Problem 1 (20%). Let X, Y be discrete random variables. The variance of a random variable X is defined as $Var[X] := E[(X - E[X])^2]$. Prove that

Due: March 17^{st} , 2025.

- 1. $E[aX + bY] = a \cdot E[X] + b \cdot E[Y]$ for any constant a, b.
- 2. If X and Y are independent, then $E[X \cdot Y] = E[X] \cdot E[Y]$ and Var[X + Y] = Var[X] + Var[Y].
- 3. $Var[X] = E[X^2] E[X]^2$. Hint: Use the fact that $E[X \cdot E[X]] = E[X]^2$.

Problem 2 (20%). Consider the slides #2. Prove that the graphs H_i defined in the proof of Theorem 3 are bicliques.

Problem 3 (20%). For any integer $n \ge 1$, consider the grid points (r, c) with $1 \le r, c \le n$. Let C_n be the number of possible paths from (0,0) to (n,n) that use only \to and \uparrow and that never cross the diagonal r = c. See also the Figure (a) below. For convenience, define $C_0 := 1$.

For any integer $n \geq 2$, consider the convex (n+2)-gon with vertices labeled with $v_1, v_2, \ldots, v_{n+2}$. Let P_n denote the number of possible ways to triangulate the polygon. It follows that $P_2 = 2$, $P_3 = 5$, etc. For convenience, also define $P_0 := 1$ and $P_1 := 1$.

1. Prove that for any $n \geq 2$, P_n satisfies the recurrence

$$P_n = \sum_{0 \le k < n} P_k \cdot P_{n-k-1}.$$

2. Prove that for any $n \geq 2$, C_n satisfies the same recurrence

$$C_n = \sum_{0 \le k < n} C_k \cdot C_{n-k-1}.$$

Note that this proves that P_n also equals the n^{th} -Catalan number.

rk #2 Due: March 17^{st} , 2025.

Problem 4 (20%). Let \mathcal{F} be a family of subsets, where

$$|A| \ge 3$$
 for any $A \in \mathcal{F}$ and $|A \cap B| = 1$ for any $A, B \in \mathcal{F}, A \ne B$.

Suppose that \mathcal{F} is not 2-colorable. Let x, y be any elements that appear in \mathcal{F} , i.e., $x \in A \in \mathcal{F}$ and $y \in B \in \mathcal{F}$ for some $A, B \in \mathcal{F}$. Prove that:

- 1. x belongs to at least two members of \mathcal{F} .
- 2. There exists some $C \in \mathcal{F}$ such that $\{x, y\} \subseteq C$.

Hint: Construct proper coloring to prove the properties. For (1), consider a particular A with $x \in A \in \mathcal{F}$. Color $A \setminus \{x\}$ red and the remaining blue. Show that this leads to the conclusion of (1). For (2), consider particular A, B with $x \in A \in \mathcal{F}$ and $y \in B \in \mathcal{F}$. Color $(A \cup B) \setminus \{x, y\}$ red and the remaining blue. Prove that it leads to (2).

Problem 5 (20%). Let $G = (A \cup B, E)$ be a bipartite graph, d be the minimum degree of vertices in A and D the maximum degree of vertices in B. Assume that $|A|d \ge |B|D$.

Show that, for every subset $A_0 \subseteq A$ with the density α defined as $\alpha := |A_0|/|A|$, there exists a subset $B_0 \subseteq B$ such that:

- 1. $|B_0| \ge \alpha \cdot |B|/2$,
- 2. every vertex of B_0 has at least $\alpha D/2$ neighbors in A_0 , and
- 3. at least half of the edges leaving A_0 go to B_0 .

Hint: Let B_0 consist of all vertices in B that have at least $\alpha D/2$ neighbors in A_0 . First prove (3) and then (1).