
B1 - Hungarian Algorithm in O(n4)

Time Limit: 1 sec.

Problem Description

Implement the Hungarian Algorithm that solves the min-cost perfect matching problem
in O(n4) time.

Input Format

The first line consists of an integer n, the size of the two partite sets in G. The next n
lines describe an n × n matrix, where the entry in the ith-row, jth-column denotes the
weight of the edge between the ith vertex in the left partite set and the jth vertex in the
right partite set.

You may assume that

� The vertices in the two partite sets are numbered from 0 to n− 1, respectively.

� 1 ≤ n ≤ 100.

� The weight of the edges is between 1 and 106.

Output Format

In the first line, print the total weight of the min-cost perfect matching for G. In the
following n lines, print the endpoints of the edges in the matching, separated by a space,
one edge per line.

If there are multiple answers, you can print any of them.

Sample Input

3

3 1 2

6 5 4

3 7 2

Sample Output

8

0 1

1 2

2 0



B2 - Hungarian Algorithm in O(n3)

Time Limit: 1 sec.

Problem Description

Implement the Hungarian Algorithm that solves the min-cost perfect matching problem
in O(n3) time.

Input Format

The first line consists of an integer n, the size of the two partite sets in G. The next n
lines describe an n × n matrix, where the entry in the ith-row, jth-column denotes the
weight of the edge between the ith vertex in the left partite set and the jth vertex in the
right partite set.

You may assume that

� The vertices in the two partite sets are numbered from 0 to n− 1, respectively.

� 1 ≤ n ≤ 500.

� The weight of the edges is between 1 and 106.

Output Format

In the first line, print the total weight of the min-cost perfect matching for G. In the
following n lines, print the endpoints of the edges in the matching, separated by a space,
one edge per line.

If there are multiple answers, you can print any of them.

Sample Input

3

3 1 2

6 5 4

3 7 2

Sample Output

8

0 1

1 2

2 0


	B1-Hugarian-Algo-on4
	B2-Hugarian-Algo-on3

