
Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 21:20

Outline

■ The Weak-Duality between Matching and Cover

■ The Hungarian Algorithm for Weighted Bipartite Matching

– General Properties

– Simple 𝑂 𝑛4 -time implementation

– Sketch of 𝑂 𝑛3 -time implementation

■ Concluding Notes

– Maximum Weight Matching in General Graphs

The Weak Duality between

Maximum Matching & Minimum Cover

The weight of minimum vertex cover

is always at least the weight of maximum matching.

■ Input :

– A graph 𝐺 = (𝑉, 𝐸) with edge weight 𝑤𝑢,𝑣 for all (𝑢, 𝑣) ∈ 𝐸.

■ Output :

– A matching 𝑀 ⊆ 𝐸 that has the maximum weight among

all possible matchings in 𝐺.

■ That is, σ𝑒∈𝑀𝑤𝑒 ≥ σ𝑒∈𝑀′𝑤𝑒 holds for all matching 𝑀′ in 𝐺.

The Maximum-Weight Matching Problem

The Minimum-Weight Vertex Cover Problem

■ Input :

– A graph 𝐺 = (𝑉, 𝐸) with edge weight 𝑤𝑢,𝑣 for all (𝑢, 𝑣) ∈ 𝐸.

■ Definition. ((Weighted) Vertex Cover)

– A label (function) 𝑦 ∶ 𝑉 ⟶ ℝ is a vertex cover for 𝐺, if

𝑦𝑢 + 𝑦𝑣 ≥ 𝑤𝑢,𝑣 holds for all 𝑢, 𝑣 ∈ 𝐸.

– is defined to be the weight of 𝑦.𝑤 𝑦 ≔ ෍

𝑣∈𝑉

𝑦𝑣

■ Input :

– A graph 𝐺 = (𝑉, 𝐸) with edge weight 𝑤𝑢,𝑣 for all (𝑢, 𝑣) ∈ 𝐸.

■ Output :

– A vertex cover 𝑦 for 𝐺 that has the minimum weight among

all possible vertex covers for 𝐺.

■ That is, σ𝑣∈𝑉 𝑦𝑣 ≤ σ𝑣∈𝑉 𝑦𝑣
′ holds all vertex cover 𝑦′ for 𝐺.

The Minimum-Weight Vertex Cover Problem

■ The proof for Lemma 1 is straightforward.

– Since the endpoints of edges in 𝑀 are distinct, we obtain

෍

𝑣∈𝑉

𝑦𝑣 ≥ ෍

𝑢,𝑣 ∈𝑀

𝑦𝑢 + 𝑦𝑣 ≥ ෍

𝑒∈𝑀

𝑤𝑒 .

Lemma 1. (Weak-Duality between Matching and Vertex Cover)

Let 𝐺 = 𝑉, 𝐸 be a graph with edge weight 𝑤𝑒 for all 𝑒 ∈ 𝐸,

𝑀 be a matching, and 𝑦 be a vertex cover for 𝐺.

Then, 𝑤 𝑦 ≥ 𝑤 𝑀 , i.e.,
෍

𝑣∈𝑉

𝑦𝑣 ≥ ෍

𝑒∈𝑀

𝑤𝑒 .

■ Lemma 1 implies that,

– If 𝑤 𝑦 = 𝑤 𝑀 holds for some 𝑀 and 𝑦, then

they are both optimal.

– In this case,

we say that 𝑀 and 𝑦 witnesses the optimality of each other.

■ The duality between matching and cover can appear in different

forms for different problem models.

– In this lecture, we examine the case on edge-weighted graphs.

Remarks.

The Weighted Matching Problem

in Bipartite Graphs

■ Input :

– A bipartite graph 𝐺 = (𝑉, 𝐸) with partite sets 𝑨 and 𝑩 and

edge weight 𝑤𝑖,𝑗 ∈ ℝ for 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵.

■ Output :

– A matching 𝑀 ⊆ 𝐸 that has the maximum weight among

all possible matchings in 𝐺.

The Maximum Weight Bipartite Matching Problem

■ Without loss of generality, we may assume that…

– |𝐴| = |𝐵|, and 𝐺 is a complete bipartite graph.

■ If not, we add redundant vertices and

edges with sufficiently small weight to make it so.

■ For example, the weight 𝜂 ≔ min
𝑒∈𝐺

𝑤𝑒 − 1 will do.

Assumptions

Assumptions

𝐴

𝐵

2

8

𝐴′ 𝐵′

Add redundant vertices and edges,

so that 𝐴′ = 𝐵′ , and 𝐺′ is complete bipartite.

New edges

have weight

𝜂 ≔ min
𝑒∈𝐺

𝑤𝑒 − 1.

𝐺′𝐺

■ Without loss of generality, we may assume that…

– |𝐴| = |𝐵|, and 𝐺 is a complete bipartite graph.

■ If not, we add redundant vertices and

edges with sufficiently small weight to make it so.

■ For example, the weight 𝜂 ≔ min
𝑒∈𝐺

𝑤𝑒 − 1 will do.

■ Since 𝜂 < min
𝑒∈𝐺

𝑤𝑒, it is never better to replace an existing

edge with a redundant edge.

Hence, a maximum weight matching in 𝐺 corresponds to

a maximum weight matching in the new graph 𝐺′, and vice versa.

■ In conclusion, we may assume that

– 𝑨 = 𝑩 ,

– 𝐺 is complete bipartite, and

– The goal is to compute a maximum weight perfect matching,

i.e., a maximum-weight matching such that

every vertex in the graph is matched.

Assumptions

■ The considered problem is also equivalent to the minimum

weight perfect matching problem.

– When a minimum weight perfect matching is sought,

then we take 𝑤𝑖,𝑗
′ = −𝑤𝑖,𝑗

and solve the maximum weight perfect matching problem.

Remark.

A minimum weight perfect matching w.r.t. 𝑤 is

a maximum weight perfect matching w.r.t. 𝑤′, and vice versa.

The Hungarian Algorithm

for Weighted Bipartite Matching

The Hungarian algorithm solves the problem

via Primal-Duality of matching and cover.

■ The algorithm starts with a trivial 𝑀 and 𝑦.

– In each iteration,

the algorithm either improves 𝑀 or 𝑦 until their weights are equal.

The Hungarian Algorithm

𝑀0

𝑤 𝑀0

𝑀1

𝑤 𝑀1

𝑦0

𝑤 𝑦0

■ The algorithm starts with a trivial 𝑀 and 𝑦.

– In each iteration,

the algorithm either improves 𝑀 or 𝑦 until their weights are equal.

𝑀0

𝑤 𝑀0

𝑀1

𝑤 𝑀1

𝑀2

𝑤 𝑀2

𝑦0

𝑤 𝑦0

𝑦1

𝑤 𝑦1
𝑴∗ 𝒚∗

The best matching
The best vertex cover

■ The algorithm starts with a trivial 𝑀 and 𝑦.

– In each iteration,

the algorithm either improves 𝑀 or 𝑦 until their weights are equal.

■ We keep improving 𝑀,

until it becomes unclear how 𝑀 can be further improved.

■ Then we guarantee that,

there must be a clear way to improve 𝑦.

The Hungarian Algorithm

■ The Hungarian algorithm solves the weighted bipartite matching

problem in 𝑂 𝑛3 time.

– We will first introduce the algorithm framework, which can be

implemented in a simple way to run in 𝑂 𝑛4 time.

– Then we describe the 𝑂 𝑛3 implementation of the algorithm.

■ It’s more sophisticated, but

can still be implemented in a nice and clean way.

The Hungarian Algorithm

Key Notions and Properties

Equality Subgraph 𝐺𝑦

■ Let 𝑦 be a vertex cover for the input graph 𝐺.

– Define the equality subgraph 𝐺𝑦 = (𝑉, 𝐸𝑦) to be the graph with

■ Vertex set 𝑉

■ Edge set
𝐸𝑦 ≔ 𝑢, 𝑣 ∶ 𝑦𝑢 + 𝑦𝑣 = 𝑤𝑢,𝑣 .

Intuitively, two vertices 𝑢 and 𝑣 are connected in 𝐺𝑦 if and only if

the weight 𝑦 uses to cover the edge (𝑢, 𝑣) is the least possible.

Defined according to the current 𝑦.

■ If there exists a perfect matching,

say, 𝑀, in 𝐺𝑦,

then 𝑤 𝑀 = 𝑤 𝑦 must hold, and

both 𝑦 and 𝑀 are optimal for 𝐺.

𝑦𝑢1 = 6, 𝑦𝑢2 = 6,

𝑦𝑣1 = 12, 𝑦𝑣2 = 2,

2

𝑣1 𝑣2

𝑢1 𝑢2

8

18

8

𝟏𝟐

𝟔

𝟐

𝟔

𝐺 𝐺𝑦

𝐴

𝐵

The Goal – Looking for a Perfect Matching in 𝐺𝑦

■ If we have a perfect matching for the equality subgraph 𝐺𝑦,

then 𝑤 𝑀 = 𝑤 𝑦 must hold,

and both 𝑀 and 𝑦 are optimal by Lemma 1.

– Hence, it suffices to come up with a 𝑦,

such that 𝐺𝑦 has a perfect matching.

– How do we make this happen?

The Goal – Looking for a Perfect Matching in 𝐺𝑦

■ Suppose that we have a vertex cover 𝑦 and a matching 𝑀

in the equality graph 𝐺𝑦.

– Let 𝑈 ⊆ 𝐴 be the set of unmatched vertices in 𝐴

and 𝑈′ ≠ ∅ be an arbitrary nonempty subset of 𝑈.

– Explore for 𝑀-augmenting paths for vertices in 𝑈′ in 𝐺𝑦.

■ If found, then the size of 𝑀 can be increased by 1.

■ If not…

– Consider a set 𝑈′ of unmatched vertices.

If there exists no 𝑀-augmenting path for 𝑈′ in 𝐺𝑦, then…

■ Let 𝑆 be the set of vertices in 𝐴 that are reachable from 𝑈′

via 𝑀-alternating paths.

■ Let 𝑇 be the set of vertices to which vertices in 𝑆\𝑈′ are

matched by 𝑀.

𝐺𝑦

𝑈′ 𝑆
𝐴

𝐵
𝑇

■ Since 𝑈′ > 0, it follows that 𝑆 > 𝑇 .

■ By the definition of 𝑆 and 𝑇,

there is no edge between 𝑆 and 𝐵\T in 𝐺𝑦.

– In order to form an augmenting path for 𝑈′,

we need to create at least one edge between them.

Observations

𝑈′ 𝑆
𝐴

𝐵
𝑇

By adjusting the vertex

cover 𝑦 properly.

■ For such an edge, say, (𝑎, 𝑏), to appear in the equality graph 𝐺𝑦,

where 𝑎 ∈ 𝑆, 𝑏 ∈ 𝐵\T,

𝑦𝑎 + 𝑦𝑏 needs to be decreased by the amount 𝑦𝑎 + 𝑦𝑏 −𝑤𝑎,𝑏.

Adjusting the Cover 𝑦

𝒃

This suggests the following procedure for adjusting 𝑦.

𝑈′ 𝑆
𝐴

𝐵
𝑇

𝒂 We call this the “slack” of

edge 𝑎, 𝑏 .

while maintaining its feasibility.

■ Define 𝜖 = min
𝑎∈𝑆,
𝑏∈𝐵\T

𝑦𝑎 + 𝑦𝑏 −𝑤𝑎,𝑏 .

■ Observe that, if we

– Decrease 𝑦𝑎 by 𝜖 for all 𝑎 ∈ 𝑆,

– Increase 𝑦𝑏 by 𝜖 for all 𝑏 ∈ 𝑇,

+𝝐

−𝝐

𝜖 is the minimum “slack” of

the edges between 𝑆 and 𝐵\T.

The resulting 𝑦 is still a valid

vertex cover for 𝐺.

𝑈′ 𝑆
𝐴

𝐵
𝑇

■ Then,

– At least one edge between 𝑆 and 𝐵\T will appear in 𝐺𝑦.

– Both the edges between 𝑆 and 𝑇 and

the edges between 𝐴\S and 𝐵\T are unaffected.

■ We lose the edges between 𝐴\S and 𝑇.

More vertices can be

reached from 𝑈′

via alternating paths.

All the matched

edges remain in 𝐺𝑦.

These edges play no role in 𝑀.

So, we don’t care.

+𝝐

−𝝐

𝑈′ 𝑆
𝐴

𝐵
𝑇

■ Define 𝜖 = min
𝑎∈𝑆,
𝑏∈𝐵\T

𝑦𝑎 + 𝑦𝑏 − 𝑤𝑎,𝑏 .

■ Decrease 𝑦𝑎 by 𝜖 for all 𝑎 ∈ 𝑆 and increase 𝑦𝑏 by 𝜖 for all 𝑏 ∈ 𝑇.

Then,

– 𝑦 remains a valid vertex cover for 𝐺.

– The edges in 𝑀 remain in 𝐺𝑦.

– More vertices can be reached from 𝑈′ via 𝑀-alternating paths.

■ Since 𝑆 > |𝑇|, 𝑤 𝑦 is strictly decreased by 𝜖 ⋅ 𝑈′ .

The Adjusting Procedure on 𝑦 w.r.t. 𝑈′

■ When 𝑦 is adjusted,

at least one edge between 𝑆 and 𝐵\T appears anew in 𝐺𝑦.

■ Then, we continue to explore for 𝑀-augmenting paths for 𝑈′.

– If found, the size of 𝑀 can be increased by 1.

– If not, we repeat the above procedure and adjust 𝑦

until an 𝑀-augmenting path is found for some vertex in 𝑈′.

Looking for an Augmenting Path in 𝐺𝑦

Description of the Algorithm

■ The algorithm starts with

𝑀 = ∅ and 𝑦 defined as

𝑦𝑣 ≔ ൞

max
𝑏∈𝐵

𝑤𝑣,𝑏 , if 𝑣 ∈ 𝐴,

0, if 𝑣 ∈ 𝐵.

The Hungarian Algorithm

It is easy to verify that

the initial 𝑦 is a feasible

vertex cover for 𝐺.

𝑣

𝑦𝑣 ≔ max
𝑏∈𝐵

𝑤𝑣,𝑏

0 0 0

■ Repeat the following, until 𝑀 = 𝑛.

– Pick an unmatched vertex 𝑣 ∈ 𝐴.

– Repeat the following,

until an 𝑀-augmenting path 𝑃 for 𝑣 in 𝐺𝑦 is found.

■ 𝑆 ⟵ vertices in 𝐴, reachable from 𝑣 via 𝑀-alternating paths in 𝐺𝑦.

𝑇 ⟵ vertices in 𝐵, to which vertices in 𝑆\ 𝑣 are matched by 𝑀.

■ Compute 𝜖 = min
𝑎∈𝑆, 𝑏∈𝐵\T

𝑦𝑎 + 𝑦𝑏 −𝑤𝑎,𝑏 .

Decrease 𝑦𝑣 by 𝜖 for all 𝑣 ∈ 𝑆 and increase 𝑦𝑣 by 𝜖 for all 𝑣 ∈ 𝑇.

– Use 𝑃 to match 𝑣 and increase 𝑀 by 1.

■ Output 𝑀 and 𝑦.

■ The algorithm starts with a trivial 𝑀 and 𝑦.

– In each iteration,

the algorithm either improves 𝑀 or 𝑦 until their weights are equal.

𝑀0

𝑤 𝑀0

𝑀1

𝑤 𝑀1

𝑀2

𝑤 𝑀2

𝑦0

𝑤 𝑦0

𝑦1

𝑤 𝑦1
𝑴∗ 𝒚∗

The best matching
The best vertex cover

■ By the previous observation, when an 𝑀-augmenting path is not

found, the current 𝑦 can be improved, and 𝑇 strictly increases.

– Since 𝑇 ⊆ 𝐵, an augmenting path can be found

in 𝑂 𝐵 = 𝑂 𝑛 number of updates on 𝑦.

– Hence, the size of 𝑀 can be increased until 𝑀 = 𝑛.

In this case, 𝑀 is a perfect matching in 𝐺𝑦, and

both 𝑀 and 𝑦 are optimal.

Correctness of the Algorithm

■ It takes 𝑛 iterations to compute a perfect matching.

– For each of the iteration, 𝑦 is updated 𝑂 𝑛 times.

– In total, it takes 𝑂 𝑛2 updates on 𝑀 and 𝑦 before the

algorithm terminates.

■ If we use a straightforward way for updating 𝑦 in 𝑂 𝑛2 time,

then the algorithm takes 𝑂 𝑛4 time.

– Later we will see that, the Hungarian algorithm can be

implemented to run in 𝑂 𝑛3 time.

Time Complexity of the Algorithm

Simple 𝑂 𝑛4 Time Implementation

■ If we use the recursive procedure Aug-Path() from Slides #8,

then the implementation is very simple, done as follows.

■ For each unmatched vertex 𝑢 ∈ 𝐴, do the following.

1. Mark all vertices as unvisited.

2. Repeat the following,

until the procedure Aug-Path(u) on 𝐺𝑦 = 𝑉, 𝐸𝑦 returns true.

■ Adjust 𝑦.

■ Remark all vertices as unvisited.

Hungarian Algorithm in 𝑂 𝑛4 Time.

■ Since the Procedure Aug-Path() takes 𝑂 𝑛2 time,

this implementation takes 𝑂 𝑛4 time.

■ Note that, we don’t need to construct 𝐺𝑦.

– It suffices to traverse only tight edges during DFS or BFS.

■ Also note that, the set 𝑆 and 𝑇 needed to update 𝑦 is already

given by the information stored during the calls to Aug-Path()

(i.e., DFS or BFS).

Hungarian Algorithm in 𝑂 𝑛4 Time.

Just need to figure it out carefully.

Sketch of

the 𝑂 𝑛3 Time Implementation

■ Consider the algorithm framework in P.37.

To make the algorithm run in 𝑂 𝑛3 time,

it is crucial that each iteration needs to be done in 𝑂 𝑛2 time.

– Since DFS or BFS already takes 𝑂 𝑛2 time, it is important to

continue from the currently unfinished exploration each time

when 𝑦 is updated, rather than restarting a new traversal.

– Since 𝑦 can be updated 𝑂 𝑛 times,

the computation of 𝜖 needs to be done in 𝑂 𝑛 time.

Hungarian Algorithm in 𝑂 𝑛3 Time.

■ Recall that 𝜖 = min
𝑎∈𝑆, 𝑏∈𝐵\T

𝑦𝑎 + 𝑦𝑏 − 𝑤𝑎,𝑏 .

– To speed up the computation, we define for each 𝑏 ∈ 𝐵\T

a slack variable
ℓ 𝑏 ≔ min

𝑎∈𝑆
𝑦𝑎 + 𝑦𝑏 −𝑤𝑎,𝑏 .

– Then 𝜖 can be computed in 𝑂 𝑛 time when needed, i.e.,

𝜖 = min
𝑏∈𝐵\T

ℓ(𝑏) .

– The total time we spent for computing 𝜖 in each iteration is 𝑂 𝑛2 .

Computing 𝜖 in 𝑂 𝑛 Time

𝑆

𝑇
𝑏

– Define for each 𝑏 ∈ 𝐵\T a slack variable

ℓ 𝑏 ≔ min
𝑎∈𝑆

𝑦𝑎 + 𝑦𝑏 − 𝑤𝑎,𝑏 .

– The values ℓ 𝑏 for all 𝑏 ∈ 𝐵\T need to be updated, each time

when a new vertex is added to the set 𝑆 during DFS or BFS.

■ This can be done in 𝑂 𝑛 time for each of such updates.

■ The total time it takes to update the values of ℓ 𝑏

in each iteration is 𝑂 𝑛2 .

Computing 𝜖 in 𝑂 𝑛 Time
𝑆

𝐵\T

Concluding Notes

■ In this lecture, we introduced the Hungarian algorithm that solves the

maximum weight matching and minimum weight vertex cover

problems in bipartite graphs.

■ The algorithm is also a constructive proof on the strong duality

between matching and cover in bipartite graphs.

– That is, 𝑤 𝑀∗ = 𝑤 𝑦∗ must hold for any bipartite graph,

whereas 𝑀∗ and 𝑦∗ are the optimal matching and vertex cover.

Maximum Weight Matching in Bipartite Graphs

■ It is easy to see that, for general graphs,

we do not have the strong duality between matching and vertex cover.

– There are simple examples for which 𝑤 𝑀∗ < 𝑤 𝑦∗ .

■ In fact, computing a minimum weight vertex cover in general graphs

is an NP-hard problem.

Maximum Weight Matching in General Graphs

1

1

1

■ However, strong duality still exists between matching and some

combinatorial object, and it leads to a polynomial time algorithm.

■ The maximum weight matching in general graphs can be computed

by the Edmonds’ Path-Tree-Flower algorithm in 𝑂 𝑛2𝑚 = 𝑂 𝑛4

time.

– The running time can be improved to 𝑂 𝑛𝑚 log 𝑛 = 𝑂 𝑛3 log 𝑛 .

– It is a generalization of the Blossom algorithm.

Maximum Weight Matching in General Graphs

