Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 21:20

Outline

- The Maximum Matching Problem
 - A Generic Algorithm and the Berge's Theorem
 - Solving the Augmenting Path Problem
 - DFS-based & BFS-based Algorithms for Bipartite Graphs
 - The Blossom Algorithm for General Graphs
- Concluding Notes
 - The best algorithms for Maximum Matching

Characterization of Bipartite Graphs

Identify the two partite sets of a bipartite graph when it is not given.

Characterization of Bipartite Graphs

■ The following theorem is simple and intuitive to prove.

Theorem. (Characterization of Bipartite Graphs)

A graph G = (V, E) is bipartite if and only if it has a 2-coloring, i.e., a 2-coloring for V such that no edge $e \in E$ is monochromatic.

- Note that, the 2-colorability of G can be tested by a simple DFS.
 - If G has a 2-coloring, then it also corresponds to a valid classification of the two partite sets.

You will need this fact in ProgHW #1.

An Alternative BFS-based Algorithm

An Alternative Algorithm

- Let X_0 be the set of all unmatched vertices in G.
- For any i = 0, 1, 2, ..., define
 - X_{2i+1} to be the set of *unvisited* vertices (not in $X_{\leq 2i}$) that can be reached from X_{2i} using an edge not in M.
 - X_{2i+2} to be the set of *unvisited* vertices (not in $X_{\leq 2i+1}$) that can be reached from X_{2i+1} using an edge in M.

An Alternative Algorithm

- Let X_0 be the set of all unmatched vertices in G.
- Formally, for any i = 0, 1, 2, ..., define

$$X_{2i+1} \coloneqq \{ v \in V \setminus X_{\leq 2i} : \exists u \in X_{2i} \ s.t. \ (u,v) \notin M \}$$

and

$$X_{2i+2} := \{ v \in V \setminus X_{\leq 2i+1} : \exists u \in X_{2i+1} \text{ s.t. } (u,v) \in M \}.$$

- The roots are the unmatched vertices in X_0 .
 - Each non-root vertex has exactly one parent in the forest.
- For any vertex $v \in V$,
 - Let $P^{\uparrow}(v)$ be the path from v to its root in the forest.
 - Also, let $P^{\downarrow}(v)$ be the path from its root to v in the forest.
- Note that, $P^{\uparrow}(v)$ and $P^{\downarrow}(v)$ are uniquely defined, and they are M-alternating paths.

The Alternating Fore

Note that, there may still be edges between a vertex in the odd level and other vertices, but we don't care.

Let G = (V, E) be a bipartite graph and M be a matching for G.

Another BFS-based Augmenting Path Algorithm (for Bipartite Graphs).

- 1. Let X_0 be the set of unmatched vertices and $t \leftarrow 0$.
- 2. Repeat until $X_{\leq 2t} = V$, do
 - If there exists an edge $(u, v) \in E$ for some $u, v \in X_{2t}$, then return the path $\{P^{\downarrow}(u), P^{\uparrow}(v)\}$.
 - Otherwise,
 form X_{2t+1} and X_{2t+2} as described and set t ← t + 1.
- 3. Report $\bigcup_{i\geq 0} X_{2i+1}$ as a *vertex cover* with size |M|.

The Augmenting Path Problem in General Graphs

For general graphs, the augmenting path problem can be solved in O(nm) time <u>via proper vertex contractions</u>.

The Augmenting Path Problem in General Graphs

- Let G = (V, E) be a general graph and M be a matching for G.
- We introduce an algorithm that computes in O(nm) time either
 - An M-augmenting path for G, or,
 - A <u>structure</u> (**proof**) showing that <u>M</u> is maximum.
 Hence, no M-augmenting path exists in the graph.

Note that, we can <u>no longer</u> count on <u>vertex covers</u> for this, since the **strong duality does not hold** between <u>matchings and vertex covers</u> in <u>general graphs</u>.

Blossom, Stem, and Flowers

- A <u>blossom</u> is a cycle C with <u>an odd length</u> and $\lfloor |C|/2 \rfloor$ <u>matched edges</u> in M.
 - The vertex $v \in C$ that is not incident to any matched edge is called the "*joint*" of the blossom.

Blossom, Stem, and Flowers

■ A <u>stem</u> is an *M*-alternating path with <u>an even length</u> and <u>ends at a matched edge</u> in *M*.

Blossom, Stem, and Flowers

A <u>flower</u> is <u>a stem</u> and <u>a blossom</u> such that the stem ends at the joint of the blossom.

Contracting a Blossom

- \blacksquare Let C be a blossom in G.
 - Define G_C to be the graph obtained by contracting C in G, and M'_C be the remaining set of matched edges.

- \blacksquare Let C be a blossom in G.
 - Define G_C to be the graph obtained by contracting C in G, and M'_C be the remaining set of matched edges.

Lemma. (Blossom Contraction)

G has an M-augmenting path if and only if G_C has an M'_C -augmenting path.

The blossom C

The contracted graph G_C

The Blossom Algorithm (by Jack Edmonds)

- Let X_0 be the set of all unmatched vertices in G.
- For any i = 0, 1, 2, ..., define
 - X_{2i+1} to be the set of *unvisited* vertices (not in $X_{\leq 2i}$) that can be reached from X_{2i} using an edge not in M.
 - X_{2i+2} to be the set of *unvisited* vertices (not in $X_{\leq 2i+1}$) that can be reached from X_{2i+1} using an edge in M.

The Blossom Algorithm (by Jack Edmonds)

- Consider the alternating forest formed by X_i for all $i \ge 0$.
- If there exists <u>a cross edge in an even level</u>, i.e., $(u, v) \in E$ for some $u, v \in X_{2i}$ and some $i \ge 0$, then $\{P^{\downarrow}(u), P^{\uparrow}(v)\}$ is either an *M*-augmenting path or a flower!
 - If $P^{\downarrow}(u) \cap P^{\uparrow}(v) = \emptyset$, then it is an augmenting path.
 - Otherwise,
 it is a flower with the common part being the stem.

■ Let G = (V, E) be a graph and M be a matching for G.

The Blossom Algorithm (by Jack Edmonds).

- 1. Let X_0 be the set of unmatched vertices and $t \leftarrow 0$.
- 2. Repeat until $X_{\leq 2t} = V$, do
 - If there exists an edge $(u, v) \in E$ for some $u, v \in X_{2t}$,
 - If $P^{\downarrow}(u) \cap P^{\uparrow}(v) = \emptyset$, then return the path $\{P^{\downarrow}(u), P^{\uparrow}(v)\}$.
 - Otherwise, let $C \leftarrow P^{\downarrow}(u) \Delta P^{\uparrow}(v)$. Apply the algorithm recursively on G_C and M'_C . Expand the result and return it.
 - Otherwise, form X_{2t+1} and X_{2t+2} as described and set $t \leftarrow t+1$.
- 3. Report $\bigcup_{i\geq 0} X_{2i+1}$ as a **proof**.

The Correctness of the Blossom Algorithm

Analysis of the Algorithm

- For the correctness of the algorithm,
 - It is clear that, when the blossom algorithm returns an *M*-augmenting path, it is indeed a valid one.
 - We need to show that, when the algorithm returns a proof (reports "No"), M is indeed a maximum matching.

For this, we will use the Tutte-Berge Max-Min Theorem.

Lemma. (Tutte-Berge Max-Min Theorem)

Let G = (V, E) be a graph,

 $U \subseteq V$ be a vertex subset, and $M \subseteq E$ be a matching.

Then we always have

$$|M| \leq \frac{|V| + |U| - \operatorname{odd}(G \setminus U)}{2},$$

where $odd(G \setminus U)$ is the number of components with an odd size in $G \setminus U$.

Later we will see that, the inequality holds with equality for properly chosen M and U when G contains no blossom.

Let G = (V, E) be a graph, $U \subseteq V$ be a vertex subset, and $M \subseteq E$ be a matching. Then we always have

$$|M| \leq \frac{|V| + |U| - \operatorname{odd}(G \setminus U)}{2},$$

where $odd(G \setminus U)$ is the number of odd components in $G \setminus U$.

- Consider the components in U and $G \setminus U$.
 - Each vertex in U is incident with at most one edge in M.
 - For the remaining components K in $G \setminus U$,

it contains at most $\left\lfloor \frac{|K|}{2} \right\rfloor$ edges in M.

Since all endpoints of the edges in *M* are distinct.

We always have $|M| \le (|V| + |U| - \text{odd}(G \setminus U))/2$, where $\text{odd}(G \setminus U)$ is the number of odd components in $G \setminus U$.

- Consider the components in U and $G \setminus U$.
 - Each vertex in U is incident with at most one edge in M.
 - For the remaining components K in $G \setminus U$, it contains at most $\left| \frac{|K|}{2} \right|$ edges in M.

Since all endpoints of the edges in *M* are distinct.

■ Hence,

$$|M| \le |U| + \sum_{i} \left\lfloor \frac{|K_i|}{2} \right\rfloor = |U| + \frac{|V| - |U|}{2} - \frac{\operatorname{odd}(G \setminus U)}{2}.$$

Analysis of the Algorithm

- Suppose that the Blossom algorithm returns a proof $\bigcup_{i\geq 0} X_{2i+1}$.
- By the Tutte-Berge's inequality, to prove that M is a maximum matching for G, it suffices to show that

The choice of $U := \bigcup_{i \ge 0} X_{2i+1}$ will make the Tutte-Berge's inequality hold with equality.

There is <u>no cross edge</u> in the even levels.

Hence, the vertices in <u>the</u> <u>even levels</u> become **isolated**.

The <u>remaining components</u> (not included in the forest) are <u>perfectly matched</u> by *M*.

Analysis of the Algorithm

- $\blacksquare \quad \mathsf{Let} \ U \coloneqq \bigcup_{i \ge 0} X_{2i+1}.$
- Then,

$$|M| = |U| + \frac{|V \setminus X_{\geq 0}|}{2} = \frac{|V| + |U| - |\bigcup_{i \geq 0} X_{2i}|}{2}$$
$$= \frac{|V| + |U| - \operatorname{odd}(G \setminus U)}{2}.$$

■ Hence, M is a maximum matching for G.

Concluding Notes

Best Algorithm for the Maximum Bipartite Matching

- In this lecture, we have seen an $O(nm) = O(n^3)$ algorithm for this problem.
- The best algorithm for this problem is the Hopcroft-Karp algorithm, which runs in $O(\sqrt{n}m) = O(n^{2.5})$.

The Hopcroft-Karp Algorithm

- The idea is to perform a BFS simultaneously from all unmatched vertices in one partite set to form alternating layers until some unmatched vertices in the other partite set is met.
- Then a **layer-guided DFS** is used to construct a maximal set of <u>vertex-disjoint shortest augmenting paths</u>.
- It is guaranteed that, only $O(\sqrt{n})$ rounds are needed before the maximum matching is computed.

Best Algorithm for the Maximum Bipartite Matching

■ This problem is a special case of the max-flow problem.

A number of flow algorithms are applicable.

- Practically,
 the most efficient one is the Dinic's algorithm.
- Theoretically, the best algorithm is the "Almost linear-time" max-flow algorithm that runs in $m^{1+o(1)}$ time.

Maximum Matching in General Graphs

- For general graphs, we have seen the Edmonds Blossom Algorithm, which runs in $O(n^2m) = O(n^4)$ time.
- The best (and more complicated) algorithm, due to Micali and Vazirani, solves this problem in $O(\sqrt{n}m) = O(n^{2.5})$ time.