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Ex 1. Low-Degree Polynomials




The Prime Field IF,

m Consider the prime field F, = {0,1}.
- We have the arithmetic operators +, —, X, / defined over {0, 1}.

- The result is to be mod by 2.

m For example,
- 1+1=0,
- 0+1=1,
- 1x0=0, 1Xx1=1,eftc.




Polynomials over [F,

m Consider the polynomial over F,.

- A polynomial f (x4, ..., x,) is said to have degree at most d
If it has the following form

f(xq, %5, ..., x,) = ag + Z llxj,

1<ism JjES;

where a, € {0,1} and S; € [1,n] with |S;]| < d.




Low-Degree Approximation for Products of Polynomials

m Intuitively, if f4, f5, ..., f, are polynomials of degree at most d,

then f = [1,<;<, fi Can have degree up to dm.

m The following lemma says that the product f can be

well-approximated by a low-degree polynomial.
Note that the statement is
iIndependent of m.

Lemma 1 (Razborov 1987).

For any r = 1, there exists a polynomial g of degree at most dr

suchthat Pr [gx) # f(x)]<27".
x<{0,1}1




Note that the statement is

Lemma 1 (Razborov 1987). independent of m.

Let f == [li<i<m fis

where f3, 15, ..., [, are polynomials of degree at most d.

For any r > 1, there exists a polynomial g of degree at most dr

such that

vt lg@) = f0] = 27,

l.e., g and f differ on at most 2™*~" inputs.
Why does this suffice?

To prove Lemma 1, we define a random polynomial g(x) and
show that Pr[g(a) # f(a)] < 27" holds for any input a € {0,1}".



m o prove Lemma 1, we consider a random p¢”’ S
Each possible subset is picked

show that Pr{g(a) # f(a)] < 27" for any inpU  ith probability 2-™.

m LetS,S,,...,S, be random subsets sampled independently and

uniformly from {1,2, ..., m}.

m Define

g = Hh-, where hj:=1—2(1_fi)_

1<j<r iESj




m LetS,;,S,, ..., S, be random subsets sampled independently and

uniformly from {1,2, ..., m}.

g = Hh-, where hjzzl—z(l—fi)-

1<j<r iESj

m Deflne

m Consider any input a € {0,1}".

- If f(a) =1,
then f;(a) = 1 for all i, since f =[], f;.

m Hence, h;(a) =1 forall j and
g(a) =1 = f(a) with probability 1.




m LetS,;,S,, ..., S, be random subsets sampled independently and

uniformly from {1,2, ..., m}.

m Define 4 .= 1_[ hi, where hj =1 — Z(l —fi) .

1<j<r 1=,

m Consider any input a € {0,1}".

- If f(a) =0, then f;(a) = 0 for at least one i.

Let S’ be the set of all such indexes. This happens
with probability 1/2.

m By definition, h;(a) = 0 if and only if
§; contains an odd number of elements from S'.




m Consider any input a € {0,1}".

- If f(a) = 0, then f;(a) = 0 for at least one i.

Let S’ be the set of all such indexes. This happens
with probability 1/2.

m By definition, h;j(a) = 0 if and only if

S contains an odd number of elements from S’.
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1 —Pr[hi(@)=1Vj] = 1—-27".




m Consider any input a € {0,1}".
- If f(a) =1, then g(a) = f(a) for sure.
- If f(a) =0, then g(a) = f(a) with probability 1 —27".
m Let X, be the indicator variable for the event that g(a) + f(a)
and X := ), X,.
m We have E[X] = Y E[X,] = X Pr[X,] < 2"

- Hence, there must exist such a collection of Sy, ..., S,
such that g(x) differs from f(x) on at most 2™*~" inputs.




Large Deviation Inequalities




low Far can X Deviate from E|X]?

m EXxpectation (expected value) is the weighted average of a variable
taking a random value.

m Very often, knowing the expectation is not sufficient to know the true
value of the variable.

- Consider the random variable X that takes the values +101°
with probability 1/, each.

- E[X] =0, but X is either 101° or —10%°.




Markov's Inequality

m If E[X]is what we only have,
then a tight bound is given by the following theorem.

Theorem 2 (Markov’s Inequality).

If X Is a non-negative random variable, then,
forany t > 0, E[X]

PriX>t] < ——.

Alternatively, Pr[ X >t - E[X]] < 1/t.




Theorem 2 (Markov’s Inequality).

If X Is a non-negative random variable, then,

forany t > 0, E[X]

PriX >t] ST.

m \We have

E[X] t-Prl[X >t] .
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m The above bound is tight,
If E|X] is what we only have.




Chebyshev’'s Inequality

m If we also know Var|X],
then a (much) tighter guarantee can be obtained.

Theorem 2 (Chebyshev’s Inequality).

Forany t > 0, VarlXx
Pr{|X —E[X]|>¢t] < arlX]

Alternatively,

Pr[IX—E[X]I > t-\/Var[X]] < 1/t2 .




Theorem 2 (Chebyshev’s Inequality).

Forany t > 0, Varlx
Pr1X — EIX]| > ¢ ] < 22X

tZ

m Consider the random variable Y := (X — E[X])? = 0.

- Apply the Markov’s inequality, we obtain

Pr{lX —E[X]| > ¢] = Priy = ¢2] < AL _tf[x])z] - Vatrz[x] .

Probability > 1 — 1/t?
| | |
E[X]—t-+/Var[X] E[X] E[X] + t-+/Var[X]




Moment Generating Function
&
The Chernoff Bounds




Moments of a Random Variable

m The k" moment of a random variable X is defined as E|X*]|.
- The 15t-moment is exactly the expectation E[X].

- The 2™*-moment gives the variance

Var[X] = E[(X —E[XD?] = E[X?*] - (E[XD* .




The Moment Generating Function

m The moment generating function of a random variable X

IS defined as
My (t) == E[et*].

m The moment generating function My (t) is important in that

- It captures all the moments of X.

- We have
E[x"] = M{(0),

where M)((”)(t) is the nt*-derivative of My (¢t).




The Chernoff Bounds

m If we have the mgf My (t) of X, then the tightest concentration bound

IS given by the Chernoff bounds.

Theorem 3 (Chernoff Bounds).

Forany t > 0,

Pr[X > a] = Pr[e!® > et?]

IA

E[etX] - e~ ta,
Similarly, forany t < 0,

Pr[X <a] = Pr[e* > et?] < E[et*] e %@,




The Chernoff Bounds

m If we have the mgf My (t) of X, then the tightest concentration bound

IS given by the Chernoff bounds.

m Theorem 3 gives the original form of Chernoff bounds,
which is derived from the Markov’s inequality.

- Depending on what the actual distribution of X,
the Chernoff bounds may have different final form.

- As an example,
let’s consider the sum of independent variables from [0,1].




Theorem 4 (Chernoff Bounds for Sum of Independent Variables).

Let X;,X,, ..., X;, be independent variables taking values from
the interval [0,1]. Let X :== },; X; and u := E[X].

Then, for any a > 0,

a’ a’

Prf[X>u+a]l]<e2n and Pr[ X=>u—a]< e 2n.

m Intuitively, the bound says that the outcome of X concentrates

between u + 0(/n).

- Qutside this interval, the likelihood decreases exponentially.




Theorem 4 (Chernoff Bounds for Sum of Independent Variables).

Let X;,X,, ..., X;, be independent variables taking values from
the interval [0,1]. Let X :== },; X; and u := E[X].

Then, for any a > 0,

a? a?
Prf[X>u+a]l]<e2n and Pr[ X=>u—a]< e 2n.

m Takingt = O(annn),
the above probability is bounded by 0(n™1).




The Second Moment Method




The Second Moment Method

m Let X be a non-negative integer-valued random variable.

m The following inequality, obtained from Chebyshev’s inequality,
IS one typical way and often useful.

Var|[X]
PriX=0] < GETXTE

- Indeed, we have

PriX = 0] < Pr[|X — E[X]| = E[X]] < Var[X]/ (E[X])?.




Ex 2. Threshold Behavior

IN Random Graphs




The Random Graph G, ,,
m Consider the graph G, , = (V,E) with [V| = n and
the edge set E generated randomly as follows.

- Foranyu,v eV,
we draw an edge (u, v) € E independently with probability p.

m It follows that

ELIENT = (1 )p and Pr[|E| =m] = pm(1 - p)@ .




The Threshold Behavior of G, , 2 K,

m Let G be arealization (sample) of G, ,, and
consider the event that G contains a clique of size 4.

m We have the following theorem.

Theorem 5. For any € > 0 and sufficiently large n,

if p = 0(n=2/3), then

Pr| G contains K, | < €.

On the contrary, if p = w(n™2/3), then

Pr| G does notcontainK, | < €.




Theorem 5. For any € > 0 and sufficiently large n,

if p = 0(n"2/2), then

Pr| G contains K, | < €.

m Suppose that p = o(n=2/3).

- Let (y, ""C(Z) Cc V be all possible sets of 4 vertices in G.

) 1 ifC;isa Ky, .
- LetX = { 0 otherwise, and X := 2,; X;.
m It follows that Pr[X;] = p® = o(n™*) and E[X (")o(n ) =0(1).

m Since X is integer-valued, Pr[X > 1] < E[X] < e for sufficiently large n.




Theorem 5. For any € > 0 and sufficiently large n,

if p = w(n2/3), then

Pr| G does notcontainK, | < €.

m Suppose that p = w(n=2/3).
- In this case E[X] — o as n tends to infinity.

- This, however, is not strong enough to guarantee the statement

of the theorem.

m We will show that Var[X] = o((E[X])?).
- Then we have Pr[X = 0] = 0o(1) and the theorem holds.




m Suppose that p = w(n™%/3).
- We will show that Var[X] = o((E[X])?).

m To compute Var|[X], we need the following lemma.

Lemma 6.

LetY;, ..., Y, be 0-1 random variable and Y = }., Y.

Then vyar[y] < E[Y] + z Cov(Y;,Y;) ,

1<i,j<m,
I#]

where Cov(Y;, Y;) = E|Y;-Y; | — E[Y;]- E|Y;].




m Suppose that p = w(n™%/3).
- We will show that Var[X] = o((E[X])?).

m Forany 1 <i,j<mwithi#j,
consider the covariance of X; and X;.

- Iflc;ngl <1,

then C; and C; share no edge, and X; and X; are independent.

Hence, E|X;X;| = E[X;] - E[X;] and Cov(X; X;) = 0.




m Forany1<i,j<mwithi#j,
consider the covariance of X; and X;.

- If|C; n C;| = 2, then C; and C; share one edge.

The 11 edges in C; U C; have to appear at the same time
for X; - X; to be 1.

Hence,

Cov(Xy,X;) = E[X.X;] - EIGIE[X;] < E[X.X;] =

There are (7)- (2 b 2) such pairs of C; and C;.




m Forany1<i,j<mwithi#j,
consider the covariance of X; and X;.

- Similarly, if |C; n C;| = 3, then C; and C; share three edges.

The 9 edges in C; U C; have to appear at the same time
for X; - X; to be 1.

Hence,

Cov(Xy,X;) = E[X.X;] - EIGIE[X;] < E[X.X;] =

There are (7 )- (1 H 1) such pairs of C; and C;.




m Forany1<i,j <mwithi #j,

consider the covariance of X; and X;.

- Apply Lemma 6, we obtain

Var[X] < E[X] + ZCOV(XL"XJ')

L#]
n n 6 n 5
< 6 , 11 ( ) 9
= (4)p " (6) (2;2;2)” T s <1;3;1>p
— 9(n6p11)

= o((E[X])?) since (E[X])? = 6(n®p'?) and p = w(n™%/3).




m It remains to prove the following lemma.

Lemma 6.

LetY;, ..., Y, be 0-1 random variable and Y =}, Y.

Then var[y] < E[Y] + z Cov(Y;,Y;) .

1<i,j<m,
I#]

m By definition, we have Var[Y] = ¥; Var[¥;] + X..; Cov(Y;, Y;).

- Since Y; is a 0-1 random variable, E|Y?| = E[Y;].

- Hence, Var[Y;] = E|Y?| — (E[V;])? < E[Y;].




