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Ex 1. Low-Degree Polynomials



The Prime Field 𝔽2

■ Consider the prime field 𝔽2 = 0,1 .

– We have the arithmetic operators +, −, ×, / defined over {0, 1}.

– The result is to be mod by 2.

■ For example, 

– 1 + 1 = 0,

– 0 + 1 = 1,

– 1 × 0 = 0,  1 × 1 = 1, etc.



Polynomials over 𝔽2

■ Consider the polynomial over 𝔽2. 

– A polynomial 𝑓 𝑥1, … , 𝑥𝑛 is said to have degree at most 𝑑

if it has the following form

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑎0 + ෍

1≤𝑖≤𝑚

ෑ

𝑗∈𝑆𝑖

𝑥𝑗 ,

where 𝑎0 ∈ 0,1 and 𝑆𝑖 ⊆ 1, 𝑛 with 𝑆𝑖 ≤ 𝑑.



Low-Degree Approximation for Products of Polynomials

■ Intuitively, if 𝑓1, 𝑓2, … , 𝑓𝑚 are polynomials of degree at most 𝑑, 

then 𝑓 ≔ ς1≤𝑖≤𝑚 𝑓𝑖 can have degree up to 𝑑𝑚. 

■ The following lemma says that the product 𝑓 can be 

well-approximated by a low-degree polynomial. 

Lemma 1 (Razborov 1987).

For any 𝑟 ≥ 1, there exists a polynomial 𝑔 of degree at most 𝑑𝑟

such that  Pr
𝑥← 0,1 𝑛

𝑔 𝑥 ≠ 𝑓 𝑥 ≤ 2−𝑟 .

Note that the statement is

independent of 𝑚.



Lemma 1 (Razborov 1987).

Let 𝑓 ≔ ς1≤𝑖≤𝑚 𝑓𝑖, 

where 𝑓1, 𝑓2, … , 𝑓𝑚 are polynomials of degree at most 𝑑.     

For any 𝑟 ≥ 1, there exists a polynomial 𝑔 of degree at most 𝑑𝑟

such that 
Pr

𝑥← 0,1 𝑛
𝑔 𝑥 ≠ 𝑓 𝑥 ≤ 2−𝑟 ,

i.e., 𝑔 and 𝑓 differ on at most 2𝑛−𝑟 inputs.

■ To prove Lemma 1, we define a random polynomial 𝑔 𝑥 and 

show that   Pr 𝑔 𝑎 ≠ 𝑓 𝑎 ≤ 2−𝑟 holds for any input 𝑎 ∈ 0,1 𝑛.

Note that the statement is

independent of 𝑚.

Why does this suffice?



■ To prove Lemma 1, we consider a random polynomial 𝑔 𝑥 and 

show that Pr 𝑔 𝑎 ≠ 𝑓 𝑎 ≤ 2−𝑟 for any input 𝑎 ∈ 0,1 𝑛.

■ Let 𝑆1, 𝑆2, … , 𝑆𝑟 be random subsets sampled independently and 

uniformly from 1,2,… ,𝑚 . 

■ Define

𝑔 ≔ ෑ

1≤𝑗≤𝑟

ℎ𝑗 , where ℎ𝑗 ≔ 1−෍

𝑖∈𝑆𝑗

1 − 𝑓𝑖 .

Each possible subset is picked

with probability 2−𝑚.



■ Let 𝑆1, 𝑆2, … , 𝑆𝑟 be random subsets sampled independently and 

uniformly from 1,2,… ,𝑚 . 

■ Define

𝑔 ≔ ෑ

1≤𝑗≤𝑟

ℎ𝑗 , where ℎ𝑗 ≔ 1−෍

𝑖∈𝑆𝑗

1 − 𝑓𝑖 .

■ Consider any input 𝑎 ∈ 0,1 𝑛.

– If 𝑓 𝑎 = 1, 

then 𝑓𝑖 𝑎 = 1 for all 𝑖, since 𝑓 = ς𝑖 𝑓𝑖.

■ Hence,  ℎ𝑗 𝑎 = 1 for all 𝑗 and  

𝑔 𝑎 = 1 = 𝑓 𝑎 with probability 1.



■ Let 𝑆1, 𝑆2, … , 𝑆𝑟 be random subsets sampled independently and 

uniformly from 1,2,… ,𝑚 . 

■ Define 𝑔 ≔ ෑ

1≤𝑗≤𝑟

ℎ𝑗 , where ℎ𝑗 ≔ 1−෍

𝑖∈𝑆𝑗

1 − 𝑓𝑖 .

■ Consider any input 𝑎 ∈ 0,1 𝑛.

– If 𝑓 𝑎 = 0, then 𝑓𝑖 𝑎 = 0 for at least one 𝑖.

Let 𝑆′ be the set of all such indexes.

■ By definition, ℎ𝑗 𝑎 = 0 if and only if 

𝑆𝑗 contains an odd number of elements from 𝑆′.

This happens 

with probability 1/2.



■ Consider any input 𝑎 ∈ 0,1 𝑛.

– If 𝑓 𝑎 = 0, then 𝑓𝑖 𝑎 = 0 for at least one 𝑖.

Let 𝑆′ be the set of all such indexes.

■ By definition, ℎ𝑗 𝑎 = 0 if and only if 

𝑆𝑗 contains an odd number of elements from 𝑆′.

■ Hence,

Pr 𝑔 𝑎 = 0 = 1 − Pr ℎ𝑗 𝑎 = 1 ∀𝑗 = 1 − 2−𝑟 .

This happens 

with probability 1/2.



■ Consider any input 𝑎 ∈ 0,1 𝑛.

– If 𝑓 𝑎 = 1, then 𝑔 𝑎 = 𝑓 𝑎 for sure.

– If 𝑓 𝑎 = 0, then 𝑔 𝑎 = 𝑓 𝑎 with probability 1 − 2−𝑟.

■ Let 𝑋𝑎 be the indicator variable for the event that 𝑔 𝑎 ≠ 𝑓 𝑎

and 𝑋 ≔ σ𝑎𝑋𝑎.

■ We have 𝐸 𝑋 = σ𝑎 𝐸 𝑋𝑎 = σ𝑎 Pr 𝑋𝑎 ≤ 2𝑛−𝑟 .

– Hence, there must exist such a collection of 𝑆1, … , 𝑆𝑟

such that 𝑔 𝑥 differs from 𝑓 𝑥 on at most 2𝑛−𝑟 inputs.



Large Deviation Inequalities



How Far can 𝑋 Deviate from E 𝑋 ?

■ Expectation (expected value) is the weighted average of a variable 

taking a random value.

■ Very often, knowing the expectation is not sufficient to know the true 

value of the variable.

– Consider the random variable 𝑋 that takes the values ±1010

with probability Τ1 2 each.

– 𝐸 𝑋 = 0, but 𝑋 is either 1010 or −1010.



Markov’s Inequality

■ If 𝐸 𝑋 is what we only have, 

then a tight bound is given by the following theorem.

Theorem 2 (Markov’s Inequality).

If 𝑋 is a non-negative random variable, then, 

for any 𝑡 > 0, 
Pr 𝑋 ≥ 𝑡 ≤

𝐸 𝑋

𝑡
.

Alternatively, Pr 𝑋 ≥ 𝑡 ⋅ 𝐸 𝑋 ≤ 1/𝑡 .



■ We have

𝐸 𝑋 = ෍

𝑖

𝑖 ⋅ Pr 𝑋 = 𝑖 ≥ ෍

𝑖≥𝑡

𝑡 ⋅ Pr 𝑋 = 𝑖 = 𝑡 ⋅ Pr 𝑋 ≥ 𝑡 .

■ The above bound is tight, 

if 𝐸 𝑋 is what we only have.

Theorem 2 (Markov’s Inequality).

If 𝑋 is a non-negative random variable, then, 

for any 𝑡 > 0, 
Pr 𝑋 ≥ 𝑡 ≤

𝐸 𝑋

𝑡
.



Chebyshev’s Inequality

■ If we also know Var 𝑋 ,

then a (much) tighter guarantee can be obtained.

Theorem 2 (Chebyshev’s Inequality).

For any 𝑡 > 0, 
Pr 𝑋 − 𝐸 𝑋 ≥ 𝑡 ≤

Var 𝑋

𝑡2
.

Alternatively, 

Pr 𝑋 − 𝐸 𝑋 ≥ 𝑡 ⋅ Var 𝑋 ≤ 1/𝑡2 .



■ Consider the random variable 𝑌 ≔ 𝑋 − 𝐸 𝑋 2 ≥ 0.

– Apply the Markov’s inequality, we obtain

Pr 𝑋 − 𝐸 𝑋 ≥ 𝑡 = Pr 𝑌 ≥ 𝑡2 ≤
𝐸 𝑋 − 𝐸 𝑋 2

𝑡2
=

Var 𝑋

𝑡2
.

Theorem 2 (Chebyshev’s Inequality).

For any 𝑡 > 0, 
Pr 𝑋 − 𝐸 𝑋 ≥ 𝑡 ≤

Var 𝑋

𝑡2
.

𝐸 𝑋 𝐸 𝑋 + 𝒕 ⋅ 𝐕𝐚𝐫 𝑿𝐸 𝑋 − 𝒕 ⋅ 𝐕𝐚𝐫 𝑿

Probability ≥ 𝟏 − 𝟏/𝒕𝟐



Moment Generating Function

&

The Chernoff Bounds



Moments of a Random Variable

■ The 𝑘𝑡ℎ moment of a random variable 𝑋 is defined as 𝐸 𝑋𝑘 . 

– The 1𝑠𝑡-moment is exactly the expectation 𝐸 𝑋 .

– The 2𝑛𝑑-moment gives the variance 

Var 𝑋 ≔ 𝐸 𝑋 − 𝐸 𝑋 2 = 𝐸 𝑋2 − 𝐸 𝑋 2 .



The Moment Generating Function

■ The moment generating function of a random variable 𝑋

is defined as 
𝑀𝑋 𝑡 ≔ 𝐸 𝑒𝑡𝑋 .

■ The moment generating function 𝑀𝑋 𝑡 is important in that

– It captures all the moments of 𝑋. 

– We have
𝐸 𝑋𝑛 = 𝑀𝑋

𝑛
0 ,

where 𝑀𝑋
𝑛
(𝑡) is the 𝑛𝑡ℎ-derivative of 𝑀𝑋 𝑡 .



The Chernoff Bounds

■ If we have the mgf 𝑀𝑋 𝑡 of 𝑋, then the tightest concentration bound

is given by the Chernoff bounds.

Theorem 3 (Chernoff Bounds).

For any 𝑡 > 0, 

Pr 𝑋 ≥ 𝑎 = Pr 𝑒𝑡𝑋 ≥ 𝑒𝑡𝑎 ≤ 𝐸 𝑒𝑡𝑋 ⋅ 𝑒−𝑡𝑎 .

Similarly, for any 𝑡 < 0, 

Pr 𝑋 ≤ 𝑎 = Pr 𝑒𝑡𝑋 ≥ 𝑒𝑡𝑎 ≤ 𝐸 𝑒𝑡𝑋 ⋅ 𝑒−𝑡𝑎 .



The Chernoff Bounds

■ If we have the mgf 𝑀𝑋 𝑡 of 𝑋, then the tightest concentration bound

is given by the Chernoff bounds.

■ Theorem 3 gives the original form of Chernoff bounds, 

which is derived from the Markov’s inequality.

– Depending on what the actual distribution of 𝑋,

the Chernoff bounds may have different final form.

– As an example, 

let’s consider the sum of independent variables from [0,1].



■ Intuitively, the bound says that the outcome of 𝑋 concentrates

between 𝜇 ± 𝜃 𝑛 .

– Outside this interval, the likelihood decreases exponentially.

Theorem 4 (Chernoff Bounds for Sum of Independent Variables).

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent variables taking values from 

the interval 0,1 . Let 𝑋 ≔ σ𝑖𝑋𝑖 and 𝜇 ≔ 𝐸 𝑋 . 

Then, for any 𝑎 > 0, 

Pr 𝑋 ≥ 𝜇 + 𝑎 ≤ 𝑒−
𝑎2

2𝑛 and Pr 𝑋 ≥ 𝜇 − 𝑎 ≤ 𝑒−
𝑎2

2𝑛 .



■ Taking 𝑡 = 𝑂 𝑛 ln 𝑛 , 

the above probability is bounded by 𝑂 𝑛−1 .

Theorem 4 (Chernoff Bounds for Sum of Independent Variables).

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent variables taking values from 

the interval 0,1 . Let 𝑋 ≔ σ𝑖𝑋𝑖 and 𝜇 ≔ 𝐸 𝑋 . 

Then, for any 𝑎 > 0, 

Pr 𝑋 ≥ 𝜇 + 𝑎 ≤ 𝑒−
𝑎2

2𝑛 and Pr 𝑋 ≥ 𝜇 − 𝑎 ≤ 𝑒−
𝑎2

2𝑛 .



The Second Moment Method



The Second Moment Method

■ Let 𝑋 be a non-negative integer-valued random variable.

■ The following inequality, obtained from Chebyshev’s inequality, 

is one typical way and often useful.

– Indeed, we have 

Pr 𝑋 = 0 ≤ Pr 𝑋 − 𝐸 𝑋 ≥ 𝐸 𝑋 ≤ Var 𝑋 / 𝐸 𝑋 2 .

Pr 𝑋 = 0 ≤
Var 𝑋

𝐸 𝑋 2
.



Ex 2. Threshold Behavior    

in Random Graphs



The Random Graph 𝐺𝑛,𝑝

■ Consider the graph 𝐺𝑛,𝑝 = 𝑉, 𝐸 with 𝑉 = 𝑛 and 

the edge set 𝐸 generated randomly as follows. 

– For any 𝑢, 𝑣 ∈ 𝑉, 

we draw an edge 𝑢, 𝑣 ∈ 𝐸 independently with probability 𝑝.

■ It follows that

E 𝐸 =
𝑛

2
𝑝 and Pr 𝐸 = 𝑚 = 𝑝𝑚 1 − 𝑝

𝑛
2 −𝑚 .



The Threshold Behavior of 𝐺𝑛,𝑝 ⊇ 𝐾4

■ Let 𝐺 be a realization (sample) of 𝐺𝑛,𝑝 and 

consider the event that 𝐺 contains a clique of size 4.

■ We have the following theorem.

Theorem 5. For any 𝜖 > 0 and sufficiently large 𝑛,

if 𝑝 = 𝑜 𝑛−2/3 , then
Pr 𝐺 contains 𝐾4 < 𝜖 .

On the contrary, if 𝑝 = 𝜔 𝑛−2/3 , then

Pr 𝐺 does not contain 𝐾4 < 𝜖 .



■ Suppose that 𝑝 = 𝑜 𝑛−2/3 . 

– Let 𝐶1, … , 𝐶 𝑛
4
⊆ 𝑉 be all possible sets of 4 vertices in 𝐺.

– Let 𝑋𝑖 = ቊ
1 if 𝐶𝑖 is a 𝐾4,
0 otherwise,

and 𝑋 ≔ σ𝑖𝑋𝑖.

■ It follows that Pr 𝑋𝑖 = 𝑝6 = 𝑜 𝑛−4 and  𝐸 𝑋 = 𝑛
4
𝑜 𝑛−4 = 𝑜 1 .

■ Since 𝑋 is integer-valued, Pr 𝑋 ≥ 1 ≤ 𝐸 𝑋 < 𝜖 for sufficiently large 𝑛.

Theorem 5. For any 𝜖 > 0 and sufficiently large 𝑛,

if 𝑝 = 𝑜 𝑛−2/3 , then
Pr 𝐺 contains 𝐾4 < 𝜖 .



■ Suppose that 𝑝 = 𝜔 𝑛−2/3 . 

– In this case 𝐸 𝑋 → ∞ as 𝑛 tends to infinity.

– This, however, is not strong enough to guarantee the statement 

of the theorem.

■ We will show that Var 𝑋 = 𝑜 𝐸 𝑋 2 .

– Then we have Pr 𝑋 = 0 = 𝑜(1) and the theorem holds.

Theorem 5. For any 𝜖 > 0 and sufficiently large 𝑛,

if 𝑝 = 𝜔 𝑛−2/3 , then
Pr 𝐺 does not contain 𝐾4 < 𝜖 .



■ Suppose that 𝑝 = 𝜔 𝑛−2/3 . 

– We will show that Var 𝑋 = 𝑜 𝐸 𝑋 2 .

■ To compute Var 𝑋 , we need the following lemma.

Lemma 6.

Let 𝑌1, … , 𝑌𝑚 be 0-1 random variable and 𝑌 ≔ σ𝑖 𝑌𝑖. 

Then Var 𝑌 ≤ 𝐸 𝑌 + ෍
1≤𝑖,𝑗≤𝑚,

𝑖≠𝑗

Cov 𝑌𝑖 , 𝑌𝑗 ,

where Cov 𝑌𝑖 , 𝑌𝑗 ≔ 𝐸 𝑌𝑖 ⋅ 𝑌𝑗 − 𝐸 𝑌𝑖 ⋅ 𝐸 𝑌𝑗 .



■ Suppose that 𝑝 = 𝜔 𝑛−2/3 . 

– We will show that Var 𝑋 = 𝑜 𝐸 𝑋 2 .

■ For any 1 ≤ 𝑖, 𝑗 ≤ 𝑚 with 𝑖 ≠ 𝑗, 

consider the covariance of 𝑋𝑖 and 𝑋𝑗.

– If 𝐶𝑖 ∩ 𝐶𝑗 ≤ 1, 

then 𝐶𝑖 and 𝐶𝑗 share no edge, and 𝑋𝑖 and 𝑋𝑗 are independent.

Hence,  𝐸 𝑋𝑖𝑋𝑗 = 𝐸 𝑋𝑖 ⋅ 𝐸 𝑋𝑗 and  Cov 𝑋𝑖 , 𝑋𝑗 = 0.



■ For any 1 ≤ 𝑖, 𝑗 ≤ 𝑚 with 𝑖 ≠ 𝑗, 

consider the covariance of 𝑋𝑖 and 𝑋𝑗.

– If 𝐶𝑖 ∩ 𝐶𝑗 = 2, then 𝐶𝑖 and 𝐶𝑗 share one edge.

The 11 edges in 𝐶𝑖 ∪ 𝐶𝑗 have to appear at the same time

for 𝑋𝑖 ⋅ 𝑋𝑗 to be 1.

Hence,  

Cov 𝑋𝑖 , 𝑋𝑗 = 𝐸 𝑋𝑖𝑋𝑗 − 𝐸 𝑋𝑖 𝐸 𝑋𝑗 ≤ 𝐸 𝑋𝑖𝑋𝑗 = 𝑝11 .

There are  𝑛
6

⋅ 6
2;2;2

such pairs of 𝐶𝑖 and 𝐶𝑗.



■ For any 1 ≤ 𝑖, 𝑗 ≤ 𝑚 with 𝑖 ≠ 𝑗, 

consider the covariance of 𝑋𝑖 and 𝑋𝑗.

– Similarly, if 𝐶𝑖 ∩ 𝐶𝑗 = 3, then 𝐶𝑖 and 𝐶𝑗 share three edges.

The 9 edges in 𝐶𝑖 ∪ 𝐶𝑗 have to appear at the same time

for 𝑋𝑖 ⋅ 𝑋𝑗 to be 1.

Hence,  

Cov 𝑋𝑖 , 𝑋𝑗 = 𝐸 𝑋𝑖𝑋𝑗 − 𝐸 𝑋𝑖 𝐸 𝑋𝑗 ≤ 𝐸 𝑋𝑖𝑋𝑗 = 𝑝9 .

There are  𝑛
5

⋅ 5
1;3;1

such pairs of 𝐶𝑖 and 𝐶𝑗.



■ For any 1 ≤ 𝑖, 𝑗 ≤ 𝑚 with 𝑖 ≠ 𝑗, 

consider the covariance of 𝑋𝑖 and 𝑋𝑗.

– Apply Lemma 6, we obtain

Var 𝑋 ≤ 𝐸 𝑋 + ෍

𝑖≠𝑗

Cov 𝑋𝑖 , 𝑋𝑗

≤
𝑛

4
𝑝6 +

𝑛

6
⋅

6

2; 2; 2
𝑝11 +

𝑛

5
⋅

5

1; 3; 1
p9

= 𝜃 𝑛6𝑝11

= 𝑜 𝐸 𝑋 2 since 𝐸 𝑋 2 = 𝜃 𝑛8𝑝12 and 𝑝 = 𝜔 𝑛−2/3 .



■ It remains to prove the following lemma.

■ By definition, we have Var 𝑌 = σ𝑖 Var 𝑌𝑖 +σ𝑖≠𝑗 Cov 𝑌𝑖 , 𝑌𝑗 .

– Since 𝑌𝑖 is a 0-1 random variable, 𝐸 𝑌𝑖
2 = 𝐸 𝑌𝑖 .

– Hence, Var 𝑌𝑖 = 𝐸 𝑌𝑖
2 − 𝐸 𝑌𝑖

2 ≤ 𝐸 𝑌𝑖 .

Lemma 6.

Let 𝑌1, … , 𝑌𝑚 be 0-1 random variable and 𝑌 ≔ σ𝑖 𝑌𝑖. 

Then Var 𝑌 ≤ 𝐸 𝑌 + ෍
1≤𝑖,𝑗≤𝑚,

𝑖≠𝑗

Cov 𝑌𝑖 , 𝑌𝑗 .


