Combinatorial Mathematics

Mong-Jen Kao (5 % 54)

Monday 18:30 — 21:20

Outline

m The Weak-Duality between Matching and Cover

m The Hungarian Algorithm for Weighted Bipartite Matching
- General Properties
- Simple 0(n*)-time implementation

- Sketch of 0(n3)-time implementation

m Concluding Notes

- Maximum Weight Matching in General Graphs

The Weak Duality between

Maximum Matching & Minimum Cover

The weight of minimum vertex cover
Is always at least the weight of maximum matching.

The Maximum-Weight Matching Problem

m Input:

- Agraph ¢ = (V,E) with edge weight w,, ,, for all (u,v) € E.

m Output :

- A matching M € E that has the maximum weight among
all possible matchings in G.

m Thatis, Y .cyWe = X.cpr We holds for all matching M’ in G.

The Minimum-Weight Vertex Cover Problem

m Input:

- Agraph ¢ = (V, E) with edge weight w,, ,, for all (u,v) € E.

N

-

m Definition. ((Weighted) Vertex Cover)

- Alabel (function) y : ¥V — R Is a vertex cover for G, if

Yu + ¥y, = wy, holds for all (u,v) € E.

- w(y) = zyv Is defined to be the weight of y.

\\ VeV j

The Minimum-Weight Vertex Cover Problem

m Input:

- Agraph ¢ = (V, E) with edge weight w,, ,, for all (u,v) € E.

m Output :

- Avertex cover y for G that has the minimum weight among
all possible vertex covers for G.

m Thatis,), cy vy < D,ev ¥y holds all vertex cover y’ for G.

Lemma 1. (Weak-Duality between Matching and Vertex Cover)

Let G = (V,E) be a graph with edge weight w, for all e € E,
M be a matching, and y be a vertex cover for G.

Then, w(y) = w(M), i.e., 2 2
Yo = We .

vev eeM

m The proof for Lemma 1 is straightforward.

- Since the endpoints of edges in M are distinct, we obtain

Zyv > z O +w) = Zwe-

VEV (u,v)eM eeM

Remarks.

m Lemma 1 implies that,

- Ifw(y) = w(M) holds for some M and y, then
they are both optimal.

- In this case,
we say that M and y witnesses the optimality of each other.

m The duality between matching and cover can appear in different
forms for different problem models.

- In this lecture, we examine the case on edge-weighted graphs.

The Weighted Matching Problem

In Bipartite Graphs

The Maximum Weight Bipartite Matching Problem

m Input:

- Abipartite graph ¢ = (V, E) with partite sets A and B and
edge weight w; ; e Rfori € A,j € B.

m Output :

- A matching M € E that has the maximum weight among
all possible matchings in G.

Assumptions

m Without loss of generality, we may assume that...

- |A| = |B|, and G is a complete bipartite graph.

m If not, we add redundant vertices and

edges with sufficiently small weight to make it so.

m For example, the weight n := rrleigl w, — 1 will do.
e

Add redundant vertices and edges,
Assumptlons so that |A’| = |B’|, and G’ is complete bipartite.

, N
G G New edges

have weight

: nzzrglécr;lwe—l.)

m \Without loss of generality, we may assume that...

|A| = |B]|, and G Is a complete bipartite graph.

If not, we add redundant vertices and
edges with sufficiently small weight to make it so.

For example, the weight n = mel(r;l w, — 1 will do.
e

Sincen < mei(r;l w,, It IS never better to replace an existing
e

edge with a redundant edge.

[—

-

\

Hence, a maximum weight matching in G corresponds to
a maximum weight matching in the new graph G’, and vice versa.

/

Assumptions

m |n conclusion, we may assume that
- |Al = |B|,
- G I1scomplete bipartite, and

- The goal is to compute a maximum weight perfect matching,

l.e., a maximum-weight matching such that
every vertex in the graph is matched.

Remark.

m The considered problem is also equivalent to the minimum

weight perfect matching problem.

- When a minimum weight perfect matching is sought,

!

then we take w; ;

and solve the maximum weight perfect matching problem.

A minimum weight perfect matching w.r.t. w is
a maximum weight perfect matching w.r.t. w’, and vice versa.

The Hungarian Algorithm

for Weighted Bipartite Matching

The Hungarian algorithm solves the problem
via Primal-Duality of matching and cover.

The Hungarian Algorithm

m The algorithm starts with a trivial M and y.

- In each iteration,
the algorithm either improves M or y until their weights are equal.

m The algorithm starts with a trivial M and y.

- In each iteration,
the algorithm either improves M or y until their weights are equal.

The best vertex cover }

[The best matching

w(M,) w(M,) w(My)

> [/ >

M, M, M

w(y1) w(¥o)

&, &,

|
|
M*iy*

The Hungarian Algorithm

m The algorithm starts with a trivial M and y.

- In each iteration,
the algorithm either improves M or y until their weights are equal.

m We keep improving M,
until it becomes unclear how M can be further improved.

m Then we guarantee that,
there must be a clear way to improve y.

The Hungarian Algorithm

m The Hungarian algorithm solves the weighted bipartite matching

problem in 0(n3) time.

- We will first introduce the algorithm framework, which can be
implemented in a simple way to run in 0(n*) time.
- Then we describe the 0(n®) implementation of the algorithm.

m It's more sophisticated, but
can still be implemented in a nice and clean way.

Key Notions and Properties

Defined according to the current y.

Equality Subgraph G,
m Let y be a vertex cover for the input graph G.
- Define the equality subgraph G, = (V, E,) to be the graph with

m \VertexsetVlV

m Edge set
) Ey:={(u»v) :yu+3’v=Wu,v}-

Intuitively, two vertices u and v are connected in G, if and only If
the weight y uses to cover the edge (u,v) Is the least possible.

Uy Uy A
8
G 2 8 Gy
18 .
V1 v,
12 2
Yu, =6, Yu, =6, m If there exists a perfect matching,
Yo, =12,y =2, say, M, in G,,

then w(M) = w(y) must hold, and
both y and M are optimal for G.

The Goal — Looking for a Perfect Matching in G,

m If we have a perfect matching for the equality subgraph G,,,
then w(M) = w(y) must hold,

and both M and y are optimal by Lemma 1.

- Hence, it suffices to come up with a vy,
such that G, has a perfect matching.

- How do we make this happen?

The Goal — Looking for a Perfect Matching in G,

m Suppose that we have a vertex cover y and a matching M
in the equality graph G,,.

- Let U € A be the set of unmatched vertices in A

and U’ # @ be an arbitrary nonempty subset of U.

- Explore for M-augmenting paths for vertices in U’ in G,,.
m If found, then the size of M can be increased by 1.

m If not...

- Consider a set U’ of unmatched vertices.
If there exists no M-augmenting path for U’ in G, then...

m Let S be the set of vertices in A that are reachable from U’
via M-alternating paths.

m Let T be the set of vertices to which vertices in S\U’ are
matched by M.

Observations

m Since |U’| > 0, it follows that |S| > |T]|.

m By the definition of S and T,

_ _ By adjusting the vertex
there is no edge between S and B\T In G,,.

cover y properly.

- In order to form an augmenting path for U’
we need to create at least one edge between them.

% while maintaining its feasibllity.

Adjusting the Cover y

m For such an edge, say, (a, b), to appear in the equality graph G,
where a € S, b € B\T,

Yq + yp Needs to be decreased by the amount (y, + y5) — wgp.

S a We call this the “slack” of
4 . ? ﬂ\ .\ ’\z}/*\ Q edge (a, b).

‘ This suggests the following procedure for adjusting y.

m Define € = glel:p (ya + Vp — Wa,b) :

bEB\T e is the minimum “slack” of

the edges between S and B\T.

m Observe that, if we

- Decrease y, by € for all a € S,

- Increase y, by eforall b € T, The resulting y is still a valid

vertex cover for G.

T More vertices can be
+e€ reached from U’
m Then, via alternating paths.
. S

) /

- At least one edge between S and B\T will appear In G,,.

- Both the edges between S and T and Al the matched
the edges between A\S and B\T are unaffected. \ edges remain in G,.

m We lose the edges between A\S and T. ﬁ These edges play no role in M. \

So, we don’t care.

The Adjusting Procedure on y w.r.t. U’

m Define € = Elneisn (ya + Vp — Wa,b))

beB\T

m Decrease y, by € for all a € S and increase y, by e forall b € T.
Then,

-y remains a valid vertex cover for G.
- The edges in M remain in G,,.

- More vertices can be reached from U’ via M-alternating paths.

m Since |S| > |T|, w(y) is strictly decreased by € - |[U’].

Looking for an Augmenting Path in G,

m When y is adjusted,
at least one edge between S and B\T appears anew in G,,.
m Then, we continue to explore for M-augmenting paths for U’.
- If found, the size of M can be increased by 1.

- If not, we repeat the above procedure and adjust y
until an M-augmenting path is found for some vertex in U’.

Description of the Algorithm

The

lungarian Algorithm

m The algorithm starts with
M = {@} and y defined as

fmaxwvb, ifv e A,
beEB

Yy = Ao

\ 0, if v € B.

= maxw
Vv beh v,b

It is easy to verify that
the initial y is a feasible
vertex cover for G.

m Repeat the following, until |M| = n.
- Pick an unmatched vertex v € A.

- Repeat the following,
until an M-augmenting path P for v in G, is found.

m S < vertices in A, reachable from v via M-alternating paths in G,,.

T «— vertices in B, to which vertices in S\{v} are matched by M.
m Compute € = aESr,r}ylenB\T (ya +yp — Wa’b).
Decrease y, by € for all v € S and increase y,, by e forall v € T.
- Use P to match v and increase |M| by 1.

m Output M and y.

m The algorithm starts with a trivial M and y.

- In each iteration,
the algorithm either improves M or y until their weights are equal.

The best vertex cover }

[The best matching

w(M,) w(M;) w(M,)

> [/ >

M M, M;

w(y1) w(¥o)

&, &

|
|
M*iy*

Correctness of the Algorithm

m By the previous observation, when an M-augmenting path is not

found, the current y can be improved, and |T| strictly increases.

- Since T € B, an augmenting path can be found
in O(|B|) = 0(n) number of updates on y.

- Hence, the size of M can be increased until |[M| = n.

In this case, M Is a perfect matching in G,,, and
both M and y are optimal.

Time Complexity of the Algorithm

m |t takes n iterations to compute a perfect matching.

- For each of the iteration, y is updated 0(n) times.

- Intotal, it takes 0(n?) updates on M and y before the
algorithm terminates.

m If we use a straightforward way for updating y in O(nz) time,
then the algorithm takes 0(n*) time.

- Later we will see that, the Hungarian algorithm can be

implemented to run in 0(n3) time.

Simple 0(n*) Time Implementation

lungarian Algorithm in 0(n*) Time.

m If we use the recursive procedure Aug-Path() from Slides #8,

then the implementation is very simple, done as follows.

m For each unmatched vertex u € A, do the following.
1. Mark all vertices as unvisited.

2. Repeat the following,
until the procedure Aug-Path(u) on G, = (V, E,) returns true.

m Adjust y.

m Remark all vertices as unvisited.

lungarian Algorithm in 0(n*) Time.

m Since the Procedure Aug-Path() takes 0(n?) time,
this implementation takes 0(n*) time.

m Note that, we don’t need to construct Gy .

- It suffices to traverse only tight edges during DFS or BFS.

m Also note that, the set S and T needed to update y is already
given by the information stored during the calls to Aug-Path()
(l.e., DFS or BFS).

Just need to figure it out carefully.

Sketch of

the 0(n3) Time Implementation

Hungarian Algorithm in 0(n?) Time.

m Consider the algorithm framework in P.37.
To make the algorithm run in 0(n3) time,

it is crucial that each iteration needs to be done in 0(n?) time.

- Since DFS or BFS already takes 0(n?) time, it is important to
continue from the currently unfinished exploration each time

when y Is updated, rather than restarting a new traversal.

- Since y can be updated 0(n) times,
the computation of € needs to be done in 0(n) time.

Computing € in O(n) Time \ AN

\\t\: ~</ N \"\ N
\\/t: ~ \\\\\\\\\ AN
N N // \::\::\\\\:\\ \\\
\ L8 \ \:\\ \\\\ N
P S T N N
m Recallthat e = min (y, + v, — wap). TCe o o> e
a€s, beB\T ’ b

- To speed up the computation, we define for each b € B\T

a slack variable
£(b) = min (Vo + ¥p = Wap) -

- Then € can be computed in 0(n) time when needed, i.e.,

€ brgé{le(b) '

- The total time we spent for computing € in each iteration is O(nz).

Computing € in O(n) Time

- Define for each b € B\T a slack variable

£(b) == min (ya + ¥p — Wap) -

- The values ¢(b) for all b € B\T need to be updated, each time

when a new vertex is added to the set S during DFS or BFS.

m This can be done in 0(n) time for each of such updates.

m The total time it takes to update the values of #(b)
in each iteration is 0(n?).

Concluding Notes

Maximum Weight Matching in Bipartite Graphs

m In this lecture, we introduced the Hungarian algorithm that solves the
maximum weight matching and minimum weight vertex cover

problems in bipartite graphs.

m The algorithm is also a constructive proof on the strong duality
between matching and cover in bipartite graphs.

- Thatis, w(M*) = w(y*) must hold for any bipartite graph,
whereas M™* and y* are the optimal matching and vertex cover.

Maximum Weight Matching in General Graphs

m Itis easy to see that, for general graphs,
we do not have the strong duality between matching and vertex cover.

- There are simple examples for which w(M™*) < w(y™).

m |n fact, computing a minimum weight vertex cover in general graphs
IS an NP-hard problem.

Maximum Weight Matching in General Graphs

m However, strong duality still exists between matching and some
combinatorial object, and it leads to a polynomial time algorithm.

m The maximum weight matching in general graphs can be computed
by the Edmonds’ Path-Tree-Flower algorithm in 0(n?m) = 0(n*)

time.
- The running time can be improved to 0(nmlogn) = 0(n3logn).

- Itis a generalization of the Blossom algorithm.

