
Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 21:20

Outline

■ The Maximum Matching Problem

– A Generic Algorithm and the Berge’s Theorem

– Solving the Augmenting Path Problem

■ DFS-based & BFS-based Algorithms for Bipartite Graphs

■ The Blossom Algorithm for General Graphs

■ Concluding Notes

– The best algorithms for Maximum Matching

Characterization of Bipartite Graphs

Identify the two partite sets of a bipartite graph

when it is not given.

■ The following theorem is simple and intuitive to prove.

■ Note that, the 2-colorability of 𝐺 can be tested by a simple DFS.

– If 𝐺 has a 2-coloring, then it also corresponds to a valid

classification of the two partite sets.

Characterization of Bipartite Graphs

Theorem. (Characterization of Bipartite Graphs)

A graph 𝐺 = (𝑉, 𝐸) is bipartite if and only if it has a 2-coloring,

i.e., a 2-coloring for 𝑉 such that no edge 𝑒 ∈ 𝐸 is monochromatic.

You will need this fact in ProgHW #1.

An Alternative BFS-based Algorithm

■ Let 𝑋0 be the set of all unmatched vertices in 𝐺.

■ For any 𝑖 = 0, 1, 2,…, define

– 𝑋2𝑖+1 to be the set of unvisited vertices (not in 𝑋≤2𝑖)

that can be reached from 𝑋2𝑖 using an edge not in 𝑴.

– 𝑋2𝑖+2 to be the set of unvisited vertices (not in 𝑋≤2𝑖+1)

that can be reached from 𝑋2𝑖+1 using an edge in 𝑴.

An Alternative Algorithm

■ Let 𝑋0 be the set of all unmatched vertices in 𝐺.

■ Formally, for any 𝑖 = 0, 1, 2,…, define

𝑋2𝑖+1 ≔ 𝑣 ∈ 𝑉 ∖ 𝑋≤2𝑖 ∶ ∃𝑢 ∈ 𝑋2𝑖 𝑠. 𝑡. 𝑢, 𝑣 ∉ 𝑀

and

𝑋2𝑖+2 ≔ 𝑣 ∈ 𝑉 ∖ 𝑋≤2𝑖+1 ∶ ∃𝑢 ∈ 𝑋2𝑖+1 𝑠. 𝑡. 𝑢, 𝑣 ∈ 𝑀 .

An Alternative Algorithm

The Alternating Forest Formed by 𝑋𝑖

𝑋0

⋮

⋯

𝑋1

𝑋2

The set of unmatched vertices

⋯

⋯

⋮

The vertices in the odd levels

have exactly one children

in the forest.

Each non-root vertex

has exactly one parent

in the forest.

■ The roots are the unmatched vertices in 𝑋0.

– Each non-root vertex has exactly one parent in the forest.

■ For any vertex 𝑣 ∈ 𝑉,

– Let 𝑃↑ 𝑣 be the path from 𝑣 to its root in the forest.

– Also, let 𝑃↓ 𝑣 be the path from its root to 𝑣 in the forest.

■ Note that, 𝑃↑ 𝑣 and 𝑃↓ 𝑣 are uniquely defined, and

they are 𝑀-alternating paths.

The Alternating Forest Formed by 𝑋𝑖

The Alternating Forest Formed by 𝑋𝑖

𝑋0

⋮

⋯

𝑋1

𝑋2

The set of unmatched vertices

⋯

⋯

⋮

The vertices in the odd levels

have exactly one children

in the forest.

Each non-root vertex

has exactly one parent

in the forest.

If there exists a cross edge in the even levels,

say, (𝑢, 𝑣) with 𝑢, 𝑣 ∈ 𝑋2𝑖 for some 𝑖,

then 𝑷↓ 𝒖 ,𝑷↑ 𝒗 forms an 𝑴-augmenting path!

𝑷↓ 𝒖

𝑷↑ 𝒗

𝒖 𝒗

Note that, in this case,

𝑢 and 𝑣 must be in different trees. (Why?)

The Alternating Forest Formed by 𝑋𝑖

𝑋0

⋮

⋯

𝑋1

𝑋2

The set of unmatched vertices

⋯

⋯

⋮

The vertices in the odd levels

have exactly one children

in the forest.

Each non-root vertex

has exactly one parent

in the forest.
Conversely, if no cross edge exists in the even levels,

then ڂ𝒊≥𝟎𝑿𝟐𝒊+𝟏 is a vertex cover with size 𝑀 !

Note that, there may still be edges

between a vertex in the odd level and other vertices,

but we don’t care.

■ Let 𝐺 = (𝑉, 𝐸) be a bipartite graph and 𝑀 be a matching for 𝐺.

Another BFS-based Augmenting Path Algorithm (for Bipartite Graphs).

1. Let 𝑋0 be the set of unmatched vertices and 𝑡 ← 0.

2. Repeat until 𝑋≤2𝑡 = 𝑉, do

• If there exists an edge 𝑢, 𝑣 ∈ 𝐸 for some 𝑢, 𝑣 ∈ 𝑋2𝑡,

then return the path 𝑃↓ 𝑢 , 𝑃↑ 𝑣 .

• Otherwise,

form 𝑋2𝑡+1 and 𝑋2𝑡+2 as described and set 𝑡 ← 𝑡 + 1.

3. Report ڂ𝑖≥0𝑋2𝑖+1 as a vertex cover with size 𝑀 .

The Augmenting Path Problem

in General Graphs

For general graphs,

the augmenting path problem can be solved in 𝑂 𝑛𝑚 time via proper vertex contractions.

■ Let 𝐺 = (𝑉, 𝐸) be a general graph and 𝑴 be a matching for 𝐺.

■ We introduce an algorithm that computes in 𝑂 𝑛𝑚 time either

– An 𝑀-augmenting path for 𝐺, or,

– A structure (proof) showing that 𝑴 is maximum.

Hence, no 𝑀-augmenting path exists in the graph.

The Augmenting Path Problem in General Graphs

Note that, we can no longer count on vertex covers for this,

since the strong duality does not hold

between matchings and vertex covers in general graphs.

■ A blossom is a cycle 𝐶

with an odd length and 𝐶 /2 matched edges in 𝑀.

– The vertex 𝑣 ∈ 𝐶 that is not incident to any matched edge

is called the “joint” of the blossom.

Blossom, Stem, and Flowers

Joint𝑣

■ A stem is an 𝑀-alternating path

with an even length and ends at a matched edge in 𝑀.

Blossom, Stem, and Flowers

Joint𝑣

■ A flower is a stem and a blossom

such that the stem ends at the joint of the blossom.

Blossom, Stem, and Flowers

Joint

■ Let 𝐶 be a blossom in 𝐺.

– Define 𝐺𝐶 to be the graph obtained by contracting 𝐶 in 𝐺,

and 𝑀𝐶
′ be the remaining set of matched edges.

Contracting a Blossom

The blossom 𝐶
The contracted graph 𝐺𝐶

■ Let 𝐶 be a blossom in 𝐺.

– Define 𝐺𝐶 to be the graph obtained by contracting 𝐶 in 𝐺,

and 𝑀𝐶
′ be the remaining set of matched edges.

Lemma. (Blossom Contraction)

𝐺 has an 𝑀-augmenting path

if and only if 𝐺𝐶 has an 𝑀𝐶
′ -augmenting path.

The blossom 𝐶
The contracted graph 𝐺𝐶

■ Let 𝑋0 be the set of all unmatched vertices in 𝐺.

■ For any 𝑖 = 0, 1, 2,…, define

– 𝑋2𝑖+1 to be the set of unvisited vertices (not in 𝑋≤2𝑖)

that can be reached from 𝑋2𝑖 using an edge not in 𝑴.

– 𝑋2𝑖+2 to be the set of unvisited vertices (not in 𝑋≤2𝑖+1)

that can be reached from 𝑋2𝑖+1 using an edge in 𝑴.

The Blossom Algorithm (by Jack Edmonds)

■ Consider the alternating forest formed by 𝑋𝑖 for all 𝑖 ≥ 0.

■ If there exists a cross edge in an even level,

i.e., 𝑢, 𝑣 ∈ 𝐸 for some 𝑢, 𝑣 ∈ 𝑋2𝑖 and some 𝑖 ≥ 0,

then 𝑃↓ 𝑢 , 𝑃↑ 𝑣 is either an 𝑀-augmenting path or a flower!

– If 𝑃↓ 𝑢 ∩ 𝑃↑ 𝑣 = ∅, then it is an augmenting path.

– Otherwise,

it is a flower with the common part being the stem.

The Blossom Algorithm (by Jack Edmonds)

The Alternating Forest Formed by 𝑋𝑖

𝑋0

⋮

⋯

𝑋1

𝑋2

⋯

⋯

𝑷↓ 𝒖

𝑷↑ 𝒗

𝒖 𝒗

⋮

If there exists a cross edge in the even levels,

say, (𝑢, 𝑣) with 𝑢, 𝑣 ∈ 𝑋2𝑖 for some 𝑖,

then 𝑷↓ 𝒖 ,𝑷↑ 𝒗 is either an 𝑴-augmenting path or a flower!

If there exists a cross edge in the even levels,

say, (𝑢, 𝑣) with 𝑢, 𝑣 ∈ 𝑋2𝑖 for some 𝑖,

then 𝑷↓ 𝒖 ,𝑷↑ 𝒗 is either an 𝑴-augmenting path or a flower!𝒖 𝒗

The vertices in the odd levels

have exactly one children

in the forest.

■ Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑀 be a matching for 𝐺.

The Blossom Algorithm (by Jack Edmonds).

1. Let 𝑋0 be the set of unmatched vertices and 𝑡 ← 0.

2. Repeat until 𝑋≤2𝑡 = 𝑉, do

• If there exists an edge 𝑢, 𝑣 ∈ 𝐸 for some 𝑢, 𝑣 ∈ 𝑋2𝑡,

• If 𝑃↓ 𝑢 ∩ 𝑃↑ 𝑣 = ∅, then return the path 𝑃↓ 𝑢 , 𝑃↑ 𝑣 .

• Otherwise, let 𝐶 ← 𝑃↓ 𝑢 Δ 𝑃↑ 𝑣 . Apply the algorithm recursively

on 𝐺𝐶 and 𝑀𝐶
′ . Expand the result and return it.

• Otherwise,

form 𝑋2𝑡+1 and 𝑋2𝑡+2 as described and set 𝑡 ← 𝑡 + 1.

3. Report ڂ𝑖≥0𝑋2𝑖+1 as a proof.

The Correctness of

the Blossom Algorithm

■ For the correctness of the algorithm,

– It is clear that, when the blossom algorithm returns

an 𝑀-augmenting path, it is indeed a valid one.

– We need to show that, when the algorithm returns a proof

(reports “No”), 𝑀 is indeed a maximum matching.

For this, we will use the Tutte-Berge Max-Min Theorem.

Analysis of the Algorithm

■ Later we will see that, the inequality holds with equality for

properly chosen 𝑀 and 𝑈 when 𝐺 contains no blossom.

Lemma. (Tutte-Berge Max-Min Theorem)

Let 𝐺 = (𝑉, 𝐸) be a graph,

𝑈 ⊆ 𝑉 be a vertex subset, and 𝑀 ⊆ 𝐸 be a matching.

Then we always have

𝑀 ≤
𝑉 + 𝑈 − odd 𝐺 ∖ 𝑈

2
,

where odd 𝐺 ∖ 𝑈 is the number of components with an odd

size in 𝐺 ∖ 𝑈.

■ Consider the components in 𝑈 and 𝐺 ∖ 𝑈.

– Each vertex in 𝑈 is incident with at most one edge in 𝑀.

– For the remaining components 𝐾 in 𝐺 ∖ 𝑈,

it contains at most
𝐾

2
edges in 𝑀.

Let 𝐺 = (𝑉, 𝐸) be a graph, 𝑈 ⊆ 𝑉 be a vertex subset, and

𝑀 ⊆ 𝐸 be a matching. Then we always have

𝑀 ≤
𝑉 + 𝑈 − odd 𝐺 ∖ 𝑈

2
,

where odd 𝐺 ∖ 𝑈 is the number of odd components in 𝐺 ∖ 𝑈.

Since all endpoints of

the edges in 𝑀 are distinct.

■ Consider the components in 𝑈 and 𝐺 ∖ 𝑈.

– Each vertex in 𝑈 is incident with at most one edge in 𝑀.

– For the remaining components 𝐾 in 𝐺 ∖ 𝑈,

it contains at most
𝐾

2
edges in 𝑀.

■ Hence,

𝑀 ≤ 𝑈 + ෍

𝑖

𝐾𝑖
2

= 𝑈 +
|𝑉| − 𝑈

2
−
odd 𝐺 ∖ 𝑈

2
.

We always have 𝑀 ≤ 𝑉 + 𝑈 − odd 𝐺 ∖ 𝑈 /2,

where odd 𝐺 ∖ 𝑈 is the number of odd components in 𝐺 ∖ 𝑈.

Since all endpoints of

the edges in 𝑀 are distinct.

■ Suppose that the Blossom algorithm returns a proof ڂ𝑖≥0𝑋2𝑖+1.

■ By the Tutte-Berge’s inequality, to prove that 𝑀 is a maximum

matching for 𝐺, it suffices to show that

Analysis of the Algorithm

The choice of 𝑈 ≔ 𝑖≥0𝑋2𝑖+1ڂ will make

the Tutte-Berge’s inequality hold with equality.

The Alternating Forest Formed by 𝑋𝑖

𝑋0

⋮

⋯

𝑋1

𝑋2

⋯

⋯

⋮

There is no cross edge

in the even levels.

Hence, the vertices in the

even levels become isolated.

There is no cross edge

in the even levels.

Hence, the vertices in the

even levels become isolated.

There is no cross edge

in the even levels.

Hence, the vertices in the

even levels become isolated.

The remaining components

(not included in the forest)

are perfectly matched by 𝑀.

■ Let 𝑈 ≔ .𝑖≥0𝑋2𝑖+1ڂ

■ Then,

𝑀 = 𝑈 +
𝑉 ∖ 𝑋≥0

2
=

𝑉 + 𝑈 − 𝑖≥0𝑋2𝑖ڂ
2

=
𝑉 + 𝑈 − odd 𝐺 ∖ 𝑈

2
.

■ Hence, 𝑀 is a maximum matching for 𝐺.

Analysis of the Algorithm

Concluding Notes

■ In this lecture,

we have seen an 𝑂 𝑛𝑚 = 𝑂(𝑛3) algorithm for this problem.

■ The best algorithm for this problem is the Hopcroft-Karp

algorithm, which runs in 𝑂 𝑛𝑚 = 𝑂 𝑛2.5 .

Best Algorithm for the Maximum Bipartite Matching

■ The idea is to perform a BFS simultaneously from all unmatched

vertices in one partite set to form alternating layers

until some unmatched vertices in the other partite set is met.

■ Then a layer-guided DFS is used to construct

a maximal set of vertex-disjoint shortest augmenting paths.

■ It is guaranteed that, only 𝑂 𝑛 rounds are needed before the

maximum matching is computed.

The Hopcroft-Karp Algorithm

■ This problem is a special case of the max-flow problem.

A number of flow algorithms are applicable.

– Practically,

the most efficient one is the Dinic’s algorithm.

– Theoretically, the best algorithm is the “Almost linear-time”

max-flow algorithm that runs in 𝑚1+𝑜 1 time.

Best Algorithm for the Maximum Bipartite Matching

■ For general graphs, we have seen the Edmonds Blossom

Algorithm, which runs in 𝑂 𝑛2𝑚 = 𝑂(𝑛4) time.

■ The best (and more complicated) algorithm, due to Micali and

Vazirani, solves this problem in 𝑂 𝑛𝑚 = 𝑂 𝑛2.5 time.

Maximum Matching in General Graphs

