
D0 - StringLength

Time Limit: 1 sec.

Problem Description

In this practice problem, you are asked to implement the StringLength function, which
takes as input a string stored in a char array and returns the length of the string.

Submit the following program to the judge system.

/* ProbId: D0-StringLength */

#include <string.h>

int StringLength(char str[])

{
return strlen(str);

}

In order for your submission to be judged correctly, make sure that you adhere the
following instructions.

� Select the language “C++ - Function only” when submitting your program.

The file you submit must not contain the main function. Otherwise it will result in
a compilation error.

� You must include in your source file a line containing the following comment as an
identifier to this problem.

/* ProbId: D0-StringLength */

Comments

The goal of this practice problem is to help you become familiar with the “Function only”
type submissions.

D1 - Sequence and Cartesian Trees

Time Limit: 1 sec.

Problem Description

In this problem, you are asked to

� Encode the set of all possible Cartesian trees with k vertices into non-negative
integers between 0 and 4k.

� Map the input sequences to the particular Cartesian trees they correspond to.

Input Format

The first line consists of two integers k and m, where k is the size of the Cartesian tree
and m is the number of input sequences. Then there are m lines, each containing a
sequence of k integers.

You may assume that

� 2 ≤ k ≤ 10.

� 1 ≤ m ≤ 1000.

Output Format

For each input sequence, print the encoding of the Cartesian tree it corresponds to in a
line. Note that, the encoding is not unique. You can use any valid way to encode the
trees.

Sample Input

2 3

1 3

-1 -2

20 30

Sample Output

1

2

1

Note.

This problem is a subroutine for the optimal RMQ algorithm to be used in D2.

D2 - Optimal Range Minimum Query

Time Limit: 1 sec.
Memory Limit: ?? MB.

Problem Description

In this assignment you will implement the optimal algorithm for the range minimum
query problem as a function library in C++.

You must implement the following two functions:

1. void warm up(int seq[], int n);

2. int query(int left, int right);

The source code you submit will be used as a subroutine to solve the RMQ problem.
Before any query, the function warm up() will be called and the static data will be
passed to this function. You may assume that the input data is a valid integer array that
contains n elements. When this function finishes, the array seq[] may or may not exist.
Hence, it is your responsibility to store the data for later queries.

After the function warm up() is called, the external program will use the function
query(left, right) to query the index of the minimum element in seq[left...right].
You should return the index of the minimum element within seq[left...right].
If [left, right] does not corresponds to a valid range, return -1 instead.

The indexes of the array follows the standard spec. Hence, they range from 0 to n− 1.

Requirements and Specs

The followings are additional requirements and specs you may assume.

� The allowed time complexities for the two functions warm up() and query() are
O(n) and O(1), respectively.

� The size of the static data is at most 107, i.e., you may assume that n ≤ 107.

� There will be at most 107 queries.

For your submission to be judged correctly, make sure that you adhere the following
requirements.

� Select the language “C++ - Function only” when submitting your program.

The file you submit must not contain the main function. Otherwise it will result in
a compilation error.

� You must include in your source file a line containing the following comment as an
identifier.

/* ProbId: D2-Optimal-RMQ */

Comments

You may assume, for example, the source code you submit will be compiled together with
the following sample C++ program.

#include <stdio.h>

void warm up(int[], int);

int query(int, int);

int A[3] = { 1, 2, 3 };
int main()

{
warm up(A,3);

query(0,2);

return 0;

}

Note that, the above is just an example. The actual external program may vary.

2

	D0-StringLength
	D1-Sequence-n-Trees
	D2-OptimalRMQ

