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■ Let 𝐺 = (𝑉, 𝐸) be a bipartite graph with partite sets 𝐴 and 𝐵.

■ An edge subset 𝑀 ⊆ 𝐸 is called a matching for 𝐺, 

if each vertex in 𝑉 is incident to at most one edge in 𝑀.

– i.e., the endpoints of the edges in 𝑀 are disjoint.

Matching in Bipartite Graphs

The same definition applies to general graphs, too.𝐴 𝐵



■ Let 𝐺 = (𝑉, 𝐸) be a bipartite graph with partite sets 𝐴 and 𝐵.

■ Let 𝑀 be a matching for 𝐺.

– For any 𝑢, 𝑣 ∈ 𝑉, 

we say that 𝑢 is matched to 𝑣 by 𝑀 (and vice versa), 

if 𝑢, 𝑣 ∈ 𝑀.

– For any 𝑈 ⊆ 𝐴, we say that 𝑀 matches 𝑈, or, 

𝑀 is a matching from 𝑈 to 𝐵, or, 𝑀 is a matching for 𝑈,

if 𝑀 matches every vertex in 𝑈 to some vertex in 𝐵.

Matching in Bipartite Graphs



■ Let 𝐺 = (𝑉, 𝐸) be a bipartite graph with partite sets 𝐴 and 𝐵.

■ Let 𝑀 be a matching for 𝐺.

– For any 𝑈 ⊆ 𝐴, we say that 𝑀 is a matching for 𝑈,

if 𝑀 matches every vertex in 𝑈 to some vertex in 𝐵.

Matching in Bipartite Graphs

𝐴 𝐵 𝐴 𝐵

There is no enough

candidates to be 

matched to for 𝐴.



Hall’s Matching Condition

The necessary and sufficient condition for a matching in bipartite graphs to exist.



Theorem 5.1 (Hall’s Theorem). 

Let 𝐺 = (𝑉, 𝐸) be a bipartite graph with partite sets 𝐴 and 𝐵.

There exists a matching 𝑀 for 𝐴

if and only if
𝑁(𝑈) ≥ 𝑈 for all 𝑈 ⊆ 𝐴 . (∗)

i.e., there is always a sufficient number of

candidates to be matched to.

𝐴

𝑈 𝑁(𝑈)

𝑁 𝑈 ≥ 𝑈 , for any 𝑈 ⊆ 𝐴.

i.e., there is always a sufficient number of

candidates to be matched to.



■ Proof.

– The direction (⟹) is clear. 

■ 𝑀 matches each vertex in 𝑈 to a distinct vertex in 𝐵.

■ Hence, 𝑁 𝑈 ≥ 𝑈 .

Theorem 5.1 (Hall’s Theorem). 

Let 𝐺 = (𝑉, 𝐸) be a bipartite graph with partite sets 𝐴 and 𝐵.

There exists a matching 𝑀 for 𝐴

if and only if
𝑁(𝑈) ≥ 𝑈 for all 𝑈 ⊆ 𝐴 . (∗)



■ Proof. (continue)

– We prove the direction (⟸)

by induction on the size of 𝐴 , which we denote by 𝑚.

– The case 𝑚 = 1 holds trivially.

– Assume that the statement (⟸) holds 

for any 𝐴 with 𝐴 < 𝑚.

𝐴

𝑈 𝑁(𝑈)

𝑁 𝑈 ≥ 𝑈



■ Proof. (continue)

– Assume that the statement (⟸) holds 

when the number of vertices in the left partite set is < 𝑚.

– To prove for 𝐴 = 𝑚, we distinguish the following two cases.

1. For any 𝑈 ⊂ 𝐴, 

we always have 𝑁 𝑈 > 𝑈 .

2. For some 𝑈 ⊂ 𝐴, 

𝑁 𝑈 = 𝑈 .

We always have more 

candidates than we need.

The number of candidates 

for some subset is tight.



■ We distinguish following two cases.

1. For any 𝑈 ⊂ 𝐴, we always have 𝑁 𝑈 > 𝑈 .

■ Pick an arbitrary 𝑢 ∈ 𝐴 and any 𝑣 ∈ 𝑁 𝑢 .

Match 𝑢 to 𝑣 and remove 𝑣 from the graph.

■ Then, it follows that, 

for any 𝑈 ⊆ 𝐴 − 𝑢 , we still have 𝑁 𝑈 ≥ 𝑈 .

– By the induction hypothesis, 

there exists a matching from 𝐴 − 𝑢 to 𝐵 − 𝑣 .

– Hence, we obtain a matching for 𝐴.

At most one vertex is 

removed from 𝑁 𝑈 .

We always have more 

candidates than we need.



The number of candidates 

for some subset is tight.
■ We distinguish following two cases.

2. For some 𝑈 ⊂ 𝐴, 𝑁 𝑈 = 𝑈 .

■ By the induction hypothesis, 

there exists a matching 𝑀1 from 𝑈 to 𝑁 𝑈 .

Remove 𝑁 𝑈 from the graph.

■ Then, we claim that, 

for any 𝑈′ ⊆ 𝐴 − 𝑈, we still have 𝑁 𝑈′ ≥ 𝑈′ .



The number of candidates 

for some subset is tight.
■ We distinguish following two cases.

2. For some 𝑈 ⊂ 𝐴, 𝑁 𝑈 = 𝑈 .

■ Remove 𝑁 𝑈 from the graph.

■ Then, we claim that, 

for any 𝑈′ ⊆ 𝐴 − 𝑈, we always have 𝑁 𝑈′ ≥ 𝑈′ .

– If not, then before 𝑁 𝑈 is removed, we have

𝑁 𝑈′ ∪ 𝑈 ≤ 𝑁 𝑈′ + 𝑁 𝑈 < 𝑈′ + 𝑈 ,

which is a contradiction.



■ We distinguish following two cases.

2. For some 𝑈 ⊂ 𝐴, 𝑁 𝑈 = 𝑈 .

■ By the induction hypothesis, 

there exists a matching 𝑀1 from 𝑈 to 𝑁 𝑈 .

Remove 𝑁 𝑈 from the graph.

■ Then, we claim that, 

for any 𝑈′ ⊆ 𝐴 − 𝑈, we always have 𝑁 𝑈′ ≥ 𝑈′ .

■ By induction hypothesis, there exists a matching 𝑀2 for 𝐴 − 𝑈.

■ Together, we obtain a matching for 𝐴.

The number of candidates 

for some subset is tight.



Application -

System of Distinct Representatives



Distinct Representative of Sets in a Family

■ Let 𝐹 = 𝑆1, 𝑆2, … , 𝑆𝑚 be a set family.

■ The elements 𝑥1, 𝑥2, … , 𝑥𝑚 is called a set of distinct representatives

for 𝐹, if the following two conditions hold.

– 𝑥𝑖 ∈ 𝑆𝑖 for all 1 ≤ 𝑖 ≤ 𝑚.

– The elements 𝑥1, 𝑥2, … , 𝑥𝑚 are distinct, i.e., 𝑥𝑖 ≠ 𝑥𝑗 for all 𝑖 ≠ 𝑗.



■ Construct a bipartite graph for the set family, and 

this corollary follows directly from the Hall’s theorem.

Corollary. 

The set family 𝑆1, 𝑆2, … , 𝑆𝑚 has a set of distinct representatives 

if and only if

ራ

𝑖∈𝐼

𝑆𝑖 ≥ 𝐼 for all 𝐼 ⊆ 1,2,… ,𝑚 .



Matching  v.s. Vertex Cover

Weak-duality between matching and vertex cover.



Vertex Cover of a Graph

■ Let 𝐺 = (𝑉, 𝐸) be a graph.

■ A vertex cover of 𝐺 is a subset 𝑈 ⊆ 𝑉 of vertices such that, 

every edge 𝑒 ∈ 𝐸 has at least one endpoint in 𝑈.

– Intuitively, we use the vertices in 𝑈 to cover the edges in 𝐸.



Matching v.s. Vertex Cover

■ Let 𝐺 = (𝑉, 𝐸) be a graph, 

– 𝑀 ⊆ 𝐸 be a matching, and 

– 𝐶 ⊆ 𝑉 be a vertex cover for 𝐺.

■ It follows that 
M ≤ 𝐶 .

– The endpoints of the edges in 𝑀 are distinct.

– It takes at least one vertex to cover each edge in 𝑀, i.e., 

at least one endpoint of each edge has to be selected in 𝐶.

The matching 𝑀



Matching v.s. Vertex Cover

■ Let 𝐺 = (𝑉, 𝐸) be a graph, 

𝑀 ⊆ 𝐸 be a matching, and 𝐶 ⊆ 𝑉 be a vertex cover for 𝐺.

■ Then, it follows that  M ≤ 𝐶 .

– This property is called the weak-duality between the matching 

and vertex cover.

– It implies that, in any graph, the size of maximum matching is 

at most the size of minimum vertex cover.

The matching 𝑀



The König-Egeváry Theorem

In bipartite graphs, the size of the maximum matching

is equal to the size of the minimum vertex cover.



Proof.

■ Let 𝐺 be a bipartite graph with partite sets 𝑈 and 𝑉.

■ Let 𝑀 be a maximum matching and 

𝐶 be a minimum vertex cover for 𝐺, respectively.

■ It suffices to prove that |𝑀| ≥ |𝐶|.

Theorem 5.5 (König-Egeváry 1931). 

In a bipartite graph, the size of maximum matching is equal to 

the size of minimum vertex cover.

The matching 𝑀



Proof.

■ It suffices to prove that |𝑀| ≥ |𝐶|.

– Let 𝐴 ≔ 𝑈 ∩ 𝐶 and 𝐵 ≔ 𝑉 ∩ 𝐶.

– We will prove that, there exists a matching 𝑀𝐴

that matches all the vertices in 𝐴 to the vertices in 𝑉 ∖ 𝐵.

Theorem 5.5 (König-Egeváry 1931). 

In a bipartite graph, the size of maximum matching is equal to 

the size of minimum vertex cover.

𝑈

𝑉

𝐴 𝐵



Proof.

■ It suffices to prove that |𝑀| ≥ |𝐶|.

■ Let 𝐴 ≔ 𝑈 ∩ 𝐶 and 𝐵 ≔ 𝑉 ∩ 𝐶.

– We will prove that, there exists a matching 𝑀𝐴

that matches all the vertices in 𝐴 to the vertices in 𝑉 ∖ 𝐵.

– If the above is true, then by a similar argument, 

there exists a matching 𝑀𝐵 for 𝐵 to 𝑈 ∖ 𝐴.

– The endpoints of the edges in 𝑀𝐴 ∪𝑀𝐵 are distinct.

■ So, 𝑀𝐴 ∪𝑀𝐵 is a matching of size 𝐴 + 𝐵 = |𝐶|. 

■ Hence, this will prove that 𝑀 ≥ 𝐴 + 𝐵 = 𝐶 .

𝑈

𝑉

𝐴 𝐵



It suffices to prove that, there exists a matching 𝑀𝐴

that matches all the vertices in 𝐴 to the vertices in 𝑉 ∖ 𝐵.

■ Suppose that there exists no such matching. 

■ Then, by Hall’s matching theorem,

there exists some 𝐷 ⊆ 𝐴, such that

𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 < 𝐷 .

– Indeed, if 𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 ≥ 𝐷 holds for all 𝐷 ⊆ 𝐴, 

then there exists a matching from 𝐴 to 𝑉 ∖ 𝐵.

– Since there is no such matching, there must be 

such a 𝐷 ⊆ 𝐴 with  𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 < 𝐷 .

𝑉

𝐴

𝐵

𝐷

෩𝐷

𝑈



It suffices to prove that, there exists a matching 𝑀𝐴

that matches all the vertices in 𝐴 to the vertices in 𝑉 ∖ 𝐵.

■ If not, there exists some 𝐷 ⊆ 𝐴, such that

𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 < 𝐷 .

■ Let ෩𝐷 ≔ 𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 ,  then ෩𝐷 < 𝐷 .

■ We claim that, 

𝐴 ∖ 𝐷 ∪ ෩𝐷 ∪ 𝐵 is a valid vertex cover for 𝐺.

– If this is true, we obtain a vertex cover

with size smaller than 𝐴 + 𝐵 = 𝐶 , 

a contradiction.

𝑉

𝐴

𝐵

𝐷

෩𝐷

෩𝐷 < |𝐷|

𝐷 is replaceable by ෩𝐷.

𝑈



It suffices to verify that, 

𝐴 ∖ 𝐷 ∪ ෩𝐷 ∪ 𝐵 is a valid vertex cover for 𝐺.

■ Let ෩𝐷 ≔ 𝑁 𝐷 ∩ 𝑉 ∖ 𝐵 .

■ There are four categories of edges in 𝐺.

– 𝐸𝐴,𝐵, 𝐸𝑈∖𝐴,𝐵 --- covered by 𝐵. 

– 𝐸𝐴∖𝐷,𝑉∖𝐵 --- covered by 𝐴 ∖ 𝐷.

– 𝐸𝐷,෩𝐷 --- covered by ෩𝐷.

■ All the edges are covered.

𝑉

𝐴

𝐵

𝐷

෩𝐷

෩𝐷 < |𝐷|

𝑈

Since  𝐶 = 𝐴 ∪ 𝐵 is a vertex cover, 

there is not edge between 𝑈 ∖ 𝐴 and 𝑉 ∖ 𝐵.



The Maximum Matching Problem

To compute a maximum-size matching for the input graph.



■ Input :

– A graph 𝐺 = (𝑉, 𝐸).

■ Output : 

– A matching 𝑀 ⊆ 𝐸 that has the maximum size among 

all possible matchings.

The Maximum Matching Problem



■ Let 𝑀 be a matching for a graph 𝐺. 

– An 𝑀-alternating path is a path 

that alternates between edges in 𝑀 and edges not in 𝑀.

– An 𝑴-augmenting path is an 𝑀-alternating path 

that both starts and ends at unmatched vertices.

Alternating Path & Augmenting Path

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Both 𝑣1, 𝑣2, 𝑣3 and 𝑣2, 𝑣3, 𝑣4, 𝑣5

are 𝑀-alternating paths.

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6 is 

an 𝑀-augmenting paths.



■ We can see that, 

each 𝑀-augmenting path is a way to enlarge the size of 𝑀 by 1.

– This is done by swapping the status of the edges on the path.

■ Matched edges ⟹ unmatched

■ Unmatched edges ⟹ matched

Observation

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6
𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣1 and 𝑣6 were unmatched. All internal vertices are matched only by edges on the path.

So, this is still a valid matching

with size increased by 1.

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6



■ We can see that, 

each 𝑀-augmenting path 𝑃 is a way to enlarge the size of 𝑀 by 1.

■ 𝑀′ ≔ 𝑀 ∖ 𝑃 ∪ 𝑃 ∖ 𝑀 is a valid matching with 𝑀′ = 𝑀 + 1.

Observation
𝑃

𝑀 ∖ 𝑃

𝑷 ∖𝑴

𝑀Δ𝑃 : the edges that appear exactly once in 𝑀 and 𝑃. 



■ The observation suggests the following greedy algorithm.

– Let 𝐺 = (𝑉, 𝐸) be the input graph.

A Simple Greedy Algorithm

1. 𝑀⟵ ∅.

2. Repeat until there is no 𝑀-augmenting path in 𝐺. 

a. Compute an 𝑀-augmenting path 𝑃.

b. Set 𝑀⟵ 𝑀 ∖ 𝑃 ∪ 𝑃 ∖ 𝑀 .

3. Output 𝑀.



1. 𝑀⟵ ∅.

2. Repeat until there is no 𝑀-augmenting path in 𝐺. 

a. Find an 𝑀-augmenting path 𝑃.

b. Set 𝑀⟵ 𝑀 ∖ 𝑃 ∪ 𝑃 ∖ 𝑀 .

3. Output 𝑀.

The philosophy behind the algorithm is very simple :

“Make the current matching larger until no augmenting path exists.”

■ A direct question is that,

“Does it always output a maximum matching?”



Theorem 1. (Berge 1957).

A matching 𝑀 in a graph 𝐺 is a maximum matching

if and only if 𝐺 has no 𝑀-augmenting path.

■ Theorem 1 assures the correctness of the greedy algorithm.

– When there is no 𝑀-augmenting path, 

𝑀 is guaranteed to be maximum.

■ We begin with some definition & helper lemma.



■ Let 𝐺 = (𝑉, 𝐸) be a graph, and 𝐴, 𝐵 ⊆ 𝐸 be two edge sets.

– The symmetric difference of 𝐴 and 𝐵 is defined as

𝐴 △ 𝐵 ≔ 𝐴 ∖ 𝐵 ∪ 𝐵 ∖ 𝐴 .

– i.e., the set of edges that appear exactly once in 𝐴 and 𝐵.

Symmetric Difference



Lemma 2.

Let 𝑀,𝑀′ be matchings for a graph 𝐺. Then, every component 

of 𝑀△𝑀′ is a either path or a cycle with an even length.

■ Let 𝐹 ≔ 𝑀△𝑀′.

– Each vertex in 𝐺 is incident to at most two edges in 𝐹.

– Hence, each component in 𝐹 is either a path or a cycle.

■ Consider any cycle in 𝐹.

– The cycle alternates between edges in 𝑀 and 𝑀′.

– It must have an even length.

𝑀

𝑀′

𝑀△𝑀′



Theorem 1. (Berge 1957).

A matching 𝑀 in a graph 𝐺 is a maximum matching

if and only if 𝐺 has no 𝑀-augmenting path.

■ Let us prove Theorem 1.

– The direction ⟹ is clear.

– For the direction ⟸ , 

we prove the contrapositive statement. 

■ We show that, if 𝑀′ is a matching with 𝑀′ > 𝑀 , 

then 𝐺 must have an 𝑀-augmenting path.



It suffices to prove that, if 𝑀′ is a matching with 𝑀′ > 𝑀 , 

then 𝐺 must have an 𝑀-augmenting path.

■ Let 𝐹 ≔ 𝑀△𝑀′.

– By Lemma 2, 𝐹 is a union of paths and even cycles.

■ Since 𝑀′ > |𝑀|, there must be a component in 𝐹 that has more 

edges from 𝑀′ than 𝑀.

– The component must be a path. 

Furthermore, it must start and ends with edges in 𝑀′.

– The path is then an 𝑀-augmenting path.



■ The Berge’s theorem suggests the following simple algorithm.

– Let 𝐺 = (𝑉, 𝐸) be the input graph.

The Maximum Matching Problem

1. 𝑀⟵ ∅.

2. Repeat until there is no 𝑀-augmenting path in 𝐺. 

a. Compute an 𝑀-augmenting path 𝑃.

b. Set 𝑀⟵ 𝑀 ∖ 𝑃 ∪ 𝑃 ∖ 𝑀 .

3. Output 𝑀.



■ To solve the maximum matching problem,

it suffices to answer the augmenting path problem.

■ Input :

– A graph 𝐺 = (𝑉, 𝐸) and a matching 𝑀 for 𝐺.

■ Goal : 

– Compute an 𝑀-augmenting path for 𝐺, or, 

Assert that there exists no such path.

The Augmenting Path Problem



■ To solve the maximum matching problem,

it suffices to answer the following augmenting path problem.

■ In this lecture, we will introduce algorithms that solve the 

augmenting path problem.

– 𝑂 𝑚 for bipartite graph.

– 𝑂 𝑛𝑚 for general graphs.

The Augmenting Path Problem



The Augmenting Path Problem 

in Bipartite Graphs

For bipartite graphs, 

the augmenting path problem can be solved by simple DFS in 𝑂 𝑛 +𝑚 time.



■ Let 𝐺 = (𝑉, 𝐸) be a bipartite graph with partite sets 𝑨 and 𝑩,

and 𝑴 be a matching for 𝐺.

■ We introduce an algorithm that computes in 𝑂 𝑚 time either

– An 𝑀-augmenting path for 𝐺, or, 

– A vertex cover 𝐶 for 𝐺 with 𝐶 = 𝑀 .

Note that, in the latter case, 𝑀 is a maximum matching by 

the weak duality, and hence no augmenting path exists.

The Augmenting Path Problem in Bipartite Graphs



■ Let 𝐺 = (𝑉, 𝐸) be a bipartite graph with partite sets 𝑨 and 𝑩,

and 𝑴 be a matching for 𝐺.

■ The algorithm attempts to compute an 𝑀-augmenting path 

starting at an unmatched vertex in 𝑨

using a DFS-based recursive procedure aug-path().

– If it succeeds for some unmatched vertex 𝑣 ∈ 𝑨, 

then we’re done.

– If it fails for every unmatched vertex in 𝑨,

then a vertex cover 𝐶 with 𝐶 = 𝑀 can be defined.

An Augmenting Path Algorithm for Bipartite Graphs



■ Finding an augmenting path in a bipartite graph 

can be handled by a simple & intuitive DFS-based procedure.

– We start with an unmatched vertex, say, 𝑢.

■ The goal is to find an 𝑀-augmenting path starting from 𝑢.

– Consider each neighbor of 𝑢, say, 𝑣.

The DFS-based Recursive Procedure aug-path()

𝑢

𝑣

If 𝑣 is unmatched, 

then 𝑢, 𝑣 is an 𝑀-augmenting path, 

and we’re done.



– We start with an unmatched vertex, say, 𝑢.

■ Our goal is to find an 𝑀-augmenting path starting from 𝑢.

– Consider each neighbor of 𝑢, say, 𝑣.

𝑢

𝑣

If 𝑣 is matched, then 

to form an 𝑀-augmenting path that passes 𝑣, 

we must follow the matched edge to some 𝑢′.

𝑢′

Then, the goal becomes finding 

an 𝑀-augmenting path that starts

that starts from 𝑢′.

This is a recursive problem 

that starts at the vertex 𝑢′.



– We start with an unmatched vertex, say, 𝑢.

■ Our goal is to find an 𝑀-augmenting path starting from 𝑢.

– Consider each neighbor of 𝑢, say, 𝑣.

𝑢

𝑣 𝑢′

If 𝑣 is matched, then 

to form an 𝑀-augmenting path that passes 𝑣, 

we must follow the matched edge to some 𝑢′.

Then, the goal becomes finding 

an 𝑀-augmenting path that starts

that starts from 𝑢′.

This is a recursive problem 

that starts at the vertex 𝑢′.

If the recursion succeeds,

we have an augmenting path for 𝑢.



– We start with an unmatched vertex, say, 𝑢.

■ Our goal is to find an 𝑀-augmenting path starting from 𝑢.

– Consider each neighbor of 𝑢, say, 𝑣.

𝑢

𝑣 𝑢′

If it fails, then we go back to 𝑢,

and continue to examine the next neighbor

until all its neighbors have been examined.

Then, the goal becomes finding 

an 𝑀-augmenting path that starts

that starts from 𝑢′.

This is a recursive problem 

that starts at the vertex 𝑢′.



■ To formally describe the procedure, 

let’s assume the following.

– Each vertex in 𝐺 is associated with a status, 

which is either visited or unvisited.

– For each vertex 𝑣, 

let match[𝑣] denote the vertex to which 𝑣 is matched. 

■ match 𝑣 = −1 if 𝑣 is unmatched.

The DFS-based Recursive Procedure aug-path()



■ The DFS-based recursive procedure goes as follows.

Procedure Aug-Path(𝑢)

1. Mark 𝑢 as visited.

2. For each neighbor 𝑣 of 𝑢, do. 

• If 𝑣 is unmatched, then return the path 𝑢, 𝑣 . 

• If match[𝑣] is unvisited and  ( 𝑃 ←Aug-Path(match[𝑣]) ) ≠ ∅, 

then return the path 𝑢, 𝑣, 𝑃 .

3. Return ∅.
𝑢

𝑣 match 𝑣

Augmenting path 

from match 𝑣 is found.



■ Let 𝐺 = (𝑉, 𝐸) be the input bipartite graph with partite sets 𝐴 and 𝐵, 

and 𝑀 be a matching for 𝐺.

An Augmenting Path Algorithm for Bipartite Graphs

An Augmenting Path Algorithm (for Bipartite Graphs).

1. Mark all the vertices as unvisited.

2. For each unmatched vertex 𝑢 ∈ 𝐴, do

• If ( 𝑃 ← Aug-Path(𝑢) ) ≠ ∅, then return 𝑃.

3. Report “No” and return a vertex cover 𝐶 with 𝐶 = 𝑀 .

We will show 

how this can be done.



■ Since each vertex is visited at most once and each edge is 

examined at most twice by the procedure Aug-Path(), 

– The algorithm runs in 𝑂 𝑛 +𝑚 time.

■ It is clear that, if Aug-Path(𝑢) returns a non-empty path 𝑃, 

then an 𝑀-augmenting path starting at 𝑢 is found.

■ To prove the correctness of the algorithm, 

we need to prove that, 

– There exists no 𝑀-augmenting path in the graph 

when the algorithm reports “No.”

Analysis of the Algorithm



■ Let 𝐴 and 𝐵 be the two partite sets of 𝐺.

– Let 𝑈 be the set of unmatched vertices in 𝐴.

– Let 𝑆 be the vertices in 𝐴 that are marked as visited.

– Let 𝑇 be the set of vertices in 𝐵 that are matched to 𝑆 ∖ 𝑈 by 𝑀.

Notations

𝑈 𝑆

𝐴

𝐵

𝑇

𝐴 ∖ 𝑆



Theorem 3.

If the Augmenting Path Algorithm reports “No,” then 

the set 𝐶 ≔ 𝐴 ∖ 𝑆 ∪ 𝑇 is a vertex cover for 𝐺 with size 𝑀.

𝑈 𝑆

𝐴

𝐵

𝑇

𝐴 ∖ 𝑆

Note that, this is also a constructive proof 

for the König-Egeváry theorem.



■ For any 𝑣 ∈ 𝑆 ∖ 𝑈,

– There is an 𝑀-alternating path that starts at some 𝑢 ∈ 𝑈 and 

ends at 𝑣 with a matched edge in 𝑀. 

Observation 1.

𝑈 𝑆

𝐴

𝐵

𝑇

𝐴 ∖ 𝑆

Since 𝑣 is marked visited, 

it is visited by a recursion call that 

originates from some 𝑢 ∈ 𝑈.



■ There exists no edge between 𝑆 and 𝐵 ∖ 𝑇.

– Vertices in 𝐴 ∖ 𝑆 are unvisited. 

Hence, there exists no edge between 𝑆 and the matched 

vertices in 𝐵 ∖ 𝑇. 

Observation 2.

𝑈 𝑆

𝐴

𝐵

𝑇

𝐴 ∖ 𝑆

Otherwise, that matched 

vertex should be in 𝑇.



■ There exists no edge between 𝑆 and 𝐵 ∖ 𝑇.

– If there exists an edge between 𝑆 and some unmatched 

vertex in 𝐵, it will form an augmenting path that will be found 

by the recursive procedure.

Observation 2.

𝑈 𝑆

𝐴

𝐵

𝑇

𝐴 ∖ 𝑆

A contradiction since 

the algorithm reports “No.”



𝑈 𝑆

𝐴

𝐵

𝑇

𝐴 ∖ 𝑆

■ The edges between 𝑆 and 𝑇 can be covered by 𝑇.

■ By Observation 2, the remaining edges can be covered by 𝐴 ∖ 𝑆.

■ Hence, 𝐶 is a vertex cover for 𝐺.

Theorem 3.

If the Augmenting Path Algorithm reports “No,” then 

the set 𝐶 ≔ 𝐴 ∖ 𝑆 ∪ 𝑇 is a vertex cover for 𝐺 with size 𝑀.


