > 0, we have

rr— O] — | A2~ Ae _ An— As
Bo-Bp Bs-Bg
_ |(Ap — AQ)(Bs — Br) — (Ar — As)(Bq — Bp)
B (B — Bp)(Bs — Br)
N 1
~ |(Bq — Bp)(Bs — Br)

since the numerator must be an integer

> 1
(ZeEE be)

since both Bg and Bg are bounded by . be. Hence, whenever |0rs — 0pg| > 0, we have

-2
|0rs — Opo| > (Z be) .

eeE

As a consequence, let [a, 5] be an arbitrary non-degenerate interval of length less than
this value containing the optimal cost-efficiency 6*. Then this interval may contain at most
one intersection point of all the pairs of linear functions fp, fo € Fs, that is, it intersects at
most two segments on the upper boundary of Fs. Then, clearly, either the solution opt(«)
corresponding to « or the solution opt(3) corresponding to § must be optimal. Note, that the
optimal cost-efficiency will, in general, match neither a nor 3 in this case.

Next, we prove the bound on the running time. It is clear that dpnin < 0% < dmax, Where
Omin and dmax denote the minimum and maximum cost-efficiency of an edge of G, respectively.
Hence we only need to search the optimal value in the interval [dmin, Omax|- The size of this
interval is at most |2amax|, where apax denotes the maximum weight of an edge. since we
assumed b, > 1 for all e € E. Algorithm 11.1 performs binary parameter search on this interval
using Theorem 11.1. In each step we bisect the previous interval, that is, after ¢ steps the
interval has size at most 2|amax|/2t. Thus, after t > log |amax| + 2 - log Y ccp be + 1 steps the

size of the interval is smaller than (Z ccE be) -2, By previous arguments either the solution
corresponding to the left boundary of the interval or the solution corresponding to the right
boundary of the interval is an optimal solution. Hence, it suffices to compute two optimal
solutions for o and S, respectively, and to compare their densities. The running time of the
algorithm is in O(f(n) - log (nM)) where M is the largest absolute value of the input numbers.
Hence, the running time is polynomial in the input size. O

The algorithm provides a generic tool that can be applied to various problems, whenever
the corresponding single-objective optimization problem can be solved efficiently in the presence
of both positive and negative numbers. For instance, since perfect weighted matchings can be
computed in time O((m + nlogn)n) [33] the lemma immediately implies the following.

Corollary 11.3. A perfect mazximum cost-efficiency matching can be computed in O((m +
nlogn)nlog (nM)) time.

Next, we show that a maximum cost-efficiency subtree with k leaves can be computed in a
tree in polynomial time, again using the fact that we can solve the underlying single-objective
optimization problem efficiently.

Theorem 11.4. Given a tree T = (V, E), a mazimum cost-efficiency subtree with exactly k
leaves can be computed in time O(k*nlog (nM)) where M denotes the largest input number.

94

Proof. The proof exploits a combination of the parametric search technique and dynamic pro-
gramming. By applying the parametric search we reduce the problem to finding—for various
values of § € R—a longest subtree of T' with k leaves, where the new length of each edge e is
given by a. — 0b.. For an edge e = {u,v} we denote this new length by A(u,v) = a. — 0be.

In order to do compute the longest subtree of T" with k leaves, we root the tree in some
vertex r € V. For a vertex v € V' we denote the number of children of v by n(v) and we denote
the children by uj ..., UZ(U).

Suppose we are given an optimal solution T for this problem. Let v* be the topmost vertex
in 7™ with respect to the rooting. Then either v* is a leaf in T and there are only k£ — 1 leaves
of T™ in the subtrees rooted in the children of v or v* is an internal vertex with k leaves in the
subtrees rooted in the children of v*. Let w € V be a vertex of T and let T}, denote the subtree
of T rooted in u. Let T}, be a subtree of T}, containing u. Further, let 7, denote the subtree
of T* that is contained in T, and let k¥’ denote the number of leaves of T* contained in T,.
Then, clearly T.f is the longest subtree in 7}, rooted in u with &’ leaves. We use this observation
to decompose the problem into smaller sub-problems.

Let veV,1<i<k—1and 1< j < n(v). Then we denote by A(v,i,7) the length of
a longest tree T with i leaves, where v does not count as a leaf, such that T is contained in
the tree induced by v and the subtrees rooted in its children w7, ... ,u}’. We can compute these
values from the following equation

A(v,i,j),
A(U’Z’j+1) = max A(Uai_ 17j)+)‘(vvuj+l)a
maxi<;<;{A(v,i —t,7) + A1, t,n(uj11)} + A0, ujt1)

in a bottom-up manner on the tree, using A(v,0,0) = 0. This can be done in O(k*n) time.

Furthermore, we denote by A(v,4,5) the length of a longest tree T with i leaves, where v
does not count as a leaf, such that T is contained in the tree induced by v and exactly one
subtree rooted in some child u? of v, where j < r < n(v). These values can be computed
in O(kn) time from the following equation using the values computed in the previous step

A(v,i,j) = max {A(up,i,n(uy)) + A(v,ur)} .
J<r<n(v)
Clearly, a tree with k leaves can only be found in a subtree of T" with at least k — 1 leaves.
For each vertex v such that the tree T, rooted in v contains at least £ — 1 leaves, we compute
the longest subtree with k leaves, denoted by A*(v), as follows

. A(v,k —1,1),
A*(v) = max _ .
max)<;<—1,1<r<n(){A(V, k —t,7) + A(v,t,r + 1)}

As mentioned earlier, this equation reflects the fact that v is either a leaf itself or an internal
vertex, in which case v must have at least two children in 7,,. We achieve this by “guessing”
an index 7 such that the computed tree contains at least on child in «f,...,«’ and one child
n u),q,... 7“31(1;)' Again, these values can be computed in O(kn) time. Finally, we return the
solution corresponding to the maximum value A * (v) over all v € V' with at least k — 1 leaves
in the subtree T,,. Using Lemma 11.2 the total time complexity is O(k?*nlog (nM)). O

11.2 General Steiner Constraints

In this section we consider maximum cost-efficiency pattern problems under Steiner constraints.
Given a graph G = (V, E) and a set of terminals S C V the maximum cost-efficiency Steiner

95

pattern problem asks for a maximum cost-efficiency subgraph H containing all vertices in S.
First we show that this problem NP-hard and inapproximable unless P = NP, even if the
pattern is a path and there is only one terminal.

Theorem 11.5. The Maximum Cost-Efficiency Steiner Pattern problem is NP-hard, even if all
weights are positive, all numbers are chosen from two distinct values, there is only one terminal
and the pattern is a path. Furthermore, unless P = NP, this problem can not be approximated
within a constant factor in polynomial time under the same conditions.

We prove this theorem by a two-step reduction from the Longest Path problem. Given a
graph G = (V, E) of the longest path problem is to compute a path with maximum length,
where the length is given by the number of edges on this path. This problem is NP-hard [37]
and cannot be approximated within a constant factor unless P = NP due to Karger et al. [56].
First, we show that this problem remains NP-hard and inapproximable if we require that the
path starts in a predefined vertex r € V. We refer to this problem as the Rooted Longest Path
problem and we refer to r as the root.

Lemma 11.6. The Rooted Longest Path problem problem is NP-hard and cannot be approxi-
mated within a constant factor unless P = NP.

Proof. Let A be an algorithm that approximates the rooted longest path problem within a
factor r. Then we immediately obtain an algorithm A’ approximating the longest path by
running A with root v once for each v € V and returning the maximum of these values.
Clearly, A" approximates the longest path within a factor of r. The claim then follows from the
results of Karger et al. [56]. O

Now, we prove Theorem 11.5.

Proof of Theorem 11.5. We make a reduction from the rooted longest path problem. Assume
we are given an instance I = (G,) of the rooted longest path problem, where G = (V, E) is
a graph and r € V is the root. We construct a new instance I’ = (G’,S) of the maximum
cost-efficiency Steiner pattern problem as follows. We let G’ = (V’, E’) such that V' =V U{z}
for some new vertex x ¢ V and we set £/ = EU{{x,7}} and S = {z}. Further, let M := n?+1.
We set we =1 and ¢, = M for e = {z,r} and we set w, = M and ¢, =1 for all e € E.

We claim that there is a path in G’ rooted in x with cost-efficiency at least 6 if and only if
there is a path in G with length at least [# —1] rooted in r. Note that a path in G’ of length i+ 1
rooted in x has cost-efficiency 0; = (M + iM)/(M + i) for ¢ > 0. Since 6; is monotonically
increasing in i and we have i < 6; < i+ 1 for i <n and M > n? it follows that [6; — 1] = 4 and,
hence, the claim holds.

Suppose that A is an approximation algorithm that approximates the maximum cost-
efficiency Steiner pattern problem for path patterns within a factor r4. We show that we
can use A to approximate the rooted longest path problem within a factor 3r 4. If r is isolated
in GG, we return r as a longest path, which is an optimal solution in this case. Otherwise, let e
be an arbitrary edge incident to r in G. For a given instance I = (G,r) let P4 be the path
computed by A for the instance I’ = (G’, S) constructed from I as described above and let 64
be its cost-efficiency. If 64 > 2M /(M + 1) we return P4, otherwise we return the single edge e,
which together with the edge {z, 7}, forms a path of length two with cost-efficiency 2M /(M +1)
in G'.

In the following, let OPT} denote the longest path in G rooted in r and let OPTy: denote
the maximum cost-efficiency Steiner path in G’. Further, let APX: denote the cost-efficiency
of the approximation as described above. Note that since 2M /(M + 1) > 3/2 for n > 1 we

96

have APXp > 3/2. It follows that

OPT; _ [OPTp —1]
APX; [APX; —1]

— APXp —1
< 1 OPTy
~ 1-1/APXp APXp
1
ST1o23™
=3-r4.
The claim then follows from Lemma 11.6. O

Although the maximum cost-efficiency Steiner pattern problem is NP-hard and unlikely
to be approximable if the pattern is a path, we may still be able to obtain fixed-parameter
tractable algorithms. First, we show that it is unlikely that the general problem is FPT when
parameterized by the number of vertices in the solution, when we have no constraint on the
feasible patterns.

Theorem 11.7. Maximum Cost-Efficiency Steiner Pattern problem is W{1]-hard when parame-
terized by the number of vertices of the Steiner subgraph, even if S contains only one vertex.

Proof. We prove the theorem by reduction from the W{l]-hard problem k-Clique problem [24].
Given an instance of k-clique, that is, a graph G = (V,), we wish to decide if G has a clique of
size at least k. We transform this into an instance of maximum cost-efficiency Steiner pattern
as follows. We construct a graph G’ by adding a new vertex z to G that is connected to all
vertices in V. We set wyy = lyy = 1 for all vw € E and we set wg, = 0 and £, = 1 for
all v € V. Further, we set S = {z}. Clearly, there is a clique of size k with m = (g) edges in G
if and only if G’ has a subgraph H with x € H and cost-efficiency at least m/(m + 1). O

While the Maximum Cost-Efficiency Steiner Pattern problem problem is W[1]-hard on general
graphs, it turns out to be FPT on planar graphs.

Theorem 11.8. Maximum Cost-Efficiency Steiner Pattern problem is FPT on planar graphs when
parameterized by the number of vertices of the subgraph.

Proof. Let G be a planar graph and let S C V be a non-empty set of terminals. Since we
are looking for a connected subgraph and since S # (), it suffices to consider the subgraph G’
consisting of the (k — 1)-neighborhood of some vertex s € S. This graph is (k — 1)-outerplanar
and has radius at most k—1. Hence, by a result of Robertson and Seymour [79], G’ has treewidth
bounded by 3k — 2. Note, that a path is a simple, connected graph that does not contain a
triangle as a minor. Hence, using a modification of the algorithm proposed in Theorem 10.6 in
combination with Theorem 11.2, we can compute a subgraph of G’ with maximum cost-efficiency
in FPT time.

O

In contrast to the W[1]-hardness of the maximum cost-efficiency Steiner pattern problem
without constraints on the pattern, we show that the problem is FPT when parameterized
by the number of vertices if the pattern is a path. In order to obtain this result we use the
parametric search technique introduced in Section 11.1 in combination with Color Coding [8].
Color Coding was introduced by Alon et al. [8] as a method for finding subgraphs of bounded
size in arbitrary graphs in FPT time. It can be used to find paths and cycles in expected
time 2°(")m. The algorithms are randomized by construction, but can be derandomized. We

97

S1 52
oO—eoe 0o o 11001 O

N—— —— S——
Ch Cy Cs

Figure 11.3: Decomposition of an optimal colorful Steiner path. Terminals are depicted as
boxes.

can directly apply Color Coding to find a maximum cost-efficiency Steiner path with at most &
vertices with high probability (WHP) in time 2°®)mlog (nM). We can slightly improve on
the standard algorithm by coloring the terminals in a deterministic way, thus, using only k£ — s
random colors and thereby improving the probability of obtaining an optimal solution. In the
following we further improve on this result when the number of Steiner vertices is large compared
to k.

Theorem 11.9. Given a set S of s terminals a maximum cost-efficiency Steiner path with k
vertices can be computed WHP in time O((28~*m + 3¥=%)s?log (nM)).

Proof. Since we apply the parametric search technique, we need to find, for various values of 6,
a longest path with respect to the edge-lengths A\(e) := a. — 6b. for all e € E. Suppose we are
given a random coloring of the vertices in V' \ S with k — s colors using some color set C' and
we wish to find a longest colorful Steiner path for S. A Steiner path is called colorful, if it
contains each color exactly once. Note, that this implies that the path is simple, that is, it does
not contain multiple copies of any vertex. Our approach is based on a decomposition of any
optimal colorful Steiner path P for S into three optimal subpaths P;, P, and Pj as illustrated
in Figure 11.3 such that the following holds:

1. P, starts and ends at terminals s; and so, respectively, and contains all terminals
2. P and P, end at terminals s; and s9, respectively, and do not contain any other terminals.

In order to compute P, we further decompose this path into fragments each starting and
ending with a terminal and containing no other terminals apart from the end-vertices. Let c(v)
denote the color of vertex v. For each vertex v € V'\ S, € S and each set of colors C' C C
with ¢(v) € C" we compute the maximum length L(z,v,C”) of any colorful path from z to v
using all colors in C’. Similarly, we compute for each z € V the length E(z, (") of the longest
path ending in 2z using all colors in C’. We compute these values by dynamic programming
in O(2%=% . s.m) time using the equations

L(z,v,C") = weIJnVE(lS\S{L(x’ w,C"\ {c(v)}) + A(v,w)}

Bz 0 = max {E(w, 0\ {e(0)}) + A(w,)}
weN (2)\S
For each z,y € S and each set of colors C’ C C we subsequently compute the maximum
length L(x,y,C") of any path from z to y using all colors in C” as well as for all z € V' the
maximum length L(z,C") of any path ending in z using all colors in C’ by

L(z,y,C") = wex}lv??j;\s{L(x, w,C") + NMw,y)} .

in time O(Qk_s - 52 -m). Implicitly, we obtain a combinatorial description of the longest paths

starting and ending at terminals as a complete multigraph Gg = (S, M) on the set of terminals
in which each edge is annotated with its length and the set of colors used to attain this length.
The weighted multiset of edges in our multigraph Gg = (S, M) is defined by

M = {(zy,C', L(z,y,C")) | 2,y € 5,C" C C} .

98

Then we compute for each vertex z € S and each subset X C S with € X and each set
of colors C’ C C the length L(z, X,C") of the longest path in Gg ending in x using all vertices
in X and all colors in C’ using the equation

L(z,X,C") = max {L(y, X\ {z},C'\ C") + L(x,y,C")}
yES,C”QC’

where L(z, {z},C") = L(z,C"). In order to do this efficiently, we consider all partitions of C into
three sets C'\ C’, C" and C'\ C”. The number of these partitions is at most 3*~*. Hence, the
computation can be performed in time 0(3’“_3)32. The optimal solution can then be computed
as

L N+ L / 11.1
xeg}g;zc{ (2,5,C") + L(z,C\ C")} (11.1)
in time O(2F~%s). Hence, the dynamic programming for fixed @ takes O(25~*s*m +3%755?) time
and the problem can be solved in time O((2¥=*m + 3¥=%)s2log (nM)).
The probability that a path of length at most k interconnecting a set of s vertices is colorful is
given by p(k,s) = (k—s)!/(k—s)*~%) > \/2r(k — s)e~(#=%) . Hence, a colorful path can be found

with probability < e if the number of trials is at least t.(k,s) = m(lln% = |lng|- O(eF9).
O

We conclude this section by showing that we cannot hope to extend this result to more
general patterns.

Theorem 11.10. It is NP-hard to decide whether there is a Steiner tree with at most k vertices
and cost-efficiency at least 6, even if we allow only one terminal.

Proof. We show NP-hardness by reduction from the NP-hard k-MST problem. Given an edge-
weighted graph G, a non-negative integer k£ and a weight W, the k-MST problem is to decide
whether there is a tree spanning at least k vertices with weight at least W. This problem has
been shown to be NP-hard by Ravi et al. [76] and it obviously remains NP-hard if we require
the solution to contain exactly k vertices.

We observe that deciding whether there is a tree with k vertices and cost-efficiency at least
is equivalent to deciding whether there is a tree with k vertices and length at most 0 where the
length of each edge is given by 0b. — a.. To see this, note that

@20@2(%6*%50

ZEEE’ be ecE!

by simple equivalent transformations.

Assume we are given an instance of k-MST, that is, a graph G = (V, E) and we wish to
decide if there is a tree with k vertices and length at most € where the edge-lengths are integral.
We transform this into a set of |V| k-Maximum Cost-Efficiency Steiner Pattern problem G, such
that G is solvable if and only if at least one of the new instances G, is solvable. We choose
G, = (VU{z}, EU{xv}) for some new vertex x. Further, we choose the b, = 1 and a, := £, — 6
and az, = 20 and S = {z}. Hence, 0b. — a. = £, 0b,, — az, = —6 and each solution contains
the edge sx.

By the above observations there is a tree with k vertices and length at most ¢ if and only
if there is a tree with k + 1 vertices including = with length at most 0, where edge lengths are
defined by 0b. — a.. The latter is equivalent to deciding whether there is a tree with k vertices
and cost-efficiency at least 6. O

99

Part 1V

Conclusion

100

We consider in this dissertation the intricate resource allocation problem from an algorithmic
perspective. Starting from resource allocations with locality constraints, in which the resource
assignments are valid only between adjacent objects, to global resource planning for which
the resources are packed and delivered via intermediate stops to demanding targets, we present
algorithmic results with solid theoretical guarantees as well as hardness proofs to jointly compose
a comprehensive study for the entire problem complexity.

In terms of local demand supplying, we consider a generalization of dominating set problem
under the concept of capacitataion with soft capacity, i.e., capacitated domination problem
with soft capacity. On one hand, approximation algorithms matching the classical results for
dominating set which are asymptotically optimal are presented for general graphs. On the other
hand, a series of hardness results for trees, graphs of bounded treewidths, and planar graphs
shows that the considered problem is fundamentally more difficult than the dominating set
problem, whereas the corresponding approximation algorithms are also provided.

Open Problems and Future Research Topics

101

Bibliography

[1]

[11]

[12]

[13]

[14]

I. Abraham, Y. Bartal, T-H. Chan, K. Dhamdhere, A. Gupta, J. Kleinberg, O. Neiman,
and A. Slivkins. Metric embeddings with relaxed guarantees. In FOCS’05, pages 83-100,
Washington, DC, USA, 2005.

I. Abraham, Y. Bartal, and O. Neiman. Embedding metrics into ultrametrics and graphs
into spanning trees with constant average distortion. In SODA 07, pages 502-511, Philadel-
phia, PA, USA, 2007.

Ittai Abraham, Yair Bartal, and Ofer Neiman. On embedding of finite metric spaces into
hilbert space. manuscript, 2005.

Ittai Abraham, Yair Bartal, and Ofer Neiman. Advances in metric embedding theory. In
STOC 06, pages 271-286, New York, NY, USA, 2006. ACM.

J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed parame-
ter algorithms for dominating set and related problems on planar graphs. Algorithmica,
33(4):461-493, 2002.

Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction
for dominating set. J. ACM, 51(3):363-384, 2004.

N. Alon, R. Karp, D.d Peleg, and D. West. A graph-theoretic game and its application to
the k-server problem. SIAM J. Comput., 24:78-100, February 1995.

Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844-856, 1995.

Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs.
J. ACM, 41(1):153-180, 1994.

Vojtech Balint. The non-approximability of bicriteria network design problems. J. of
Discrete Algorithms, 1:339-355, June 2003.

Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In FOCS’96, pages 184—, Washington, DC, USA, 1996.

Yair Bartal. On approximating arbitrary metrices by tree metrics. In STOC’98, pages
161-168, New York, NY, USA, 1998. ACM.

Yair Bartal. Graph decomposition lemmas and their role in metric embedding methods.
In ESA’04, pages 89-97, 2004.

Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric ramsey-type phe-
nomena. In STOC03, pages 463472, New York, NY, USA, 2003. ACM.

Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. In STOC ’93: Proceedings of the 25th annual ACM symposium on Theory of
computing, pages 226-234, New York, NY, USA, 1993. ACM.

102

[16]

[17]
[18]

[19]

[20]

[21]

[22]

23]

[24]

Prosenjit Bose. On embedding an outer-planar graph in a point set. CGTA: Computational
Geometry: Theory and Applications, 23:2002, 1997.

R. Chandrasekaran. Minimal ratio spanning trees. Networks, 7(4):335-342, 1977.

M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a finite metric
by a small number of tree metrics. In FOCS’98, pages 379—, 1998.

Altannar Chinchuluun and Panos Pardalos. A survey of recent developments in multiob-
jective optimization. Annals of Operations Research, 154:29-50, 2007.

Fabian A. Chudak and David P. Williamson. Improved approximation algorithms for
capacitated facility location problems. Math. Program., 102:207-222, March 2005.

Kai-min Chung and Hsueh-I Lu. An optimal algorithm for the maximum-density segment
problem. SIAM J. Comput., 34(2):373-387, 2005.

Julia Chuzhoy. Covering problems with hard capacities. SIAM J. Comput., 36(2):498-515,
2006.

Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thi-
likos. Subexponential parameterized algorithms on bounded-genus graphs and h-minor-free
graphs. J. ACM, 52(6):866-893, 2005.

Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
IT: On completeness for W[1]. Theoretical Computer Science, 141(1-2):109 — 131, 1995.

Rod G. Downey and M.R. Fellows. Parameterized Complexity. Springer, 1999.
S. Dreyfus and R. Wagner. The Steiner problem in graphs. Networks, 1(3):195-207, 1971.

M. Elkin, Y. Emek, D. Spielman, and S.-H. Teng. Lower-stretch spanning trees. In
STOC 05, pages 494-503, New York, NY, USA, 2005. ACM.

David Eppstein. Subgraph isomorphism in planar graphs and related problems. In Proc.
6th Ann. ACM-SIAM Sympos. Disc. Alg., pages 632—-640. STAM, 1995.

J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. In STOC"03, pages 448-455, New York, NY, 2003.

Uriel Feige. A threshold of In n for approximating set cover. J. ACM, 45(4):634-652, 1998.
J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: Branch-
width and exponential speed-up. SIAM J. Comput., 36(2):281-309, 2006.

Harold N. Gabow. Data structures for weighted matching and nearest common ancestors
with linking. In Proceedings of the first annual ACM-SIAM symposium on Discrete algo-
rithms, SODA ’90, pages 434-443, Philadelphia, PA, USA, 1990. Society for Industrial and
Applied Mathematics.

Rajiv Gandhi, Eran Halperin, Samir Khuller, Guy Kortsarz, and Aravind Srinivasan. An
improved approximation algorithm for vertex cover with hard capacities. J. Comput. Syst.
Sci., 72:16-33, February 2006.

Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Depen-
dent rounding in bipartite graphs. In FOCS 2002, pages 323-332, Washington, DC, USA,
2002. IEEE Computer Society.

103

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman & Co., New York,
1979.

Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

Michael H. Goldwasser, Ming-Yang Kao, and Hsueh-I Lu. Linear-time algorithms for com-
puting maximum-density sequence segments with bioinformatics applications. J. Comput.
Syst. Sci., 70(2):128-144, 2005.

Sudipto Guha, Refael Hassin, Samir Khuller, and Einat Or. Capacitated vertex covering.
J. Algorithms, 48(1):257-270, 2003.

Jiong Guo and Rolf Niedermeier. Linear problem kernels for np-hard problems on planar
graphs. In ICALP, pages 375-386, 2007.

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Michael A. Hen-
ning. Domination in graphs applied to electric power networks. SIAM J. Discret. Math.,
15(4):519-529, 2002.

Teresa W. Haynes, Stephen Hedetniemi, and Peter Slater. Fundamentals of Domination
in Graphs (Pure and Applied Mathematics). Marcel Dekker, 1998.

J.-M. Ho. Optimal trees in network design. PhD thesis, Evanston, IL, USA, 1989. UMI
Order No: GAX90-01807.

Jan-Ming Ho, D. T. Lee, Chia-Hsiang Chang, and C. K. Wong. Minimum diameter span-
ning trees and related problems. SIAM J. Comput., 20:987-997, October 1991.

D.S. Hochbaum. Approximation algorithms for the set covering and vertex cover problems.
SIAM Journal on Computing, 11(3):555-556, 1982.

John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM, 21(4):549-568,
1974.

Sun-Yuan Hsieh and Chih-Sheng Cheng. Finding a maximum-density path in a tree under
the weight and length constraints. Information Processing Letters, 105(5):202 — 205, 2008.

Sun-Yuan Hsieh and Ting-Yu Chou. Algorithms and Computation, volume 3827 of LNCS,
chapter Finding a Weight-Constrained Maximum-Density Subtree in a Tree, pages 944-953.
Springer Berlin / Heidelberg, 2005.

Ross B Inman. A denaturation map of the lambda phage dna molecule determined by
electron microscopy. Journal of Molecular Biology, 18(3):464-476, 1966.

Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM,
48(2):274-296, March 2001.

D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy Kan. The complexity of the network
design problem. Networks, 8:279-285, 1978.

David S. Johnson. Approximation algorithms for combinatorial problems. In the 5th annual
ACM symposium on Theory of computing, pages 38-49, New York, NY, USA, 1973. ACM.

Mong-Jen Kao and Han-Lin Chen. Approximation algorithms for the capacitated domina-
tion problem. In FAW 2010, pages 185-196, Berlin, Heidelberg, 2010. Springer-Verlag.

104

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[70]

[71]

Mong-Jen Kao and D. T. Lee. Capacitated domination: Constant factor approximations
for planar graphs. In ISAAC, pages 494-503, 2011.

Mong-Jen Kao, Chung-Shou Liao, and D. T. Lee. Capacitated domination problem. Algo-
rithmica, 60:274-300, 2011. 10.1007/s00453-009-9336-x.

D. Karger, R. Motwani, and G. Ramkumar. On approximating the longest path in a graph.
Algorithmica, 18:82-98, 1997. 10.1007/BF02523689.

Jon Kleinberg, Aleksandrs Slivkins, and Tom Wexler. Triangulation and embedding using
small sets of beacons. J. ACM, 56:32:1-32:37, September 2009.

T. Kloks. Treewidth, Computations and Approzimations. LNCS. Springer, 1994.

Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer, 1994.

Hoong Chuin Lau, Trung Hieu Ngo, and Bao Nguyen Nguyen. Finding a length-constrained
maximum-sum or maximum-density subtree and its application to logistics. Discrete Op-
timization, 3(4):385 — 391, 2006.

D. T. Lee, Tien-Ching Lin, and Hsueh-I Lu. Fast algorithms for the density finding problem.
Algorithmica, 53(3):298-313, 2009.

Chung-Shou Liao and Gerard J. Chang. k-tuple domination in graphs. Inf. Process. Lett.,
87(1):45-50, July 2003.

Chung-Shou Liao and Der-Tsai Lee. Power domination problem in graphs. In COCOON,
pages 818-828, 2005.

Yaw-Ling Lin, Tao Jiang, and Kun-Mao Chao. Efficient algorithms for locating the length-
constrained heaviest segments with applications to biomolecular sequence analysis. J.
Comput. Syst. Sci., 65(3):570-586, 2002.

Hsiao-Fei Liu and Kun-Mao Chao. Algorithms for finding the weight-constrained k longest
paths in a tree and the length-constrained k maximum-sum segments of a sequence. Theor.
Comput. Sci., 407(1-3):349-358, 2008.

Daniel Lokshtanov. New Methods in Parameterized Algorithms and Complexity. PhD
thesis, University of Bergen Norway, 2009.

G. Macaya, J.-P. Thiery, and G. Bernardi. An approach to the organization of eukaryotic
genomes at a macromolecular level. Journal of Molecular Biology, 108(1):237 — 254, 1976.

Madhav V. Marathe, R. Ravi, Ravi Sundaram, S. S. Ravi, Daniel J. Rosenkrantz, and
Harry B. Hunt. Bicriteria network design problems,. Journal of Algorithms, 28(1):142 —
171, 1998.

Edward M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257-276,
1985.

Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University
Press, New York, NY, USA, 2007.

Rolf Niedermeier. Invitation to Fized Parameter Algorithms. Oxford University Press,
2006.

105

[72]

73]

[74]

[75]

[76]

[77]
78]

[79]

[80]

[87]

(3]

Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane.
Journal of Computer and System Sciences, 23(2):166 — 204, 1981.

M. P4l, E. Tardos, and T. Wexler. Facility location with nonuniform hard capacities. In
FOCS 2001, pages 329—, Washington, DC, USA, 2001. IEEE Computer Society.

Yuri Rabinovich. On average distortion of embedding metrics into the line. In STOC"03,
pages 456-462, 2003.

Yuri Rabinovich and Ran Raz. Lower bounds on the distortion of embedding finite metric
spaces in graphs. Discrete € Computational Geometry, 19, 1996.

R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning
trees—short or small. SIAM J. Discret. Math., 9:178-200, May 1996.

Fred S. Roberts. Graph Theory and Its Applications to Problems of Society. 1978.

N. Robertson and P. D. Seymour. Graph minors .XIII. The disjoint paths problem. Journal
of Combinatorial Theory, Series B, 63(1):65 — 110, 1995.

Neil Robertson and P. D. Seymour. Graph minors. iii. planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49 — 64, 1984.

Gabriel Robins and Alexander Zelikovsky. Improved steiner tree approximation in graphs.
In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms,
SODA 00, pages 770-779, Philadelphia, PA, USA, 2000. Society for Industrial and Applied
Mathematics.

P. Schuurman and G. Woeginger. Approximation schemes — a tutorial, 2011. preliminary
version of a chapter in the book Lectures on Scheduling, to appear in 2011.

Dae Young Seo. On the complexity of bicriteria spanning tree problems for a set of points
in the plane. PhD thesis, Evanston, IL, USA, 1999. AAI9953371.

Asaf Shapira, Raphael Yuster, and Uri Zwick. All-pairs bottleneck paths in vertex weighted
graphs. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms, SODA ’07, pages 978-985, Philadelphia, PA, USA, 2007. Society for Industrial and
Applied Mathematics.

David B. Shmoys, Eva Tardos, and Karen Aardal. Approximation algorithms for facility
location problems (extended abstract). In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, STOC 97, pages 265-274, New York, NY, USA,
1997. ACM.

Michiel Smid. Spanning trees with o(1) average stretch factor. manuscript, 2009.

Virginia Vassilevska, Ryan Williams, and Raphael Yuster. All-pairs bottleneck paths for
general graphs in truly sub-cubic time. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, STOC 07, pages 585-589, New York, NY, USA,
2007. ACM.

P.-J. Wan, K. M. Alzoubi, and O. Frieder. A simple heuristic for minimum connected
dominating set in graphs. International Journal of Foundations of Computer Science,
14(2):323-333, 2003.

Richard Wong. Worst-case analysis of network design problem heuristics. SIAM. J. Alg.
Disc. Meth., 1, 1980.

106

[89]

[90]

[91]

[92]

[93]

[94]

B.-Y. Wu. Approximation algorithms for the optimal p-source communication spanning
tree. Discrete Appl. Math., 143:31-42, September 2004.

B.-Y. Wu, K.-M. Chao, and C.-Y. Tang. Light graphs with small routing cost. Networks,
39:2002.

B.-Y. Wu, K.-M. Chao, and C.-Y. Tang. A polynomial time approximation scheme for
optimal product-requirement communication spanning trees. J. Algorithms, 36:182-204,
August 2000.

B.-Y. Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi, and C.-Y. Tang. A polynomial-
time approximation scheme for minimum routing cost spanning trees. SIAM J. Comput.,
29:761-778, December 1999.

Bang Ye Wu. An optimal algorithm for the maximum-density path in a tree. Inf. Process.
Lett., 109(17):975-979, 20009.

Bang Ye Wu, Kun-Mao Chao, and Chuan Yi Tang. An efficient algorithm for the length-
constrained heaviest path problem on a tree. Inf. Process. Lett., 69(2):63-67, 1999.

107

Index

(W, L)-viable, 56
L-deviation, 57
L-viable, 56
Wh-viable, 56

aggregate optimality, 56
algorithmic graph theory, 5

Bi-constrained Maximum Cost-Efficiency Pattern
problem, 57, 59, 75

bi-criteria, 56

Bottleneck Path problem, 7

buy-at-bulk network design problem, 55

Capacitated Domination problem, 6, 11
Capacitated Facility Location problem, 11
Capacitated Vertex Covering problem, 10
capacitation, 6, 10

capacitized, 6

Connected Dominating Set problem, 10
Cost-efficiency, 56

distortion, 54
Dominating Set problem, 5, 10

Euclidean Spanning Tree of Low DWA-Stretch
problem, 54

Facility Location problem, 5
fixed-parameter tractable, 10, 58, 76
FPT, 10

FPTAS, 83

group Steiner tree problem, 55

Hierarchical-Net-Decomposition, 69
host, 56

k-Clique problem, 94
k-MST problem, 96

local optimality, 56

Longest Path problem, 92

low-stretch metric embedding problem, 53
LP-rounding, 11

Maximum Cost-Efficiency Steiner Pattern prob-
lem, 57, 92-94, 96

metric labeling problem, 55

minimum cost communication network problem,
55

Multi-Criteria Optimizations, 55

multi-objective optimization, 57

multi-sources routing trees problem, 55

network design, 6

pairwise stretch, 54

parameterized complexity, 10

partial embedding, 55

Partition problem, 75

pattern, 56

penalization, 57

Penalized Cost-Efficiency, 57

polynomial time approximation scheme, 58
Power Domination problem, 10

primal-dual, 11

probabilistic embedding, 54
product-requirement routing trees problem, 55

Relaxed Knapsack problem, 13

Relaxed Maximum Cost-Efficiency Pattern prob-
lem, 57, 59

Rooted Longest Path problem, 92, 93

scaling distortion, 55

Set Cover problem, 10

Spanner problem, 7

Steiner Constraints, 57

Subset Sum problem, 11

sum-requirement routing trees problem, 55

Tree Metric Embeddings of Low DWA-Stretch
problem, 54, 61

Tree Metric Embeddings of Low Weighted Aver-
age Stretch problem, 55

upper hull, 77

vehicle routing problem, 55
Vertex Cover problem, 10
Viable Patterns, 56

108

