C1 - Maximum Flow - The Basic Version

Time Limit: 1 sec.

Problem Description

Implement the Ford-Fulkerson Algorithm and solve the max-flow problem for a given undirected network G = (V, E) with source s and sink t.

Input Format

The first line consists of two integers n and m, the number of vertices in V and the number of edges in E. The second line consists of two integers s and t, the source and sink vertices. Each of the following m lines consists of three integers u, v, c, which indicates that there is an edge between vertex u and vertex v and has capacity w.

You may assume that

- The vertices are numbered from 0 to n-1.
- $2 \le n \le 100$.
- 0 < m < 1000.
- The capacity of the edges is between 0 and 100.

Output Format

Print the value of the maximum s-t flow.

Sample Input

4 3

1 3

0 1 2

2 3 1

1 2 2

Sample Output

1

Note.

This is the basic version of C3, and it is okay if you directly submit the program for C3 to this problem.

C2 - Maximum Flow

Time Limit: 1 sec.

Problem Description

Implement the Ford-Fulkerson Algorithm and solve the max-flow problem for a given undirected network G = (V, E) with source s and sink t.

Input Format

The first line consists of two integers n and m, the number of vertices in V and the number of edges in E. The second line consists of two integers s and t, the source and sink vertices. Each of the following m lines consists of three integers u, v, c, which indicates that there is an edge between vertex u and vertex v and has capacity w.

You may assume that

- The vertices are numbered from 0 to n-1.
- $2 \le n \le 100$.
- 0 < m < 1000.
- The capacity of the edges is between 0 and 10^7 .

Output Format

Print the value of the maximum s-t flow.

Sample Input

4 3

1 3

0 1 2

2 3 1

1 2 2

Sample Output

1

Note.

Be careful of **integer overflow** problem. This is the basic version of C3, and it is okay if you directly submit the program for C3 to this problem.

C3 - The Max-Flow Min-Cut Theorem

Time Limit: 1 sec.

Problem Description

Implement the Ford-Fulkerson Algorithm. Compute the max-flow and a min-cut for a given undirected network G = (V, E) with source s and sink t.

Input Format

The first line consists of two integers n and m, the number of vertices in V and the number of edges in E. The second line consists of two integers s and t, the source and sink vertices. Each of the following m lines consists of three integers u, v, c, which indicates that there is an edge between vertex u and vertex v and has capacity w.

You may assume that

- The vertices are numbered from 0 to n-1.
- $2 \le n \le 100$.
- 0 < m < 1000.
- The capacity of the edges is between 0 and 10^7 .

Output Format

Print the value of the maximum s-t flow in the first line. In the following lines, print the endpoints of the edges in a minimum s-t cut, separated by a space, one edge per line.

If there are multiple answers, you can print any of them.

Sample Input	Sample Output
4 4 0 3 0 1 2 0 2 1 1 3 2 2 3 2	3 0 1 0 2

Note.

Be careful of **integer overflow** problem. This is the basic version of C3, and it is okay if you directly submit the program for C3 to this problem.

C4 - Max-Flow Min-Cut - Adv Version

Time Limit: 1 sec.

Problem Description

Implement capacity scaling or Edmond-Karp Algorithm. Compute the max-flow and a min-cut for a given undirected network G = (V, E) with source s and sink t.

Input Format

The first line consists of two integers n and m, the number of vertices in V and the number of edges in E. The second line consists of two integers s and t, the source and sink vertices. Each of the following m lines consists of three integers u, v, c, which indicates that there is an edge between vertex u and vertex v and has capacity w.

You may assume that

- The vertices are numbered from 0 to n-1.
- $2 \le n \le 500$.
- 0 < m < 5000.
- The capacity of the edges is between 0 and 10^{16} .

Output Format

Print the value of the maximum s-t flow in the first line. In the following lines, print the endpoints of the edges in a minimum s-t cut, separated by a space, one edge per line.

If there are multiple answers, you can print any of them.

Sample Input	Sample Output
4 4 0 3 0 1 2 0 2 1 1 3 2 2 3 2	3 0 1 0 2